Simulated Annealing em Hardware com Múltiplas Threads em Pipeline para Posicionamento em CGRAs*

Jeronimo Costa Penha^{1,3}, Lucas Bragança da Silva¹, Michael Canesche², José Augusto M. Nacif¹, Ricardo Ferreira¹

¹Universidade Federal de Viçosa (UFV)
²Universidade Federal de Minas Gerais (UFMG)
³ Centro Federal de Formação Tecnológica de Minas Gerais (CEFET-MG) jeronimopenha@gmail.com,ricardo@ufv.br

Resumo. O uso de aceleradores com paralelismo espacial, como os CGRAs, são soluções promissoras em desempenho e eficiência energética. O desempenho dos CGRAs dependem dos compiladores para explorar o paralelismo das aplicações, sendo o mapeamento da aplicação um dos grandes desafios. A primeira etapa deste processo é o posicionamento, cuja eficiência impacta diretamente nos passos seguintes que são o roteamento e o escalonamento. Este trabalho apresenta uma implementação em hardware, usando field-programmable gate arrays (FPGA), para o algoritmo Simulated Annealing (SA). Os resultados mostram uma aceleração de 7 a 30 vezes em relação ao estado da arte sem sacrificar a qualidade da solução, podendo ser de 70 a 300 vezes mais rápido com o uso de múltiplas unidades de posicionamento. O algoritmo foi implementado em pipeline com múltiplas threads para esconder a latência, onde uma iteração completa do SA executa em apenas dois ciclos de relógio do FPGA.

1. Introdução

O problema de posicionamento e roteamento para circuitos digitais, sejam circuitos integrados ou em FPGAs, é NP-completo [Ferreira et al. 2013]. Para circuitos reconfiguráveis de grão grosso (CGRAs), o desafio é maior pois envolve escalonamento. Em FPGAs, os elementos lógicos são interligados com o objetivo de reduzir o número e comprimento máximo dos fios. No CGRA é necessário o equilíbrio de todos os caminhos para que o fluxo de dados seja processado corretamente usando filas de balanceamento [Nowatzki et al. 2018]. Estes são recursos podem dobrar o custo total da solução. Uma forma de mitigar este problema melhorar a qualidade do posicionamento. Outro ponto importante, ao se restringir o número máximo de filas, é que a complexidade do mapeamento aumenta significativamente [Nowatzki et al. 2018].

O uso de programação inteira [Walker and Anderson 2019] ou resolvedores SAT [Donovick et al. 2019] geram soluções exatas porém sem boa escalabilidade, por serem limitadas a grafos de fluxo com 30 vértices ou operadores. Outras abordagens usam arquiteturas com poucos elementos de processamento e *modulo scheduling* [Ferreira et al. 2013], porém o desempenho sofre impacto da multiplexação no tempo. Recentemente, abordagens híbridas [Nowatzki et al. 2018] com a mesclagem

^{*}Financiamento: FAPEMIG APQ-01203-18, CNPq (#313312/2020-6 and #440087/2020-1 – CNPq/AWS 032/2019) NVIDIA, Funarbe. O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001

de programação inteira e soluções gulosas, algoritmos genéticos [Da Silva et al. 2006], técnicas de aprendizado por reforço [Liu et al. 2018] e redes neurais com grafos (GNN) [Li et al. 2022] foram propostas. Entretanto, todas as técnicas apresentam limitações de escalabilidade e tempo de compilação para grafos com poucas dezenas de operações. As soluções mais eficientes envolvem a implementação das etapas separadas, onde a etapa de posicionamento é implementada com *Simulated Annealing* (SA) [Weng et al. 2022, Carvalho et al. 2020, Murray et al. 2020].

As abordagens com o SA geram resultados com qualidade, mas requerem um tempo de execução maior para uma melhor exploração do espaço de soluções. Este artigo apresenta uma implementação em *hardware* para o algoritmo SA, desenvolvido em FPGA, que reduz de 7 a 30 vezes o tempo do posicionamento em comparação ao estado da arte [Carvalho et al. 2020, Murray et al. 2020]. As principais contribuições são: (a) modelagem em *pipeline* do algoritmo SA; (b) Execução de uma iteração completa do algoritmo com uma operação de troca (*swap*) em apenas dois ciclos de relógio; (c) Uso de múltiplas *threads* para esconder a latência do *pipeline*; (d) Um simulador e um gerador de código para desenvolvimento de implementações de SA em *hardware*; (e) Execução com múltiplas unidades de SA que pode reduzir o tempo de execução de 70 a 300 vezes em comparação com a solução em *software*.

Este artigo está estruturado da seguinte forma. Na seção 2 são apresentadas as implementações paralelas de SA. A seção 3 explica o algoritmo básico de SA para posicionamento em CGRAs. A seção 4 detalha a implementação em *hardware* para o SA proposta neste trabalho. Finalmente, as seções 5 e 6 mostram a avaliação da solução proposta e as principais conclusões e direções futuras.

2. Trabalhos Relacionados

O problema de posicionamento, abordado neste trabalho, consiste em mapear um grafo em uma estrutura bidimensional semelhante a uma malha 2D. A entrada é um grafo de fluxo de dados que implementa uma aplicação que explora o paralelismo temporal e espacial. A arquitetura alvo é uma malha bidimensional de elementos de processamento que irão receber os vértices ou nós do grafo. O desafio é o posicionamento dos nós adjacentes em elementos de processamento vizinhos ou próximos.

O algoritmo SA para posicionamento começa com uma solução aleatória [Murray et al. 2020] e realiza dezenas de milhares de operações de troca de posição (swaps). Com o intuito de escapar dos mínimos locais, é utilizada a técnica de resfriamento do SA que permite aceitar soluções que pioram a qualidade na busca de uma solução mínima global. A Figura 1(a) mostra um grafo e Figura 1(b) apresenta um posicionamento. Os nós e e d são adjacentes ao nó a no grafo. Contudo, não foram posicionados em células próximas na arquitetura (Figura 1(b)). Ao trocar a e b de células, a ficará mais perto de d e e.

Uma implementação em *hardware* foi proposta em [Wrighton and DeHon 2003] com um arranjo sistólico no formato do CGRA. Cada elemento de processamento armazena localmente um nó do grafo e uma estrutura de dados com a informação sobre os nós adjacentes e suas posições. O arranjo permite que sejam realizadas trocas em paralelo como ilustra a Figura 1(b-c). Entretanto, uma troca pode afetar o custo de outra, se efetuada como ilustrado a Figura 1(c) para os nós $c \in d$, pode alterar os custos

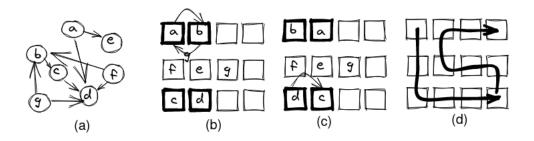


Figura 1. (a) Grafo; Arquitetura: (b) $a \leftrightarrow b$; (c) $c \leftrightarrow d$; (d) Atualização em O(N)

das conexões com a e b que não foram atualizadas. Portanto, a solução distribuída permite trocas em paralelo, porém é necessária a atualização após cada troca que envolve uma propagação dos novos valores por todos os elementos do CGRA, como ilustra a Figura 1(d), com um custo O(N), onde N é o número de elementos. A implementação foi apenas simulada com um custo estimado de 150 ciclos para realizar até 4 trocas. Considerando uma frequência de relógio de 300 Mhz dos FPGAs atuais, isto equivale a 500 ns. Entretanto, uma implementação de SA [Carvalho et al. 2020] em um processador com 16 núcleos requer apenas 50ns, ou seja, é um grande desafio criar uma nova solução em hardware mais rápida que as soluções em software. Os resultados mostraram aceleração na execução mas com perda de qualidade em comparação com o VPR [Murray et al. 2020] na opção fast. Além disso, a solução sistólica não é escalável, o arranjo para implementar a unidade de posicionamento é de 10-100× maior que o circuito que está sendo mapeado no FPGA. Recentemente, uma solução em hardware foi apresentada em [Vieira et al. 2021] com uma abordagem baseada em algoritmos de travessia. Apesar da aceleração no tempo de execução, a qualidade de solução é inferior as implementações com SA [Carvalho et al. 2020].

Várias soluções com múltiplos núcleos e GPUs mostraram aceleração da ordem de 10-20x em comparação com o VPR. [Wang and Lemieux 2011] apresenta uma implementação com 64 núcleos que é $20\times$ mais rápida que o VPR com a opção fast [Murray et al. 2020]. Uma versão em GPU apresentada em [Fobel et al. 2014] é $19\times$ mais rápida que o VPR. Uma implementação com programação dinâmica e GPU é apresentada em [Dhar and Pan 2018] com um ganho de $10\times$ em relação a uma versão com múltiplos núcleos. Outra abordagem, apresentada por [Kong et al. 2020], explora características do circuito para a geração de um posicionamento $20\times$ mais rápido que o VPR. Entretanto, as soluções paralelas supracitadas não melhoram a qualidade da solução e a maioria até gera perdas de qualidade para obter ganhos de desempenho. Neste trabalho aceleramos a execução em 30 a $300\times$ em comparação com o VPR sem perda de qualidade.

A maioria das implementações paralelas de posicionamento tratam o problema para FPGA, mas o foco deste trabalho são os CGRAs. Apesar dos grafos serem menores nos CGRAs, o problema se torna mais complexo pois envolve o escalonamento e balanceamento dos caminhos. Como já mencionado, várias técnicas escalam apenas para grafos com até 30 vértices [Walker and Anderson 2019, Donovick et al. 2019]. Estes trabalhos apresentam tempos de execução elevados e foram avaliados apenas em arquiteturas com poucos elementos de processamento e multiplexação no tempo.

Dentre as várias abordagens propostas para o posicionamento, podemos desta-

car que o SA apresenta o melhor custo benefício entre tempo de execução e qualidade nos resultados [Mulpuri and Hauck 2001, Wang and Lemieux 2011]. Entretanto, reduzir o tempo de execução sem perder qualidade ainda é um desafio. Este trabalho apresenta um avanço no estado da arte com uma implementação em *hardware* que é de 30 vezes mais rápida que o VPR. Cada iteração do SA executa em apenas 2 ciclos. Ademais, o acelerador usa poucos recursos do FPGA e pode ser replicado, o que permite a execução de várias cópias com o objetivo de obter um ganho de desempenho de até 300 vezes em comparação ao VPR.

3. Algoritmo Simulated Annealing

A Figura 2(a) apresenta o pseudocódigo do algoritmo SA para o problema de posicionamento. O código possui uma serie de ações com dependência de dados. Primeiro, duas células C_a e C_b são escolhidas aleatoriamente para serem trocadas. Depois são identificados quais nós estão posicionados nestas células usando a estrutura de mapeamento $célula \to n\acute{o}$, denominada celula2no ou C_2N . No exemplo são os nós a e b. O próximo passo consulta o grafo para descobrir quais são os nós adjacentes de a e de b, definidos como os conjuntos de nós V_a e V_b , respectivamente. Em seguida, é necessário determinar em quais células estão os nós (adjacentes) de V_a e V_b , denominados pelos conjuntos de células VC_a e VC_b . Este passo faz uso da uma estrutura que armazena o mapeamento dos nós contidos em cada célula ($N\acute{o} \to C\acute{e}lula$ ou N_2C). Finalmente pode-se calcular as distâncias de todos os elementos de VC_a e VC_b para a e b posicionados nas células C_a e C_b e vice-versa, respectivamente.

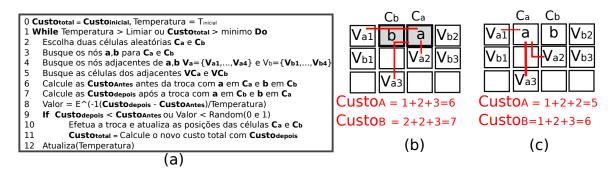


Figura 2. (a) Pseudo-Código do SA; (b) Antes $C_a \leftrightarrow C_b$; (c) Depois da troca.

A Figura 2(b) apresenta em destaque as distâncias dos nós adjacentes de a. Observa-se que V_{a1} está posicionado em uma célula à esquerda com distância 2 de a. Já V_{a2} e V_{a3} estão, respectivamente, as distâncias 1 e 3 de a. Assim, o custo das arestas de a é 6. Para o nó b, a distância total é 7. Estes custos são antes da troca dos nós selecionados. Se a troca for efetuada, como ilustrado na Figura 2(c), o nó a ficará em uma célula mais próxima dos seus adjacentes e o mesmo ocorre para b. Para este caso a troca será aceita. No algoritmo SA, uma troca pode ser aceita mesmo que o custo não seja melhorado com uma probabilidade determinada pela temperatura. Este recurso evita que a solução se prenda a mínimos locais. A temperatura é iniciada com um valor mais alto que é reduzido com de acordo com o número de iterações executadas. Este processo reduz progressivamente a probabilidade do aceite das trocas que pioram o custo.

Devido à cadeia de dependências presentes no código do SA, têm-se vários desafios para a paralelização. Este trabalho apresenta uma proposta em *pipeline* para a

exploração do paralelismo temporal. Além disso, em cada estágio do *pipeline*, as tarefas são executadas explorando o paralelismo espacial. Ademais, várias cópias do algoritmo são executadas em *pipeline* para esconder a latência gerada pelas dependências sequenciais. Outro ponto é a execução de múltiplas cópias que é importante para a melhoria da qualidade da solução conforme [Carvalho et al. 2020]. Das estruturas apresentadas, apenas N_2C e C_2N devem ser atualizadas para a e b, em caso de efetivação de troca. A seção 4 detalha o acesso paralelo as memórias que armazenas as estruturas para a execução simultânea de múltiplas threads.

4. Simulated Annealing em Pipeline

A Figura 3 apresenta o fluxo resumido dos principais estágios da versão *pipeline* do SA. Após a escolha de duas células, no próximo estágio, uma memória com o mapeamento célula para os nós (C_2N) é consultada para a determinação de quais nós estão contidos nas células C_a e C_b , denominados a e b. As linhas que têm uma dependência sequencial no pseudocódigo da Figura 2(a) são mapeadas em estágios sequenciais no *pipeline* da Figura 3. Assume-se que cada memória é lida em um ciclo de relógio.

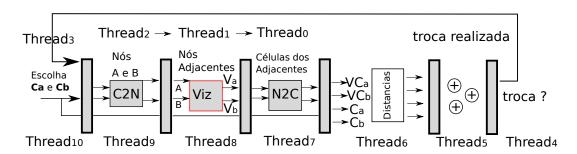


Figura 3. Pipeline simplificado com múltiplas threads.

A latência das dependências de dados é escondida com a execução de várias th-reads, onde cada uma executa uma cópia do SA. Assim, a cada ciclo é possível realizar uma iteração completa com uma troca. Por exemplo, enquanto a $thread_4$ está no último estágio avaliando se uma troca será feita, a $thread_5$ executa a redução de soma, a $thread_6$ calcula as distâncias entre as células, a $thread_7$ lê a células com a posição dos adjacentes, etc. Outra vantagem da solução é que as estruturas de dados estão distribuídas ao longo do pipeline incluindo o cálculo das distâncias. As próximas subseções detalham a implementação em hardware.

4.1. Memórias

A maior parte dos dados está armazenada em memórias distribuídas dentro do FPGA. Estas memórias podem ser implementadas com módulos BRAM ou através dos elementos lógicos. A maioria dos FPGAs oferecem o recurso de utilizar memórias que permitem 2 (ou mais) acessos de leitura e uma escrita por ciclo. Após ser lido em um estágio, o dado é repassado para o estágio seguinte e o processamento continua.

4.1.1. Armazenamento do Grafo

O grafo é armazenado como uma lista de adjacências, ou seja, para cada nó é armazenada uma lista de nós adjacentes. É importante fazer a distinção entre os termos nó e a célula. O termo nó se refere ao grafo e o termo célula indica onde o nó está posicionado na arquitetura. Como o grafo não é alterado, a memória que armazena as listas de adjacências é a mesma para todas as *threads* e é compartilhada. Esta memória é carregada no início da execução.

Para os grafos de fluxo de dados avaliados, os operadores são binários ou unários. Portanto cada possui no máximo dois nós adjacentes. Com relação a saída do nó, qualquer grafo pode ser decomposto em nós com grau máximo de saída 2 com utilização de nós *buffers*. A implementação foi validada com grafos com até 4 nós adjacentes. Entretanto, o código é parametrizado e pode ser modificado para trabalhar com mais nós adjacentes, ou seja, com um *fan-in* ou *fan-out* maior.

4.1.2. Quantidade de Módulos de Memória

Para o exemplo, será necessária a avaliação de 8 adjacências, pois são avaliados dois nós com 4 nós adjacentes cada. O desafio é: como realizar 8 leituras em paralelo? O FPGA permite, ao menos, a realização de duas leituras por módulo de memória. Uma solução é ter vários estágios com cópias da memória para a leitura dos adjacentes, com a leitura de 2 por estágio. Outra solução é ter várias cópias da memória de adjacentes em um único estágio e realizar todas as leituras simultaneamente em várias memórias. O gerador de código pode ser configurado para ambas as opções: um estágio com 4 memórias ou 4 estágios com uma cópia da memória por estágio.

4.1.3. Dados privados de cada Thread

Cada thread possui uma área reservada nos módulos de memória N_2C e C_2N (Seção 3). Para evitar que haja sobreposição, a parte mais significativa do endereço é o número da thread concatenado com o número da célula ou nó selecionado como ilustrado na Figura 4, onde as threads 0,1,2 e 3 fazem acesso as posições 2,0,99 e 1 da sua região, respectivamente. Portanto, o tamanho das memórias depende da quantidade de threads e do número máximo de células (tamanho da arquitetura). Ademais, para garantir acesso paralelos aos dados, foi necessário distribuir e duplicar as memórias em vários estágios do pipeline, com mencionado na seção 4.1.2.

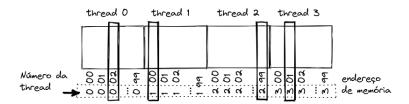


Figura 4. Uso das memórias com múltiplas threads.

4.1.4. Atualização em dois ciclos

Além disso, os primeiros estágios são visitados duas vezes por cada thread que percorre o pipeline. Na primeira visita, a thread passa lendo os dados, como por exemplo a $thread_9$ que faz a leitura dos nós que estão nas células C_a e C_b no segundo estágio do pipeline ilustrado nas Figuras 3 e 5. Ao mesmo tempo, este estágio está sendo visitado pela $thread_2$ que irá atualizar o novo conteúdo da C_a e C_b da sua cópia, caso a troca tenha sido efetivada para $thread_2$. Como estes dados são privados para cada thread enquanto a $thread_9$ efetua a leitura, a $thread_2$ faz a escrita em regiões diferentes da memória.

4.2. Propagação dos dados

Durante a execução, os dados das *threads* se propagam ao longo do *pipeline*. Por exemplo, C_a e C_b são propagados por todos os estágios até o cálculo da distância onde é consumido pela última vez. Outros dados são propagados apenas de um estágio para o outro como os nós a e b. Entretanto, para a efetivação da troca, a, b, C_a e C_b seria necessário que percorressem todo o *pipeline* e retornassem aos estágios de atualização de N_2C e C_2N . Para reduzir o número de sinais ao longo do circuito, a implementação usa uma fila local que armazena estes dados no segundo estágio para posteriormente propagálo na fase de atualização. A fila tem o comprimento da latência do *pipeline*. Portanto, apenas um bit retorna do último para o primeiro estágio informando se a troca deve ser realizada ou não.

A Figura 5 mostra em destaque os dois pontos importantes. As *threads* entram a cada dois ciclos para possibilitar a atualização da troca, pois só é permitida uma escrita por ciclo nas memórias. Primeiro, a célula a é atualizada na posição C_b , se ocorreu a troca. Os valores de C_a e b passam para o próximo estágio. No próximo ciclo, quando a $thread_2$ estará no próximo estágio, a atualização de C_b e a é realizada. A fila armazena as células e nós no momento que a thread passa para leitura. No exemplo da Figura 5, a $thread_9$ que está passando pelo estágio e ao mesmo tempo a $thread_2$ está na fase de escrita, semelhante ao estágio writeback dos processadores RISC.

5. Resultados

Esta seção está estruturada da seguinte forma: primeiro é apresentada a metodologia de desenvolvimento da implementação nas seções 5.1 e 5.2. A seção 5.3 mostra o consumo de recursos da versão em *hardware* em um FPGA. A seção 5.4 apresenta uma avaliação de desempenho em comparação com o VPR [Murray et al. 2020] e o SA com múltiplos núcleos proposto em [Carvalho et al. 2020].

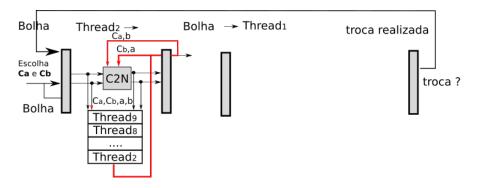


Figura 5. Como atualizar com múltiplas threads e redução de sinais.

5.1. Simulador em Python

Para a flexibilização do desenvolvimento, um simulador em Python foi construído para avaliar diversas configurações de troca e número de estágios. O simulador pode ser usado para depuração da execução com a exibição do conteúdo das memórias, a evolução da redução do custo por *thread* e os posicionamentos parciais. O simulador simplifica a validação do desenvolvimento de um gerador de código descrito na próxima seção. Em [Wrighton and DeHon 2003], os autores também desenvolveram um simulador para a depuração do circuito com arranjo sistólico.

5.2. Gerador de código Parametrizado

A implementação do gerador de código foi feita em linguagem Python com o auxílio da biblioteca Veriloggen [Takamaeda 2015]. Esta biblioteca é especializada na geração de código Verilog a partir de funções pré-definidas. O gerador é parametrizável com o tamanho da arquitetura alvo. Como o *pipeline* possui estrutura regular, o uso do gerador permite a exploração de várias possibilidades de projetos como a variação da profundidade do *pipeline* e/ou a complexidade dos estágios, a distribuição dos módulos de memória dentre outros aspectos que podem ser investigados.

5.3. Recursos utilizados pela Unidade de Posicionamento em Hardware

O código Verilog gerado foi sintetizado com a ferramenta Vivado 2020.2 para o FPGA Xilinx VU9P que possui aproximadamente 2,5 milhões LUTs, 6800 DSPs e 2160 bancos de memória BRAM com capacidade total de 7,9MB de memória [Xilinx 2020]. A tabela 1 apresenta o total de recursos utilizados para a implementação da unidade de posicionamento considerando diversos tamanhos de arquitetura do CGRA.

Os recursos necessários para implementar o posicionamento em *hardware* dependem do tamanho do CGRA alvo e do número de cópias de unidades de posicionamento. Foram avaliadas arquiteturas com 4x4, 8x8, 9x9, 10x10 e 12x12 unidades, respectivamente. A menor arquitetura de 4x4 terá 16 elementos de processamento e poderá mapear um grafo com até 16 operações. A maior arquitetura 12x12 pode mapear um grafo com até 144 operações. O tamanho da arquitetura impacta no tamanho das memórias que armazenam as soluções parciais. Para aumentar o desempenho, avaliamos o uso de 10 unidades de posicionamento executando em paralelo. Observamos a escalabilidade da solução que gasta 10x mais recursos, mas também é 10x mais rápida.

Tabela 1. FPGA Xilinx VU9P e utilização de recursos.

Tam	LUT(%)	REG(%)	Lut as	Bram(%)	MEM
			RAM		Kb
4x4	1374 (0.1)	1574(0,1)	280 (0,1)	0 (0,0)	4
10 unidades	13289 (1.5)	15176(0,8)	2800 (0,5)	0(0,0)	45
8x8	2120 (0.2)	1742(0,1)	784 (0,1)	0 (0,0)	13
10 unidades	20749 (2.3)	16856(0,9)	7840 (1,4)	0(0,0)	125
9x9	2259 (0.2)	1698(0,1)	564 (0,1)	6 (0,3)	201
10 unidades	21919 (2.5)	16416(0,8)	5640 (1,0)	60 (3,2)	2010
10x10	2253 (0.2)	1698(0,1)	564 (0,1)	6 (0,3)	201
10 unidades	21879 (2.5)	16416(0,8)	5640 (1,0)	60 (3,2)	2010
12x12	3272 (0.3)	1752(0,1)	1240 (0,2)	6 (0,3)	212
10 unidades	32204 (3.6)	16956(0,9)	12400 (2,2)	60 (3,2)	2118

Na última coluna da Tabela 1 encontram-se os valores de memória alocados pelo sintetizador para cada instância. Pode-se avaliar o custo e a escalabilidade da solução com o consumo de memória. A necessidade de RAM depende diretamente da quantidade de *threads* que poderão ser executadas e do tamanho da arquitetura. Como número da *thread* determina o endereço mais significativo, temos três patamares de consumo que escalam com potência de 2 para arquitetura até 4x4, até 8x8 de 9x9 até 15x15. O sintetizador pode optar pela utilização de LUTs e/ou BRAMs em função do tamanho das memórias. Para memórias maiores, o sintetizador aloca blocos de BRAM e para menores aloca LUTs. Pode ocorrer uma fragmentação no uso das memórias, pois as BRAM possuem tamanho fixo de 32Kb. Se a unidade de posicionamento aloca 26Kb para uma determinada arquitetura, os 8Kb restantes não serão utilizadas. Entretanto, o impacto do uso de BRAMs é baixo no custo total da unidade de posicionamento, sendo que apenas 2,2% do total de BRAMs foram necessários, como podemos observar na Tabela 1.

Por fim, o único recurso demandado em maior escala são as LUTs, pois a implementação da medida de distância foi realizada com lógica combinacional. No pior caso para 10 cópias ocupou apenas 3,6% do FPGA. Esta etapa pode ser futuramente substituído por DSPs o que reduzirá significativamente o uso de LUTs.

5.4. Avaliação do Desempenho

A ferramenta VPR [Murray et al. 2020] representa o estado da arte nas duas últimas décadas para SA e é atualmente utilizada em uma parceria da Google com a Universidade de Toronto no projeto Antmicro no desenvolvimento de ferramentas de código aberto para projeto de circuitos integrados e FPGAs. As unidades de posicionamento em *hardware* foram sintetizadas, mapeadas e executadas no FPGA com 6 *threads*. Todos os experimentos mostraram o tempo de execução de 2 ciclos para cada iteração do SA.

A Tabela 2 apresenta o tempo de execução do posicionamento de duas implementações do SA em *software* [Carvalho et al. 2020, Murray et al. 2020] para um conjunto de grafos de fluxo de dados [Canesche et al. 2020], comparando com a solução em *hardware* considerando 2 ciclos por iteração do SA e uma frequência de 250MHz. A Tabela 2 mostra o tempo de execução e a qualidade da solução considerando o tamanho da fila para duas implementações em *software* do SA. A solução em *hardware* gera re-

Tabela 2. Comparação do Tempo de posicionamento do SA_{hard} com 2 soluções em *software*: (a) SA com 16 *threads*;(b) VPR opção *fast*. Foi considerada a execução de 1000 instâncias e seleção da melhor solução.

			3					Speedup
		Iterações	T_{16thr}	eads em so	ftware	VP	R	do SA_{hard}
Bench	Nós	(milhões)	T(s)	T_{it} (ns)	Fila	T(s)	Fila	$com SA_{soft}$
mac	11	11,0	0,5	47,4	0	2,0	1	5,9
simple	14	11,9	0,7	55,9	1	3,3	2	7,0
horner_bs	17	17,3	0,8	47,2	1	3,6	2	5,9
mults1	24	19,4	1,2	62,1	3	4,4	6	7,8
arf	28	26,8	1,4	53,7	3	5,2	6	6,7
conv3	28	26,8	1,4	53,8	1	5,3	4	6,7
motion_vec	32	27,9	1,5	53,1	0	5,5	1	6,6
fir2	40	37,4	2,0	53,7	3	6,8	4	6,7
fir1	44	38,2	2,1	55,8	1	6,8	3	7,0
fdback_pts	54	49,6	2,6	52,1	4	8,9	7	6,5
k4n4op	59	50,5	3,3	65,2	4	11,2	6	8,1
h2v2_smo	62	50,8	3,1	60,6	3	10,4	7	7,6
cosine1	66	61,7	3,6	57,9	2	13,3	5	7,2
ewf	66	61,8	3,7	59,3	4	14,0	8	7,4
Cplx8	77	64,3	4,1	64,2	3	16,0	6	8,0
Fir16	77	64,3	4,2	64,8	5	16,8	8	8,1
cosine2	81	64,5	4,2	65,4	4	15,6	7	8,2
FilterRGB	84	77,8	4,6	58,9	6	21,7	10	7,4
Collapse	105	95,2	5,8	60,5	5	23,7	7	7,6
imperpolate	108	96,0	5,3	55,5	2	21,4	4	6,9
w_bmp_head	110	96,5	5,0	52,0	5	26,9	10	6,5
matmul	116	97,1	6,0	61,8	4	26,1	9	7,7
fir16_collapse	182	157,6	10,3	65,1	6	49,5	10	8,1
cplx8_interpolate	185	157,5	9,8	62,1	7	49,6	13	7,8
smooth_color_z	196	158,6	10,0	62,8	4	51,5	10	7,9
jpg_fdct_islow	217	181,1	12,2	67,4	8	67,9	14	8,4
idetcol	298	259,1	16,5	63,9	11	95,3	19	8,0
jpeg_idct_ifast	303	260,1	16,6	63,7	11	81,0	20	8,0
invert_matrix	357	292,2	18,7	64,0	8	93,4	12	8,0
Cplx8x8	616	506,8	35,1	69,3	5	192,5	12	8,7
Fir16x8	616	506,8	35,1	69,3	4	201,7	11	8,7
AVG	137,8	117,0	7,5	59,6	4,1	37,1	7,9	7,5
GEO	82,4	72,1	4,3	59,3	3,6	18,1	6,3	7,4

sultados com a mesma qualidade da versão SA em software [Carvalho et al. 2020]. As duas primeiras colunas identificam a aplicação e o tamanho em nós do grafo de fluxo de dados, respectivamente. A coluna seguinte apresenta quantas iterações foram realizadas considerando 1.000 execuções (ou 1.000 threads). O uso de 1.000 execuções melhora significativamente o resultado. A coluna $T_{16threads}$ mostra o tempo de execução, tempo de cada iteração e a qualidade da solução para a implementação em software proposta em [Carvalho et al. 2020] considerando 16 threads executando no processador AMD Ryzen 7 3700X de 4.4 GHz com 40 M de cache L3 e 64 GB RAM. A coluna VPR mostra o tempo de execução para 1.000 cópias do VPR com a opção fast ativada e a qualidade da solução em filas. Pode-se observar que a implementação T_{16th} [Carvalho et al. 2020] é em média 4,3 vezes mais rápida que o VPR na opção fast. Em resumo, estes resultados mostram que o SA em software [Carvalho et al. 2020] ou em hardware, proposto neste

trabalho, resolvem o problema de posicionamento melhorando a qualidade do VPR.

A síntese mostrou que o FPGA executa com no mínimo uma frequência de relógio de 250 MHz. Portanto, a implementação de SA em hardware executa em apenas 8 nanosegundos, uma iteração completa com (ou sem) troca. Ao comparar com a versão T_{16th} , cujo tempo médio da iteração é 59,3 nano segundos, a implementação em hardware proposta neste trabalho é $7.4 \times e 31.5 \times mais$ rápida que a versão paralela com múltiplos núcleos [Carvalho et al. 2020] e VPR, respectivamente. Na comparação, foi considerada a média geométrica dos tempos de execução, com melhoria da qualidade em relação ao VPR e preservando a qualidade da versão de 16 threads. Quando são utilizadas 10 unidades de SA, a implementação proposta passar a ser 10x mais rápida que uma unidade, passando de 31.5 vezes para 315 vezes mais rápida que a ferramenta VPR.

6. Conclusão

Este trabalho apresentou uma implementação em *hardware* para o algoritmo *Simulated Annealing* aplicado ao problema de posicionamento de aceleradores de grafos de fluxo de dados em CGRAs. A implementação fez uso de *pipeline* com múltiplas *threads* para paralelização da execução. Ao comparar com a ferramenta VPR [Murray et al. 2020], a versão em *hardware* foi, em média, de 30 a 300 vezes mais rápida e melhorou a qualidade ao reduzir a quantidade de filas para o balanceamento. A solução paralela usa várias memórias e uma solução de sobreposição de escrita para maximizar o desempenho, com a execução de cada iteração do SA em 2 ciclos de relógio. Trabalhos futuros irão avaliar a integração com algoritmo de roteamento em *hardware* e também a validação para posicionamentos em nanotecnologias [Formigoni et al. 2019].

Referências

- Canesche, M., Menezes, M., Carvalho, W., Torres, F. S., Jamieson, P., Nacif, J. A., and Ferreira, R. (2020). Traversal: A fast and adaptive graph-based placement and routing for cgras. *IEEE Trans on Computer-Aided Design of Integrated Circuits and Systems*.
- Carvalho, W., Canesche, M., Reis, L., Torres, F., Silva, L., Jamieson, P., Nacif, J., and Ferreira, R. (2020). A design exploration of scalable mesh-based fully pipelined accelerators. In *International Conference on Field-Programmable Technology (ICFPT)*.
- Da Silva, M. V., Ferreira, R., Garcia, A., and Cardoso, J. M. P. (2006). Mesh mapping exploration for coarse-grained reconfigurable array architectures. In *IEEE Int Conf on Reconfigurable Computing and FPGA's (ReConFig 2006)*.
- Dhar, S. and Pan, D. Z. (2018). GDP: GPU accelerated detailed placement. In 2018 IEEE High Performance extreme Computing Conference (HPEC), pages 1–7. IEEE.
- Donovick, C., Mann, M., Barrett, C., and Hanrahan, P. (2019). Agile SMT-based mapping for CGRAs with restricted routing networks. In *Int. Conf. on ReConFigurable Computing and FPGAs (ReConFig)*. IEEE.
- Ferreira, R., Duarte, V., Pereira, M., Carro, L., and Wong, S. (2013). A just-in-time modulo scheduling for virtual coarse-grained reconfigurable architectures. In *Int Conf on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)*.

- Fobel, C., Grewal, G., and Stacey, D. (2014). A scalable, serially-equivalent, high-quality parallel placement methodology suitable for modern multicore and gpu architectures. In *International Conference on Field Programmable Logic and Applications (FPL)*.
- Formigoni, R. E., Ferreira, R. S., and Nacif, J. A. M. (2019). Ropper: A placement and routing framework for field-coupled nanotechnologies. In *Symposium on Integrated Circuits and Systems Design (SBCCI)*.
- Kong, H., Feng, L., Deng, C., Yuan, B., and Hu, J. (2020). How much does regularity help fpga placement? In *Int Conf on Field-Programmable Technology (ICFPT)*.
- Li, Z., Wu, D., Wijerathne, D., and Mitra, T. (2022). Lisa: Graph neural network based portable mapping on spatial accelerators. In 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA), pages 444–459. IEEE.
- Liu, D., Yin, S., Luo, G., Shang, J., Liu, L., Wei, S., Feng, Y., and Zhou, S. (2018). Dataflow graph mapping optimization for CGRA with deep reinforcement learning. *IEEE Trans on Computer-Aided Design of Integrated Circuits and Systems*, 38(12).
- Mulpuri, C. and Hauck, S. (2001). Runtime and quality tradeoffs in FPGA placement and routing. In *Proceedings of the 2001 ACM/SIGDA ninth international symposium on Field programmable gate arrays*, pages 29–36.
- Murray, K. E., Petelin, O., Zhong, S., Wang, J. M., Eldafrawy, M., Legault, J.-P., Sha, E., Graham, A. G., Wu, J., Walker, M. J., et al. (2020). VTR 8: High-performance CAD and Customizable FPGA architecture modelling. *ACM Transactions on Reconfigurable Technology and Systems (TRETS)*, 13(2):1–55.
- Nowatzki, T., Ardalani, N., Sankaralingam, K., and Weng, J. (2018). Hybrid optimization/heuristic instruction scheduling for programmable accelerator codesign. In *Int Conf on Parallel Architectures and Compilation Techniques*, pages 1–15.
- Takamaeda, S. (2015). A high-level hardware design environment in python. *IEICE Technical Report; IEICE Tech. Rep.*, 115(228):21–26.
- Vieira, M., Canesche, M., Bragança, L., Campos, J., Silva, M., Ferreira, R., and Nacif, J. A. (2021). Reshape: A run-time dataflow hardware-based mapping for cgra overlays. In *IEEE Int Symp on Circuits and Systems (ISCAS)*.
- Walker, M. J. and Anderson, J. H. (2019). Generic connectivity-based CGRA mapping via integer linear programming. In *Field-Programmable Custom Computing Machines* (FCCM).
- Wang, C. C. and Lemieux, G. G. (2011). Scalable and deterministic timing-driven parallel placement for FPGAs. In *Proceedings of the 19th ACM/SIGDA international symposium on Field programmable gate arrays*, pages 153–162.
- Weng, J., Liu, S., Kupsh, D., and Nowatzki, T. (2022). Unifying spatial accelerator compilation with idiomatic and modular transformations. *IEEE Micro*, (01):1–12.
- Wrighton, M. G. and DeHon, A. M. (2003). Hardware-assisted simulated annealing with application for fast FPGA placement. In *Proceedings of the 2003 ACM/SIGDA eleventh international symposium on Field programmable gate arrays*, pages 33–42.
- Xilinx, D. (2020). Ultrascale architecture and product data sheet: Overview. *Product Specification*, *Nov*.