
Back to the Past:
Segmentation with Infinite and Non-Volatile Memory

Lauri P Laux Jr, Roberto A Hexsel

Departamento de Informática, Universidade Federal do Paraná

{lpljunior,roberto}@inf.ufpr.br

Abstract. The design of the current desktop/server operating systems
is premised on the use of slow magnetic disks. Two recent developments,
(i) RAM capacity nearing 264 bytes, and (ii) the introduction of non-volatile
memory (NVRAM), provide an opportunity for a complete re-design of
traditional Unix-like operating systems. We discuss some of the issues which
support that proposition and offer a few suggestions for areas that may
benefit from looking back at pioneering work. We then propose a segmented
memory model for the MIPS processor.

1. Introduction

Esquecer é uma necessidade.
Machado de Assis, Verba testamentária.

If one is presented with a new device that improves a pair of fundamental
metrics by two to three orders of magnitude, at a reasonable price, would a radical
new way of thinking be necessary? Would work done in the 1960s help? Our answer
to both questions is ‘yes’, and we attempt to justify this answer in what follows.

The pioneering work in what we now call “operating systems” was undertaken
in the late 1960s, early 1970s, and was premised on magnetic discs. Many of the
design decisions were artifacts of the slow discs, and these include demand paging,
4Kbyte pages, the buffer cache, scheduling of the processor, and file systems designed
around disk blocks. If we get rid of all these, then our systems may become simpler,
smaller, faster and more reliable.

The early 1990s saw the transition, in processor design, from 32 to 64 bit
CPUs. By the early 2000s, primary memories were implemented with 40-44 bit
addresses. A decade later, physical addresses are in the range of 50-54 bits. By the
2020s we can expect physical memories with a full 64 bit addressing range. This
growth is on par with the rule of thumb which states that “the memory needed by the
average program grows from 1/2 to 1 address bit per year” (1st edition of [HP12]).

We highlight some of the opportunities presented by the feasibility of imple-
menting very large primary memories comprising of DRAM and non-volatile RAM
(NVRAM) – by ‘large’ we mean 264 bytes. We discuss the advantages of segmented
memory over demand paged memory, and give a sketch of an architecture for a
memory system built of DRAM and NVRAM. We conclude with the design of a
translation buffer to support a segmented memory system on MIPS processors.

2. Non-volatile RAM
Flash memories have been around for some time, and commercial flash ‘disk’ drives
are becoming affordable. Solid state drives (SSD) are fast as there are no moving
parts in them, their capacity is quite reasonable, and prices will fall, eventually. The
durability problem has been solved and drives can be expected to be functional for
several years, depending on usage patterns. SSDs are less power hungry than their
electro-mechanical counterparts.

There are a few classes of devices that may be used to implement NVRAM,
the most promising of these being phase change memory (PCM) [RBB+08, SS15].
PCM is faster than flash memory and is more durable. PCM memory is slower than
DRAM, less dense, and wears out faster, yet there are ways to compensate for these
less attractive characteristics. With these problems solved, systems could make use
of PCM devices as a replacement for DRAM [LZY+10].

Table 1 shows a (very rough) comparison of the characteristics of the storage
technologies that are of interest to OS designers. These numbers are intended solely
to provide approximations to the orders of magnitude. For simplicity, we take
processor cycle time to be 0.5ns (2 GHz). Thus an access to NVRAM takes twice as
long as an access to DRAM – a factor of two, and an access to an SSD takes about
100 times as long as an access to DRAM.

Table 1. Access time for storage technologies.

medium disks SSD NVRAM DRAM
access time 10ms 10µs 200ns 100ns
access time [cycles] 5× 106 5× 103 100 50

3. Do we need a scheduler?
The scheduling of I/O requests changes radically when the secondary storage is
so fast that there is no point in trying to hide its latency. Regarding the section
title: do we need a scheduler?, the answer is yes, but we may take advantage of
simpler mechanisms. There will always be need for a scheduler to stop processes
from hogging the processor, since starvation is a nasty thing and must be avoided.

A large part of what an operating system does is predicated on a storage
technology that is some, to several, orders of magnitude slower than the proces-
sor [KELS62, HP12]. If an access to secondary storage takes 105 to 106 processor
cycles, it pays to switch the processor to another process, to hide the disk access
latency. The OS enqueues the request, and the disk controller posts an interrupt to
the processor when the requested block has been copied to DRAM. Having several
processes performing concurrent accesses to disk is a clever trick to hide latency.

Consider how long it takes to save an execution context for a Unix process on
a MIPS processor, which includes the PC, 31 general purpose registers (GPRs), and
HI and LO registers. Saving state through non-cacheable memory needs 34 stores,
at 50 cycles/store, adding up to 1,700 cycles. This is only half the time for a switch
as the same number of registers must be restored for the incoming process. Thus

far, 3,400 cycles, and not counting the 33 floating point/status registers. This is
the minimum time it takes to save and restore state on a MIPS processor. As for
lightweight threads, not the full set of registers may need be saved/restored, but
unless there is hardware support for contexts, several memory references are needed
on each thread switch. Even for x86 processors, with 8-16 integer and a plethora of
vector/media dedicated registers, context switches cost anything but a trifle.

The interrupt service routine for the disk drive causes two mini-context
switches, to save and then restore the processor registers which are needed to exe-
cute the handler, plus some more cycles to drain and then fill up the pipeline with
instructions. Deeper/wider pipelines may take 100s of cycles to drain and fill up.

Under the far from innocent assumptions implied by Table 1, a fair proportion
of the cycles needed to access a magnetic disk are spent on context switches. For
the switch to be worthwhile, there better be several threads/processes vying for
the processor. Unfortunately, current desktop users don’t often have use for more
than two to three concurrent threads/processes [BDMF10]. The situation may not
be different with servers, as many applications are IO bound: a few long running
processes perform many disc references in searching or filling the huge tables common
in current large-scale applications.

To date, the status quo is this: it takes a very long time to access data on
magnetic disks, the OS switches processes whenever there is a disk request in order
to hide the disk latency, there are just a couple of processes to hide said latency. As
an additional twist, most of the lap/desktop systems sold in 2016 have at least four
processor cores, and the majority of them are idle most of the time.

If our desktop system is equipped with storage as fast as flash based SSDs,
things do look very different [BCGL11, YMH12]. If an access to an SSD block costs
5,000 cycles, there is no point in performing a context switch, which itself costs,
almost that same number of cycles. Thus, whenever a process requests a block from
an SSD, it is more efficient to synchronize the processor to the device by polling
rather than by an interrupt. If the processor performs the copy from/to the device
to/from memory, not making use of DMA, the block transfer may take less time
than with a DMA transfer followed by an interrupt to signal the end of transfer.
Also, the cache hierarchy may be better utilized as the interrupt service routine
pollutes the cache(s); after a context switch, the entering processes finds an empty
cache, and by the time it has been refilled, that process may be switched out again.

By using a storage medium that is three orders of magnitude faster, a large
section of an OS can be done away with: (i) there is no need for a two-layer disk
driver; (ii) there is no need for a queue of disk requests; (iii) there is no need for a
context switch to hide the disk latency; and (iv) there is no need for (some of) the
interrupt service routine(s) and all the attending priority and timing intricacies.

4. What is the use of paged virtual memory?
Paging is one large part of the machinery responsible for hiding the latency of the
secondary storage [KELS62]. Paging participates in the automatic allocation of
physical memory to processes, and is one of the protection mechanisms which is
closer to the hardware.

The page table is a function that maps virtual addresses (VAs) onto phys-
ical addresses (PAs), or more specifically, the function maps virtual page num-
bers (VPNs) onto physical page numbers (PPNs). This function is logically im-
plemented as the page table (PT) and each element of the PT holds one mapping
〈VPN 7→PPN〉. Each PT element also holds protection and accounting information
– whether the page is writable, plus update and reference bits.

There is one PT per process and protection is enforced by managing the
contents of the PTs only in kernel mode – in well designed systems, application
programmers do not even know there exists such a thing as a PT or even physical
memory. The translation buffer (TB or TLB) is a fast, small, associative memory
that sits near the processor and very quickly translates VPNs to PPNs. TBs hold
translations for a small set of pages used in the near past. Protection faults are
detected at the TB and are handled by OS code.

Most desktop/server processors in current use have datapaths which are 64
bits wide, thus capable of referencing 16 exabytes. The width of the physical address
bus is edging past the 50 bits – one petabyte is a large memory indeed, by today’s
standards for primary memory.

Paging was invented to hide the latency of disc accesses and to amortize
the cost of transferring a block of storage between primary and secondary storage.
In essence, virtual memory was meant to give the programmer the impression of
working with “infinite memory” [BCD72]. What then is the use of paging if the
primary memory is large and non-volatile?

Harizopoulos et alli., in [HAMS08], report that over 90% of the instructions
– or processor cycles – spent on processing queries on an OLTP ‘operating system’
can be optimized away if the machinery added to cope with slow disks were removed.
In these applications, more than 90% of the instructions executed are needless work.

If, for instance, one half of the physical memory were populated with non-
volatile RAM [CDC+10], what would change in the OS? Let’s take it a bit further,
and assume that the capacity of DRAM+NVRAM is somewhere near the petabyte,
on a machine with a 50 bit wide memory bus. The availability of a large non-volatile
RAM would warrant a complete redesign of a large chunk of the OS.

Without slow disks, paging becomes a mechanism that performs memory
allocation, and provides security through the separation of address spaces, which
are mapped onto disjoint PTs, and the enforcement of access permissions for each
individual page. These three functions may just as well be implemented with Multics
style segmentation [BCD72].

There are proposals, e.g. [CNF+09, BBBD13], for changing the interface to
persistent data from block-addressable to byte-addressable. This alone would bring
a radical change to the way persistent information is stored and managed [Bad13]. If
the adapter interface of SSDs were to allow byte/word transfers, many applications
would benefit from the reduced traffic between primary and secondary memory, but
greater benefits would stem from the finer granularity of units of storage that ought
to be kept consistent. Consider the complex mechanisms in data base systems which
are necessary in order to keep consistency in records that are stored in a full disk

block. Remove the ‘block’ from the picture and locking may become a thing of the
past. The result will be simpler, faster, and more reliable database systems. The
“block device interface” is an idea that percolates through several layers of the OS,
and implementing a “character device interface” for storage may imply the removal
of a great deal of complexity [BBBD13].

5. Segmentation is back on the agenda
Segmentation is closer to the way we think, and write programs, than paging is.
A program is split into a code segment, a data/heap segment and a stack segment
– these last two may grow to accommodate the program’s dynamics. The OS main-
tains a small segment table for each process, and a segment translation buffer (SB)
keeps, near the processor, the base and limit ‘registers’, plus access rights and ac-
counting information.

The hardware technology available in the late 1960s and early 70s was insuf-
ficient to implement an ambitious system such as Multics [BCD72]. The landscape
looks very different now, and the hardware to efficiently support segmentation can be
implemented without too much effort – essentially an adaptation of the paging TB,
mapping variable size segments instead of pages.

Hornyack et.alli. [HCG+15] present strong evidence that several large-scale
applications would perform better if the memory allocation were segment-based
instead of the current paging systems. These applications spend a great deal of
time handling TLB misses and the performance loss ranges from a few percent of
the execution cycles to 58% for certain workloads. Increasing the page size is not the
solution because of the additional memory fragmentation it introduces, and large
pages do not reduce significantly the number of memory mappings required.

Hornyack also shows that server-class memory-hungry applications use “vir-
tual memory areas” which represent an item of code or data in a contiguous region of
memory that spans from one to several contiguous virtual pages. Rather than using
fixed size pages, hence large page tables, a segmented system would substantially
reduce the amount of state needed to keep the protection and mapping information.

5.1. Do we need file systems?

File systems are also build on the premise that secondary storage is implemented
with slow and unreliable magnetic disks. I-nodes, complex indexing structures,
journaling, are all artifacts of the sluggish magnetic disk. If disks become lowly I/O
devices, in the same class as pen drives, the implementation of the file abstraction
can also change dramatically.

Multics’ designers suggested that the file system should be embedded in the
virtual memory system [BCD72]. If our system has ‘infinite’ non-volatile memory,
and is segmented, why not turn files into segments that remain in memory for a
very long time?

When a process opens a file, the system would add a new segment descriptor
to the process’ segment table. To close a file, the corresponding segment goes into
the limbo of temporarily unused files. If a file is just another segment, that can be

cheaply added or removed from a program’s address space, several premises that
underpin file system design cease to hold.

Obviously, this discussion is glossing over many complex implementation de-
tails, although most of the concepts, and even the high level implementation, were
built in the Multics system [Gre93]. Our intention is to provoke and to present an
alternative to the designs we grew accustomed to use and think of as a ‘file’ and a
“file system”. The one thing that ought not to be lost is the clean abstraction for a
file as just a sequence of bytes. [RT74].

5.2. Do we need processes?

Blake et.alli. [BDMF10] measured the number of active concurrent processes on
actual desktop systems (Windows 7 and OS X) and found that two to three cores
are “more than adequate for most applications”. Put another way, to how many
browser tabs one can look at simultaneously?

With, relatively speaking, abundant execution units – several processor cores
– and infinite memory, what exactly are the processes competing for?

This is one question we have no good answers to offer. If the multiplexing of
a single processor is not as important as it once was – because there are plenty of re-
al/virtual cores available, and furthermore, the nature of interactions with secondary
storage changed in the ways described in previous sections, does it make sense to
think of computation as a set of processes competing for “time on the processor”
and “pages of memory”? As advocated in [Lee06], do we need a new abstraction for
what we name “a process”?

5.3. Do we need security?

Of course we need security. Security can be provided by the mechanisms and poli-
cies associated with the page table, and perhaps more cheaply with segmentation,
because less bits of state are needed to define the protection level of one segment
than for a set of pages.

Complications do arise with non-volatile memory, and they are caused by
non-volatility itself. If all the computation state is permanently kept on NVRAM,
the cost of putting the computer to sleep/hibernate, and then waking it up is very
small. Entire processes do not need to be copied to secondary storage; only the
(smallish) fractions kept in DRAM need to be safely stored onto NVRAM – this
operation is a copy from fast DRAM to not-so-fast NVRAM, and state is later copied
back onto DRAM.

What happens if there was a pointer in volatile memory pointing to a chunk
of memory in non-volatile memory? Can that pointer be correctly recovered in the
case of a power failure? Coburn et alli. [CCA+11] provide a solution with a data
structure for a heap implementation that forbids dangling pointers. As pointed out
in [SB14], dangling pointers are a difficult problem, and no general solutions have
yet been presented.

For mobile devices, it would seem reasonable for all the user data to be stored
in non-volatile memory. Only some small amount of DRAM would be needed to hold

the stack and heap for the execution of applications. For security reasons, the user
data1 must be encrypted before being stored; otherwise, if one were to lose his or her
mobile device, all the personal records could be retrieved by accessing the device’s
NVRAM [Bad13].

5.4. Data structures for segmented memory
The page table is a function with a domain that comprises the full virtual address
space: |domain| = 264/212, assuming 4Kbyte pages. Even with a hierarchical imple-
mentation, large processes employ huge PTs.

How large is the PT of one large process? A process running the TPC-H
benchmark may allocate the full 100Gbytes available on a NUMA machine [Alm16].
Considering an efficient, two-level PT implementation in which a second-level node
(one 4Kbytes page) maps 1Mbytes, 1024 nodes map 1Gbytes, and 100K nodes map
the physical memory needed. The page table itself uses up ≈ 100.000 pages.

Each process needs a segment table (ST), which is potentially much smaller
than a page table, as the ST domain is the number of segments. An upper limit
could be, somewhat arbitrarily, set to 1024 for (large) processes which link with
many libraries, or which share several data segments with other process(es). For
most small-ish processes, 32–64 segments would be plenty, so as to map 3 segments
for code, heap and stack, 3 more for stdin, stdout, stderr, 2 for each library the
process links in to, and one for each file kept open.

If a segment descriptor holds 64 bytes of addressing, protection and account-
ing information, a large process would need 64Kbytes for its ST whereas a small
process would need only 4Kbytes.

For paging systems, the mappings of free/used pages can be implemented
with bit maps as all pages are the same size. Systems with super-pages – more than
one page size – can still use simple data structures to track the usage of page frames.

Keeping track of the free memory on a segmented system is more involved
as the segments have variable size, and segments may grow during the lifetime of a
process. In our proposed implementation (see Sec. 6), for reasons of speed, segment
size is limited to be a power of 2. This can be exploited while implementing the
data structures to keep track of the free and used memory, such as using the buddy
algorithm to find, or create, space to accommodate a new segment.

5.5. Segmentation and fragmentation
One serious disadvantage of a segmented memory is fragmentation: as the processes
come and go, the memory available for allocation to new processes is fragmented in
smaller chunks. At some point, the small chunks have to be re-allocated in order for
new segments to fit in the available space. Even of we speak of “infinite memory”,
if a system runs for long enough, its memory will become fragmented.

Some form of compaction must be employed to reclaim the scattered frag-
ments. We propose a hardware mechanism, akin to DMA, to move the segments

1One of the authors contends that all data in NV memory ought to be encrypted. The other is
not so paranoid.

onto more compacted allocations, by stealing free bus cycles. In order for this to be
viable, the compiler must generate position independent code, and a given segment
must be inactive while it is being moved. This DMA-like segment moving machine
might also encrypt data as it is moved onto new locations.

5.6. Program updates in infinite, non-volatile memory
A problem related to compaction is the version update of running programs. We
propose to separate processes into (at least) two classes: ephemeral, which are short-
lived programs such as ls, cat and gzip; and perennial, such as Apache, data base
managers or browsers.

In all cases, the segment descriptor for the program code must hold a reference
count; if there are no instances executing, the old version is simply replaced by the
new. The update of ephemeral programs may, occasionally entail the co-existence
of two or three versions in the system – those which are running/suspended and the
newly installed. When the reference count reaches zero, the old version is removed.

Perennial programs must include some functionality by which the OS informs
of their eminent termination. When thus signaled, the process saves its state to
NVRAM, informs the OS that it is in an ‘upgrade-able’ state and waits for the kill
signal. The new version recovers the state from NVRAM and carries on executing.
This behavior is similar to that of applications for mobile devices, except the amount
of state to be saved might be very large.

6. Segmented memory for the MIPS processors
A conceptual model for a virtual memory system is shown in Figure 1. The program
counter (PC) generates a reference stream for instructions, whereby the virtual
address vi is used to reference instruction i, and vi is translated to the physical
address pi where i is actually held. The address generation unit (AGU) generates
virtual address vd to reference the datum d, which is held in RAM at address pd.

......................

..

......................

..

......................

..

......................

..

.......

.......

..............
.

.......

.......

..............
.......
.......
.......
.......
.......
.......
.......
.......
.......
...................
.....

......................

..

......................

..

..
...

..........................
..........................

..........................
..........................

..........................
............................

.

. ..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...............................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

dTB

fetch

mem

PC

AGU

p = f(v)

i

d

& protection
translation

vi

vd pd

piiTB
RAM

processor

Figure 1. Conceptual model for virtual memory and protection.

Each virtual address reference is translated to its physical address reference
by means of the translation table (f()), which is held in RAM. The translation
buffers iTB and dTB hold, in fast associative memory, a subset of the most recently
referenced address translations, caching the most recently used pairs (v, p) in f().

The translation buffers iTB and dTB perform two important tasks: (i) to
quickly, and often, provide a virtual-physical address translation, and (ii) to im-
plement protection checks, by catching protection violations, and references to un-
mapped locations. If a protection violation occurs, the offending process is killed.
If a reference to an unmapped location is benign – it can be fixed – then the func-
tion f() is updated accordingly; if it is malicious – an illegal reference – then the
process is killed.

Notice that the two preceding paragraphs describe highly desirable features
of a memory system but do not mention demand paging. These features, protection
and mapping, can be implemented just as well by means of segmentation. The iTB
and dTB, plus the appropriate sections of the OS, can provide the same functionality
as their demand paging counterparts by implementing variable sized segments.

Programs usually comprise three segments, text, data and stack. When one
considers dynamically linked libraries, two additional segments (text and data) are
needed for each library linked into the process. The segment translation buffers
should be implemented to hold, at least, 16 segment descriptors, thus holding map-
pings for the process and a handful of libraries and/or open files. This should be
easy to implement as 32-64 element TLBs are fairly common [HP12].

The MIPS architecture provides minimum hardware for implementing a vir-
tual memory system. There is no hardware support for walking the page table, thus
the OS designer is free to pick and choose the most efficient data structures. In
theory, segmentation could be implemented on top of the existing TLB. We chose
to design a new structure, with a clean programming interface, which is also more
efficient than adding a software layer on top of an already complex piece of the OS.

Our design for a segment translation buffer (SB) attempts to keep the pro-
gramming interface similar to that described in [MIP05]. Each element of the SB
holds a 10 bit virtual segment number as tag (VSN), a 64 bit base address (Sbase)
and a 64 bit segment limit (Slimit). The ASID register holds the address space
identifier (ASID) of the process that owns the segment, process size mask, plus sta-
tus and permission bits (write-protected, referenced, modified, shared). The ASID
may also be considered when checking the validity of a reference. Figure 2 shows a
schematic diagram of the segment translation buffer.

A virtual address is split into its segment number (SN) and a displacement
within that segment. The segment number is used to associatively search the SB; in
case of a hit, the protection bits are checked, and the base+displacement is checked
against the physical segment limit. If the checks succeed, then the physical address
is sent to the memory; if they fail, the appropriate exception is raised. If the segment
mapping is not present in the SB, an SB miss exception is raised, and the mapping
is filled from the segment table.

We now go back to the discussion on segment table size, in Section 5.4. Large
perennial processes need a 1024 element ST, hence the virtual address comprises a
10 bit VSN and a 54 bit displacement. Small ephemeral processes need a 64 element
ST, with a 6 bit VSN and a 58 bit displacement. The different VSN sizes can be
easily dealt with by masking off some of the virtual address bits while associatively

.......
............

..
.......

.......
............

..
.......

.......
............

..
.......

qqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqq qqqqqqqqqqqqqq

.......

.......
.........
...
.........
.......
.............

.......
.........
...
.........
.......
......

.......

.......
.........
...
.........
.......
......

....................

...................
........................

..... ppp

ppp...................
.....

.......................

.

.......................

.

...................
.....

...................
.....

...................
.....

...

.......................

.

...................
........................

.....

..........
..........

................
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
.............................
.....

....................

....................

...................

.

...................

.

...................

.

status (physical) base (physical) limit Wired

Index

Random

≤

physical addr

base+displ

&

+

PSbase

ASID, perms

(virtual) tag
SB

hit

virtual addr

displ
VSN

PSlimit
VSN

Figure 2. Segment translation buffer.

searching for a given VSN.
The programmer interface registers are similar to those in the MIPS paging

TLB. To assemble an element to be inserted into the SB, the programmer must first
write the appropriate values to the VSN, PSbase, PSlimit and ASID registers. The
element of the SB to be written may be explicitly chosen by writing to the Index
register, or may be randomly picked. The Wired register stops elements with index
less than its contents from participating in the random replacements. The Random
register is a free running counter that counts from Wired to the SB capacity.

There are two adders in the critical path to memory: the first adds the
displacement to the physical base of the segment, and the second compares that
address to the segment limit. The PSlimit register could hold a mask, in order to
obviate the second sum: rather than a 64 bit adder, the limit could be and-ed to a
mask, an operation that can be made faster than an addition. The downside of the
mask is that it limits the segments to be powers of two, but this may not be a problem
if we are thinking of infinite memory. Furthermore, managing fragmentation and
the list of free memory may be easier if the memory is allocated in chunks which
are powers of two.

7. In conclusion

For over half a century the design of operating systems was predicated on fast
primary memory (RAM) and slow secondary memory (magnetic disks). With the
arrival of non-volatile RAM, this premise no longer holds and large sections of the
OS can evolve to a much simplified implementation.

An arbitrarily ordered and non-exhaustive list includes the following changes.
First, fast solid state drives eliminate the need for interrupts since polling is more
efficient than a context switch plus interrupt service routine. Second, if the data
interface of SSDs is re-designed so the transfer unit is one byte or one word, then
the block interfaces that percolate through several layers of the OS may also be
simplified away. Third, as there is no need to hide the long access latencies of disks
by time multiplexing the processor, the scheduler can be re-designed. Fourth, as the
secondary memory is replaced by non-volatile RAM (NVRAM) primary memory, the
function of paging changes into a mechanism for memory allocation plus a separate
mechanism for enforcing security, and both of these can be provided by segmentation.
Fifth, file systems are conceived to match the organization magnetic disks, and
without these, files may be thought of as segments that stay in memory for a long
time. Sixth, the process abstraction can be re-thought as time-multiplexing the
processor loses the importance it once had. Seventh, non-volatility introduces its
own artifacts such as non-volatile dangling pointers and the very persistence of
sensitive data and these must be dealt with.

We propose segmentation as a more efficient means to provide virtual-to-
physical memory mapping and security. We present the design for a segmentation
buffer (similar to a TLB) for the MIPS processors. With this design completed,
we will implement a segmented operating system and then compare its efficiency to
that of a paging system.

Acknowledgments Some of the ideas presented here arose in discussions with
PhD candidates Tiago Kepe and Ivan L Picoli and my colleague Eduardo C de
Almeida. Daniel Weingartner, Luis C E de Bona, Renato Carmo, and the students
enrolled in ci312 (2015-1) also provided invaluable input. Our first contact with the
idea of “infinite memory” was in fruitful dialogue with Rodolfo Azevedo.

References
[Alm16] Eduardo C Almeida. Memory footprint of large TCP-H benchmarks.

Personal communication, UFPR, Sep 2016.
[Bad13] Anirudh Badam. How persistent memory will change software systems.

IEEE Computer, 46(8):45–51, Aug 2013.
[BBBD13] M Bjørling, P Bonnet, L Bouganim, and N Dayan. The necessary death

of the block device interface. In Proc 6th Biennial Conf on Innovative
Data Systems Research (CIDR13), 2013.

[BCD72] A Bensoussan, C T Clingen, and R C Daley. The Multics virtual mem-
ory: Concepts and design. Comm of the ACM, 15(5):308–318, May
1972.

[BCGL11] K Bailey, L Ceze, S D Gribble, and H M Levy. Operating system impli-
cations of fast, cheap, non-volatile memory. In Proc USENIX Conf on
Hot Topics in Operating Systems, pages 2–2, 2011.

[BDMF10] G Blake, R G Dreslinski, T Mudge, and K Flautner. Evolution of thread-
level parallelism in desktop applications. In ISCA’10: 37th Intl Symp
on Computer Arch, pages 302–313, Jun 2010.

[CCA+11] J Coburn, A M Caulfield, A Akel, L M Grupp, R K Gupta, R Jhala,
and S Swanson. NV-Heaps: Making persistent objects fast and safe with
next-generation, non-volatile memories. SIGPLAN Not., 46(3):105–118,
Mar 2011.

[CDC+10] A M Caulfield, A De, J Coburn, T I Mollow, R K Gupta, and S Swan-
son. Moneta: a high-performance storage array architecture for next-
generation, non-volatile memories. In Proc 43rd IEEE/ACM Int Symp
on Microarchitecture (MICRO’10), pages 385–395, 2010.

[CNF+09] J Condit, E B Nightingale, C Frost, E Ipek, B Lee, D Burger, and
D Coetzee. Better I/O through byte-addressable, persistent memory. In
Proc ACM 22nd Symp Operating Systems Principles (SIGOPS), pages
133–146, 2009.

[Gre93] Paul Green. Multics virtual memory – tutorial and reflections. Es-
say, Multics Project, 1993. ftp://ftp.stratus.com/vos/multics/
pg/mvm.html.

[HAMS08] S Harizopoulos, D J Abadi, S Madden, and M Stonebraker. OLTP
through the looking glass, and what we found there. In Proc ACM Int
Conf on Management of Data (SIGMOD’08), pages 981–992, 2008.

[HCG+15] P Hornyack, L Ceze, S Gribble, D Ports, and H M Levy. A study
of virtual memory usage and implications for large memory. In Proc
Workshop on Interactions of NVM/FLASH with Operating Systems and
Workloads, 2015.

[HP12] John L Hennessy and David A Patterson. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann, 5th edition, 2012.

[KELS62] T Kilburn, D B G Edwards, M J Lanigan, and F H Sumner. One-level
storage system. In IRE Trans on Electronic Computers, EC-11, pages
223–235, 1962.

[Lee06] Edward A Lee. The problem with threads. IEEE Computer, 39(5):33–42,
May 2006.

[LZY+10] B C Lee, P Zhou, J Yang, Y Zhang, B Zhao, E Ipek, O Mutlu, and
D Burger. Phase-change technology and the future of main memory.
IEEE Micro, 30(1):143–143, Jan 2010.

[MIP05] MIPS. MIPS32 architecture for programmers, volume III: The MIPS32
privileged resource architecture. Rev. 2.50, MIPS Technologies, 2005.

[RBB+08] S Raoux., G W Burr, M J Breitwisch, C T Rettner, Y-C Chen, R M
Shelby, M Salinga, D Krebs, S-H Chen, H-L Lung, and C H Lam. Phase-
change random access memory: a scalable technology. IBM J. Res. Dev.,
52(4):465–479, Jul 2008.

[RT74] Dennis M Ritchie and Ken Thompson. The UNIX time-sharing system.
Comm of the ACM, 17(7):365–375, Jul 1974.

[SB14] Karin Strauss and Doug Burger. What the future holds for solid-state
memory. IEEE Computer, 47(1):24–31, Jan 2014.

[SS15] Kosuke Suzuki and Steven Swanson. The non-volatile memory technol-
ogy database (nvmdb). Technical Report CS2015-1011, Dept of Com-
puter Science & Engineering, Univ of California, San Diego, May 2015.

[YMH12] J Yang, D B Minturn, and F Hady. When poll is better than interrupt.
In Proc 10th USENIX Conf on File and Storage Technologies, pages 1–7,
2012.

