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Abstract. As the number of cores increases, more cores and threads share the
Last-Level Cache (LLC), which consumes a large portion of the chip’s total
power and area. Therefore, sophisticated solutions must guarantee the best re-
source usage addressing cache conflicts and cache pollution problems. This
work exploits the knowledge that many applications present poor temporal
and spatial locality. Thus, an adaptive cache mechanism can benefit such ap-
plications, improving general system performance and decreasing energy con-
sumption. In this paper, we propose an online and application-aware predic-
tor to adapt the use of LLC. As a result, DyCa shows up to 22% and 21% perfor-
mance increases in single and multi-program workloads, respectively.

1. Introduction

Over the years, the industry has adopted large shared cache memories to allow several
applications to share hardware resources and run concurrently in a multi-task envi-
ronment. Consequently, the cache memory hierarchy consumes a large portion of the
total area and energy budget [Egawa et al. 2019]. However, due to the heterogeneous
nature of the applications, such memories are not guaranteed to be used efficiently.

Although cache memories are a great ally in mitigating the memory-wall prob-
lem, some applications do not benefit from this structure. It happens whenever the
application does not present temporal or spatial data locality, making cache memory
useless. It also negatively impacts the performance due to the extra latency imposed
before the main memory access (on high cache misses scenarios). In a scenario where
only such applications are running, we could also reduce the leaked energy consump-
tion by disabling the Last-Level Cache (LLC). However, this analysis is out of the scope
of this paper.

Moreover, during multi-program workloads, we could identify the applications
that pollute a shared cache level with data that is not reused, known as "noisy neigh-
bors" [Kim et al. 2019], and disable the cache access for these applications. Generally,
these applications use a large portion of the shared resources. Consequently, identify-
ing and avoiding noisy neighbors can improve general system performance by reduc-
ing conflicts and decreasing cache pollution[Egawa et al. 2019].
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Considerable effort has gone into improving the performance of Last-Level
Cache (LLC) both in academic and industrial research. However, considering each ap-
plication may have a distinct memory access behavior, the same cache hierarchy will
have different impacts on energy consumption and performance depending on the
application.

Therefore, extensive studies try to identify the appropriated cache con-
figuration [Kim et al. 2019, Egawa et al. 2019], using technologies such as Gated-
Vdd [Powell et al. 2000] and Cache Allocation Technology [Kim et al. 2019], aiming to
get higher energy efficiency and performance for these applications. However, adapt-
ing the LLC to individual applications remains a challenge.

Based on the observations above, we propose DyCA, the Dynamically Adapt-
able Cache Bypassing mechanism. DyCA relies on analyzing the processor’s hardware
performance counters at the running time during predefined intervals. These analyses
allow DyCA to create an application-aware adaptable cache, considering each phase
of the running programs. For this, we use a performance prediction to forecast the ap-
plication’s instructions per cycle (IPC) in different cache scenarios and a mechanism
that decides what cache configuration is better for each application in a specific exe-
cution time. Thus, we can identify whether to adapt as the program behavior changes.
We show that adapting the use of LLC during the application execution is possible and
improve general system performance.

Our approach can be used in multi-threaded single-program workloads adapt-
ing and disabling the access to the LLC when gains in performance are identified and
in multi-program workloads. As far as we know, this is the first proposal that supports
multi-program executions. Our mechanism can adapt the entire use of LLC for each
application individually, thus reducing cache pollution - caused by unfriendly cache
applications - nevertheless removing the extra latency faced accessing the LLC.

The paper’s organization is as follows. Section 2 presents related work. Sec-
tion 3 describes our proposed architecture in detail. We describe the experimental
environment and results in Sections 4 and 4.2. Finally, Section 5 concludes the paper.

2. Previous work on adaptive caches

Academic and industrial works have presented different approaches for adaptive cache
memories by using bypass techniques. Some works adapt the LLC size. For example,
Liu, Egawa, and Takizawa [Liu et al. 2020] developed a bypass mechanism in a cache
level granularity. Both private and shared levels are bypassed. Private levels are by-
passed if they make minimal impacts on performance. LLC, on the contrary, is not
bypassed entirely. Instead, only a subset of cache ways is disabled, varying from the
total capacity to 1/4 of the LLC capacity. This mechanism improves 26% the energy
efficiency, retaining the same performance. Although, this work presents an offline
mechanism and does not consider multi-program executions.

Another work from the same group [Liu et al. 2022] developed an online adapt-
able cache hierarchy application-aware, bypassing and disabling a less-significant
cache layer to improve energy efficiency. In this work, the authors partially disable the
LLC, adjusting the size and associativity according to the number of conflicts observed.



Another work that tests different LLC sizes was proposed by Mittal, Cao, and
Zhang [Mittal and Zhang 2013] and tries to minimize energy consumption. They
choose the smallest LLC by analyzing the energy consumption and performance trade-
off for every application running, using a cache coloring scheme to allocate different
sizes for each. Then, they turn off the unused space.

Some industrial solutions adapt the LLC size, including the one proposed by
Samsung’s researchers Lee et al. [Yang et al. 2012]. This work uses a power manager
that can turn off any core and half of the L2 cache shared memory based on the pro-
cessing throughput and amount of data required by the applications.

Differently, Kim et al. [Kim et al. 2019] use the Intel Cache Allocation Technol-
ogy (CAT) in an automated mechanism, through machine learning, to predict the per-
formance of an application in different cache sizes. The paper accurately predicts IPC
with a 4.7% error on average.

Other works discuss the use of machine learning models for making bypass de-
cisions. Sato et. al. [Sato et al. 2019] developed a hardware perceptron to predict dead
blocks. They bypass the dead blocks to guarantee a more efficient cache way adapta-
tion as the dead blocks are not present in the cache, and more ways can be disabled,
decreasing energy consumption.

Although some works do not use the bypass, they present a cache adaptation
mechanism. Zhu and Zeng [Zhu and Zeng 2021] use hardware counters and a deci-
sion tree to predict the best cache associativity. Adapting the L2 for the associativity
find. Nevertheless, this decision is time-consuming since five execution phases are
performed, each trying a different associativity configuration to make a decision.

Bypass is also widely used at a finer granularity. Köhler and Alves
[Köhler and Alves 2019] use a possible misses predictor in the LLC request. If a re-
quest was classified as a miss by the predictor, the request bypasses the LLC, saving
extra cycles of latency. In their paper, the average precision of the mechanism is 95%.
The performance improvement observed is about 9%, although it can be up to 13%
depending on the application behavior.

The work from Park, Kim, and Hou [Park and Hou 2021] is an example of an
adaptable cache hierarchy mechanism. To develop this approach, they execute pro-
grams four times, varying the size of the LLC, and based on the information of each
execution. The programs are classified into three types - bypass the entire LLC, use
only a quarter of the LLC, and use LLC completely. Even though this work can be ap-
plied to a multi-program workload, improving up to 41.7% overall performance, their
technique requires a costly offline stage.

Besides, several previous works present their proposals to improve Graphics
Processing Units (GPU) architectures [Li et al. 2015, Xie et al. 2015]. These works aim
to mitigate the congestion in the GPU cache caused by the vast number of threads
using the bypass.

Table 1 summarizes the aspects of the more relevant related works for this paper
and compares them with our proposed method.



Proposals Online Dynamic Bypass
Multi-

program
Entire

LLC
Granularity

[Köhler and Alves 2019] x x x x per request

[Liu et al. 2020] x x per associative set

[Park and Hou 2021] x x per application

[Liu et al. 2022] x x x x per application

DYCA - Our Proposal x x x x x per application

Table 1. Summary of related work on cache bypassing.

3. DyCA - Dynamically Adaptable Cache Bypassing Mechanism

Our proposal is an application-aware dynamic mechanism using cache bypass to
adapt the usage of LLC in the cache hierarchy. Consequently, we need an online mech-
anism to adjust the cache during run time.

DyCA principles depend on a learning phase and identification and run-time
phase. First, in the learning phase, we use metrics from SPEC CPU 2006 [SPEC 2006] to
train the models. On the one hand, wLLC, which stands for with LLC, predicts the IPC
when LLC is used. On the other hand, woLLC, which stands for without LLC, predicts
IPC when the use of LLC is disabled. Both use metrics for each execution window.

Second, at the run-time stage, DyCa is performed during program execution,
deciding the best cache configuration for the next application’s execution window
based on the IPC predicted by the functions wLLC and woLLC. This way, we provide
an online and dynamic mechanism to adapt to multi-program workloads and detect
the different program phases. This process is illustrated in Figure 1.

Figure 1. Diagram of the whole process of core adaptation using bypass.

The following sections will detail the mechanism. We first start with a theoreti-
cal analysis. After, we describe the sampling cache method used to keep the LLC coun-
ters [Qureshi et al. 2006]. Next, the linear regression model and the selected hardware
counters are described. Section 3.4 explain the architecture proposal. To conclude, we
discuss the performance and hardware overhead of our mechanism DyCa.



3.1. Theoretical Analysis

To motivate our proposal, we present an oracle mechanism to evaluate the maximum
possible gains. Here, we have run simulations using an “oracle” predictor of the best
usage of the last level cache (LLC). In other words, we analyze both executions with
and without LLC, and for every 200 million cycles, we choose the configuration with
the higher instructions per cycle (IPC).

With these results, we can obtain the best improvement in performance pos-
sible for a 200 million cycle execution window, which enables us to identify possible
gains in performance and evaluate if our proposed mechanism is near the best sce-
nario.

The decision to use a 200 million cycle execution window size considers that
enabling or disabling the use of a cache level may cause overheads in performance.
These overheads come from the need to invalidate data in the cache hierarchy and
cold cache effects whenever we adapt the cache hierarchy. Furthermore, an execution
phase can last several hundreds of instructions, making the observation in short peri-
ods useless. Additionally, a 200 million cycles slice is close to the average interval be-
tween the OS context switches [Alves 2014], changing cache configuration combined
with the OS context switch can save the performance overhead discussed in Subsec-
tion 3.5.

We apply the oracle mechanism in SPEC CPU 2017[SPEC 2017], and the result-
ing speedup is illustrated in Figure 2.

We can observe that no application suffered performance degradation
(speedup lower than one). Speedup equal to 1 represents steady performance, while
values greater than 1 represent applications that benefit when the use of LLC is dis-
abled.

Figure 2. Oracle results for SPEC-CPU 2017 applications.

In this oracle, the overhead of disabling the LLC is not present because this
overhead would be insignificant during the context switch. Thus, we are capable of
comparing our mechanism to the perfect case.

3.2. Sampling the LLC

To keep track of LLC usefulness in the windows where we perform LLC bypass, we use
the LLC sampling technique [Qureshi et al. 2006]. The main idea is to simulate the be-
havior of LLC in a small mechanism with just a few sampled sets. This mechanism
reproduces all the access and changes in the LLC. However, it keeps only the tag-store
from these sets - providing the number of misses and hits that are our interest - de-



creasing the overhead. Moreover, since this mechanism is not in the execution critical
path, the latency increased by it is equal to zero.

The sets reproduced in the sampling cache are named leader sets. The number
of leader sets can vary depending on the implementation. Our method to select leader
sets is the following: assume N to be the number of sets in the LLC and the leader sets
in sampling by K. We logically divide the LLC into equally K-sized regions, including
N/K sets. In each region, we choose one leader set. Our best results derive from a
simple-static policy [Qureshi et al. 2006]. In this policy, set 0 is selected from the first
region, 1 from the second region, 2 from the third, and so on. In a multi-banked LLC,
this process is done for each cache bank [Abad et al. 2015]. We illustrate the policy in
Figure 3, where set 0 of region 1, set 1 from region 2, until set N from the last region is
mapped to the sampling cache.

Figure 3. Mapping of leader sets.

In this work, we use 64 sets for the sampling size. Although this decision was
taken by analyzing the average error for 16, 32, 64, 128, and 256 sets, minimizing the
error is essential because it could cause wrong decisions in the decision model due
to the values presented by the sampling cache. Therefore, the average was obtained
from the average error -measured by the difference observed between the LLC hard-
ware counters and sampling cache hardware counters- observed in each application
of SPEC CPU 2017 [SPEC 2017] and SPEC CPU 2016 benchmark suites. Figure 4 show
the average error and standard variation of each sampling size. We impose a limit of
0 in the graphic representation of the average error minus the standard variation, as
errors below zero are impossible.

Figure 4. Average error observed for the different number of sampling sets.

As shown in Figure 4, the average error of 64 samples is smaller than 16 and 32.
Also, the difference observed from 64 to bigger sizes is not significant, so as accurate



to the standard deviation. To summarize, we use 64 samplings to simulate LLC behav-
ior since the hardware overhead is not high and presents a lower error and standard
variation compared to a smaller number of sampling cache entries.

When we use sampling to collect LLC hardware counters, we need an adapta-
tion to correctly predict metrics that involve several fetch instructions (i.e., HPKI and
Misses Per Kilo-Instructions (MPKI)). Since sampling represents only a tiny portion of
LLC, we multiply the absolute number of misses, hits, and access of the sampling by
the N/K factor. N is the number of LLC sets, and K is the number of sampling sets (i.e.,
multiplying the sampling by the number of regions from LLC that it represents).

3.3. Linear regression model

To create a model capable of generalization, we used regression models in our ap-
proach to application performance prediction. More than this, a regression model can
decide without using a threshold value. Regression models are statistical techniques
that enable us to assess the impact of explanatory variables over response variables by
estimating quantities that measure this effect. If these quantities are significantly dif-
ferent from zero, there is evidence of a significant effect of the explanatory variable over
the response. It is also possible to make response predictions based on the observed
values of the explanatory variable.

Dyca considers the hardware counters of the last executed window to predict
the next one, as shown in Figure 1, and based on the observation that a program phase
can last several hundreds of instructions, we expect similar behavior in subsequent
execution windows. Furthermore, to train the model, the counters of the last windows
are associated with the IPC of the next one. This way, training the model with the same
configuration as the real processor has.

We trained two models, using Generalized Additive Models
(GAM)[Hastie 2017], the first model, named wLLC, to predict the performance
using the LLC and the second, named woLLC, to predict when bypassing the LLC. The
hardware counters selected for wLLC are presented in Equation 1. GAM relaxes the
restriction that the relationship must be a simple weighted sum and instead assume
that the outcome can be modeled by a sum of arbitrary functions of each feature.

I PC = s0L1 HPK I + s1L1 hi t r ati o + s2L2 MPK I + s3LLC accesses + s4Load s (1)

Equation 2 show the hardware counters for woLLC. The equations are similar. Only
two counters are different, L1 accesses - in Equation 1 L1 hit ratio is used and L2 HPKI,
corresponding to L2 MPKI.

I PC = s0L1 HPK I + s1L1 acesses + s2L2 HPK I + s3LLC acesses + s4Load s (2)

These hardware counters were not empirically selected. Instead, we collected
a list of twenty possible candidates for each cache layer, i.e., L1, L2, and LLC, and an-
alyzed the correlation between each counter and the IPC value. From these analyses,
we could select the best ones to compose the models.



3.4. The Mechanism Architecture

We develop two possible architectures using the sampling cache. SingleSC has only
one sampling shared cache, accessed by all the cores. Moreover, MultiSC architecture
has the sampling shared cache and a private sampling cache for each core. In Figure 5
both architectures are shown.

Figure 5. SingleSC and MultiSC architectures.

The sampling cache receives all the access from the L2 cache. When a core is
not using LLC, illustrated in grey in Figure 5, the access from L2 remains to be sent to
the sampling cache even though they are not sent to the LLC.

Both SingleSC and MultiSC architectures are tested and analyzed in the regres-
sion model to evaluate which one presents the best performance. Architecture MultiSC
had a 2% higher accuracy for a multi-program workload.

Adding an extra bit is enough to store the behavior decided by the mechanism.
Since it is a binary decision, the bit is added to the Translation Lookaside Buffer (TLB).

3.5. Performance and hardware overhead

When analyzing the hardware and performance overhead of adding a sampling cache,
an important aspect to consider is that this cache stores only the tag, requiring a small
area. For one sampling cache, the hardware overhead is equal to 6Kb, considering the
choice to use 64 sets and the SingleSC architecture. For a MultiSC architecture with
four cores, the overhead is equal to 30Kb. We also added a simple decision logic.

Regarding its latency, since the sampling cache is not in the execution critical
path, the latency provided by it is equal to zero, not increasing the total latency of the
cache accesses.

Furthermore, when a change in the use of LLC is executed, some performance
overhead is added. First, it is necessary to empty the pipeline before fetching instruc-
tions in the new LLC use configuration. Secondly, some changes in the cache hierar-
chy are made for the correct maintenance of the coherence protocol. Therefore, we
adopted the worst-case scenario to simulate this overhead by invalidating all cache
levels.

In conclusion, this overhead simulation will affect the proposal, made impossi-
ble to obtain the same performance as the oracle experiment. Although, this overhead
needs to be reasonable to keep the mechanism feasible. The results are discussed in
Section 4.2.



4. Methods and Results

This section describes the architectural aspects of the simulation, and the benchmarks
used and explains the simulation decisions and mechanisms applied in this proposal.

4.1. Simulation Environment and Benchmark Suites

To perform our experiments, we used the Ordinary Computer Simulator (OrCS), an in-
house cycle-accurate and trace-driven simulator based on SiNUCA [Alves et al. 2015],
to perform our experiments. First, we train the regression model with 24 benchmarks
from the SPEC CPU 2006 suite. Furthermore, we test the model with 14 benchmarks
from the SPEC CPU 2017 benchmark suite to simulate the mechanism’s performance
when we observe the application evolution over the years. The simulations used 2
billion most representative instructions from the benchmark extracted with the Pin-
Points [Patil et al. 2004] tool for both suites.

4.2. Results and Discussion

We executed some experiments to understand and evaluate our approach. We ob-
serve the proposal’s performance improvement in a single and multi-program work-
load, single-program using SingleSC architecture, and multi-program using MultiSC
architecture since we observe a higher accuracy in this configuration.

4.2.1. Single core execution

In order to evaluate the mechanism performance in each application, we evaluate
DyCa when executing a sequential and single application per time (i.e., SPEC CPU
2017). The result is shown in Figure 6.

Figure 6. DyCa result for SPEC CPU 2017 with only one application.

For a single workload, performance degradation of 1% is observed in one appli-
cation (xalancbmk). In Figure 2, we can observe that for this application, no improve-
ment in performance is reached when adapting the use of the LLC. Because of that, the
degradation is attributable to a model miss-prediction, causing a wrong adaptation of
using LLC, which hurt performance.

In addition, some applications - lbm, cactus, mcf and bwaves - shows improve-
ments in performance up to 22%, these are between the applications observed as the
ones that gains performance when the use of LLC is disable.

The other applications maintain the same performance (i.e., do not improve
performance by adapting the use of LLC). In preview experiments, most of the appli-



cations did not present an increase in performance when the use of LLC was disabled,
as illustrated in Figure 2.

To sum up, DyCa correctly identified the applications that should have the use
of LLC disabled, showing a performance improvement. Moreover, this correctness ex-
tends to applications that should not disable the use of LLC. The mechanism’s effi-
ciency is directly related to the accuracy of the prediction. In this experiment, only one
false positive case was observed. Although, we observe a performance overhead of 4%
comparing the oracle version with DyCa, associated with all the control discussed in
Subsection 3.5.

4.2.2. Multi-program workload

In order to understand the performance of a real system where multi-applications are
sharing the LLC, we perform multi-program workload analyses.

Four application bundles were produced to create the multi-program work-
loads. The first is an LLC-compatible-apps bundle, created with only applications that
gain performance when LLC is disabled. The LLC-compatible (a) consist of lbm, cactus,
mcf and bwzves applications and LLC-compatible (b) contain the applications mcf,
bwaves, nab and omnetpp. The second bundle is LLC-incompatible apps, including
only applications that lost performance. In this case, containing wrf, roms, perlbench
and xalancbmk applications.

Besides, a Mixed-apps bundle was created with half applications that gain per-
formance, and half that lose. The first bundle (i.e. Mixed (a)) represent the execution of
lbm, cactus, xalancbmk and wrf. The second (i.e. Mixed (b)) considered applications
mcf, bwaves. roms and perlbench.

Finally, a Random-apps bundle with randomly chosen applications, in our ex-
periment the chosen ones are lbm, bwaves, image and perlbench. Figure 7 describes
the result for SPEC-CPU 2017 for the four workloads identified at the bottom of each
column.

Figure 7. DyCa result for SPEC CPU 2017 with four applications.

It is possible to notice that even considering the overhead associated with each
LLC use adaptation DyCa still gains performance in almost every configuration. On the
other hand, for the Random-apps bundle, 1% of performance is lost. Furthermore, it is
essential to notice that for this configuration, no gain in performance is observed when
the use of LLC is disabled for the entire execution. Thus, such performance degrada-



tion is associated with a miss-prediction of the model.

Regarding the results, for both Mixed-apps bundles, we observe gains in per-
formance that could be associated with the cache pollution and conflicts avoided by
disabling the LLC use for the unfriendly cache applications.

It should be noted that every time DyCa switches between using or bypassing
the LLC, it poses a time overhead arising from the mechanism to maintain cache co-
herence. Although, on average, these bundles have observed a loss of only 1,4% per-
formance.

5. Conclusion and future work

In this work, we proposed a new model to dynamically bypass the Last Level Cache
(LLC) based on the performance prediction emulating different cache hierarchy condi-
tions, with L1-L2-L3 or L1-L2 only. Our mechanism presents a low hardware overhead,
relying only on a small sampling cache and a simple decision logic.

Our linear regression model can generalize application behavior, predicting the
Instructions Per Cycle (IPC) for applications it has never seen before. Thus, it does
not need stabilizing thresholds. DyCa can be used with only one application running,
showing performance gains, and if LLC is turned off when it is not used, we could re-
duce the leaked energy. DyCa reduces global pollution for multiple applications, in-
creases average system performance, and reduces cache conflicts.

In future works, we understand that our mechanism could be expanded to
multi-thread applications. We also envision a study about classification models to
make the bypass decisions.
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