
Using Petri-Net Modelling to Support the Case for
HW-Assisted Task Scheduling

Lucas H. Morais1, Alfredo Goldman1, Guido Araujo2

1Instituto de Matemática - Universidade de São Paulo (USP)
2Instituto de Computação - Universidade Estadual de Campinas (Unicamp)

{moraislh,gold}@ime.usp.br, guido@ic.unicamp.br

Abstract. Given the pervasiveness of multi-core processors in systems from var-
ious domains, the need for efficient parallelization tools has only increased dur-
ing the last decade. Among the paradigms built to answer this demand, Task
Parallelism stands out as a highly productive tool for leveraging data paral-
lelism with minimum code altering. Nonetheless, its current supporting run-
times cannot efficiently execute workloads involving tasks in the fine 1-100us
range, limiting its applicability. That said, by performing a thorough Petri-Net-
based analysis of task parallel systems with several degrees of HW-assistance,
we show that the development of Native CPU support for Task Parallelism is the
key for efficiently serving these challenging workloads.

1. Introduction
Since the dawn of the dark silicon era around 2005, designers have relied more and more
on multi-core processor architectures to keep delivering aggregate performance improve-
ments over time [Borkar and Chien 2011]. Even though the switch to multi-core architec-
tures could not fully overcome the challenges posed by the disruption of Dennard Scaling,
the benefits of such architectures on power efficiency and computational throughput have
paved their way towards becoming the standard for modern processor design. As a matter
of fact, multi-core processors can now be found everywhere from low-cost mobile devices
to the HPC realm, with 16+ core processors being already available in the desktop market.

Nonetheless, if software engineers from the golden age of Dennard Scaling could
always hope for their programs to get automatic performance improvements at the re-
lease of every new processor generation, single-threaded performance increase rate has
gone down considerably since then [Borkar and Chien 2011]. In order to leverage the
still increasing computing power of current processors, programmers are now demanded
to exploit their multiple cores, vectorization features, superscalar pipelines, etc., in ways
that may not be trivial [Asanovic et al. 2009]. In fact, the sole task of developing and
maintaining programs capable of benefiting from all cores available on a system may be
very daunting, given that:

1. Constructs provided by some parallel programming frameworks can obfuscate
program logic and require extensive code reorganization.

2. The concurrency inherent to parallel software makes it harder do debug.
3. Some kinds of computations - like MD5 computation, LZMA compression, etc -

are inherently serial, limiting parallelization or requiring algorithmic relaxation.

WSCAD 2017 - XVIII Simpósio em Sistemas Computacionais de Alto Desempenho

112



Among the various existing parallelization paradigms, Task Parallelism stands
out as a generic and very productive tool for solving the first of these issues for pro-
grams from a great variety of domains [Gupta and Sohi 2011]. On the other hand,
current software support for task parallelism is not able to efficiently handle task par-
allel workloads involving tasks in the small 1-100us size range [Kumar et al. 2007,
Meenderinck and Juurlink 2010]. That being the case, by modelling systems with sev-
eral degrees of HW-support for this paradigm, our work shows that adding native CPU
support for Task Parallelism could enable even these fine-grained task workloads to be ef-
ficiently executed. This finding suggests that the Task Parallelism paradigm should boast
even broader applicability if proper HW-support is provided.

This paper is organized as follows: in Background and Related Work (2), we
give a brief overview of the Task Parallelism paradigm, define a three-class taxonomy
of Task Scheduling Systems that should be useful for understanding prior work on this
area and also define some relevant terminology; in Evaluating the Limitations of Current
Task Scheduling Systems (3) we analyze the shortcomings of the current Task Scheduling
Systems that do not rely on any HW-assistance for Task Scheduling; in The Case for
Native Task Scheduling (4), by modelling Task Scheduling Systems with Petri Nets, we
show how adding native support for Task Parallelism to CPUs could dramatically improve
the performance of fine-grained task workloads with respect to all systems displaying a
lower degree of HW-assistance; at last, in Conclusion (5), we draw our final remarks.

2. Background and Related Work
Task Parallelism frameworks allow programmers to require a runtime system to execute
certain basic code blocks or function calls in an asynchronous manner. The code regions
allowed to be run in such way are called tasks. By specifying how these tasks depend on
variables available at the moment they were created, the programmer lets the runtime to
automatically infer, at execution time, the dependence relationships between these tasks
and run them in parallel. Support for this paradigm is currently offered by several frame-
works, such as OpenMP 4.0, Intel TBB, Intel Cilk, BSC’s OmpSS, etc.

The performance limitations of Software-based Task Scheduling Runtimes led to
the development of several Task Scheduling Systems that, by incorporating some degree
of hardware acceleration, allowed for improved scheduling performance. This section
thus begins by presenting a three-class taxonomy that groups relevant Task Scheduling
Systems from the literature according to their degree of HW-assistance for scheduling
computation, while also highlighting the main shortcomings and advantages of each or-
ganization. Afterwards, we finish the section by displaying a glossary of relevant terms
related to Task Scheduling.

2.1. Software-based Task Scheduling (SW-TS)

In a Software-based Task Scheduling system, task dependence inference is performed by
a CPU-based software runtime, of which the Intel OpenMP Runtime [Intel 2013] and the
GNU OpenMP Runtime [GNU 2013] are examples.

This is the simplest Task Scheduling configuration, since it only depends on the
availability of a software runtime. Nonetheless, as the analysis of Section 3 shall demon-
strate, the performance of these systems is severely degraded when they are used to serve

WSCAD 2017 - XVIII Simpósio em Sistemas Computacionais de Alto Desempenho

113



task applications generating fine-granularity tasks - that is, tasks with execution times in
the range from 1 to 100us.

Fig. 1. ACC-TS organization Fig. 2. Native-TS organization

2.2. Accelerator-based Task Scheduling (ACC-TS)
Accelerator-based Task Scheduling systems aim to improve Task Scheduling per-
formance by implementing several scheduling actions in an FPGA-based accelera-
tor, which interacts with task applications through the API provided by a light-
weight SW Runtime [Yazdanpanah et al. 2015, Dallou et al. 2013, Wang et al. 2013,
Bamnote and Nerkar 2015, Dallou et al. 2016]. Such organization is depicted in Fig. 1.

For these systems, maximum task throughput is expected to exceed that of SW-TS
systems. Yet, as it is usual for computation-offloading systems [Vuduc et al. 2010], their
performance is heavily dependent on the characteristics of the data paths connecting the
CPU hosting the runtime and the FPGA holding the accelerator. Such systems excel at
serving workloads related to denser task dependence graphs, which are more demanding
of dependence resolution, but display poor performance for workloads related to sparse
task dependence graphs, due to the significant cost of CPU-FPGA communication.

2.3. Native Task Scheduling (Native-TS)
In Native Task Scheduling systems, HW-support for Task Parallelism is provided by the
processor itself, which makes it available as an ISA extension. Tasking constructs of
high-level task parallel programs may thus be translated to tasking instructions during
compilation time. In such systems, since Task Scheduling Logic dwells within the pro-
cessor itself, task scheduling actions do not involve the traversal of data through data paths
external to the CPU, effectively eliminating the main bottleneck of ACC-TS systems.

In the diagram of Fig. 2, we see how several elements involved in the execution
of a task parallel program interact with each other in such a system. The application
generating tasks engages the CPU’s Task Scheduling Logic (TSL) through task-creation
instructions. The TSL is then left responsible for (1) assigning tasks to available cores
in agreement with the restrictions imposed by the inferred task dependence graph and
(2) taking notice of cores signaling the conclusion of their tasks, triggering a task graph
update and potentially making more tasks ready for assignment. The figure also depicts
the fast dedicated bus interface that connects all those elements - the Application, the TSL
and the cores running tasks (worker cores) - within the processor.

Given that the execution of task parallel programs by such systems does not re-
quire interaction with any software runtime, not only RT-ACC communication overheads

WSCAD 2017 - XVIII Simpósio em Sistemas Computacionais de Alto Desempenho

114



are eliminated, but also all overheads that arise from the communication between the
application and such a runtime through its software API.

Although some works on ACC-TS systems have pointed before to the benefits that
solutions like this could bring [Dallou and Engelhardt 2015], to the best of our knowl-
edge, no Native-TS system has yet been implemented.

2.4. Relevant definitions
Task granularity refers to the mean execution time of a task. High granularity corre-

sponds to long execution times, while low granularity relates to short execution
times.

Task retirement is the action by which a core finishing the execution of some task in-
forms the Task Scheduling Runtime about its conclusion. Once a task is retired,
its corresponding node is removed from the task dependence graph and new tasks
may become ready to be executed.

Task submission is the action by which the task parallel program creates tasks and sends
their descriptors to a Task Scheduling Runtime.

In-flight task is a task that is currently referenced by the Task Dependence Graph - that
is, a task that has already been submitted but that has not yet been retired.

Ready task is a task T such that there is no in-flight task T 0 such that T depends on T 0.
Task assignment is the action by which the Task Scheduling Runtime assigns a ready

task to an available processor, which immediately starts to execute it.
Task allocation is the action by which the Task Scheduling Runtime allocates enough

space in memory for holding a single task metadata structure.
Run queue is a software queue for holding descriptors of ready tasks.

3. Evaluating the Limitations of Current Task Scheduling Systems
This section aims to assess the performance limitations of current Task Scheduling sys-
tems. In order to do so, we devise performance metrics (Sec. 3.1) that allow us to for-
mulate performance upper bounds (Sec. 3.2) for systems of such kind. Once in place, we
apply such tools to the analysis of a representative SW-TS Runtime (Sec. 3.3), leading us
to conclusions about the intrinsic limitations of the SW-TS organization (Sec. 3.4).

3.1. Performance metrics
Mean Overhead Time (Eq. 1) is the sum of all average scheduling overheads related to

the processing of a single task.
Maximum Dispatch Rate (Eq. 2) is the maximum task completion rate that the whole

set of worker cores would be able to achieve if no scheduling overheads existed.
Mean In-flight Time (Eq. 3) is the average lifetime of the tasks generated by an appli-

cation, considering both mean execution time and scheduling overheads.
Maximum Task Throughput (MTT) (Eq. 4) is the maximum number of tasks that a

Task Scheduling system may be able to retire during an interval of time.
Overhead ratio (Eq. 5) is the mean fraction of in-flight time due to scheduling overhead.

Tovh = Taddition + TRunQDeq + Talloc + Tretirement (1) MDR =
Nwcores

Texec
(2)

Tinflight = Tovh + Texec (3) MTT =
1

Tovh
(4) Oratio =

Tovh

Tinflight
(5)

WSCAD 2017 - XVIII Simpósio em Sistemas Computacionais de Alto Desempenho

115



3.2. Devising Theoretical Limits to Application Speedup

3.2.1. From Overhead Ratio

Let us consider a task scheduling system with N cores for which an Overhead Ratio equal
to Oratio was measured for a certain workload W . In such situation, assuming that all
cores may perform scheduling actions and given that W has enough intrinsic parallelism
not to let cores starve for work, the maximum program speedup is attained when all cores
are fully utilized. In such optmal case, any core has a chance of Oratio of being, at a
certain moment, performing scheduling actions. That being the case, the average number
of cores that will actually be executing tasks will be:

Nexecuting�tasks = (1�Oratio)⇥N, (6)

which corresponds to the maximum application speedup MSratio for that scenario.

3.2.2. From MTT

Let us consider a task scheduling system with N cores for which an MTT of K
was measured for a certain workload W . Tasks contained in W display mean task
execution time equal to Texec. Assuming that in this case only one core is al-
lowed to perform scheduling actions, the Task Scheduling Runtime may not serve
more than K tasks per unit of time. If we then assume that worker cores are
able to keep running tasks without any scheduling overhead, each of these cores
should be able to run as much as T�1

exec tasks per second. From these assumptions,
Ineq. 7 can be derived, leading to the application speedup upper bound of Eq. 8.

Nexecuting�tasks

Texec
 K, (7) MSMTT = K ⇥ Texec (8)

3.3. Evaluating SW-TS overheads

In this subsection, we instrument a software Task Scheduling Runtime running on a dual-
core x86 machine to analyze its performance while serving several scheduling-related
actions: (1) processing newly created tasks, which demands a node addition to the task
graph; (2) task allocation; (3) task retirement, which demands a node to be removed from
the task graph; (4) run-queue queuing.

For simplicity, the Task Scheduling Runtime of choice was MTSP [César 2016], a
light-weight open-source implementation of the tasking provisions of OpenMP 4.0. Sim-
ilar work could be done with the Intel OpenMP Runtime or with the GNU OpenMP
Runtime. Experiments were performed on an Intel Core i5-3230M dual-core CPU
@2.60GHz, with 16GB of DDR3 RAM running on Ubuntu 16.04.

In order to instrument MTSP’s code, Intel’s RDTSC and RDTSCP cycle-counting
instructions in GCC Asm were used to enclose code fragments for each scheduling-related
action of interest. The instrumented runtime was then evaluated while serving two task-
parallel applications from the Kastors Benchmark Suite [Virouleau et al. 2014]. Each
measurement value is the average resulting from ten experiment replications.

WSCAD 2017 - XVIII Simpósio em Sistemas Computacionais de Alto Desempenho

116



Task Granularity Jacobi SparseLU
E. Params Cycles E. Params Cycles

small -n 8192 -b 64 8.0e+03 -n 128 -m 64 9.4e+02
medium -n 1024 -b 64 6.9e+04 -n 128 -m 16 2.3e+04

large -n 128 -b 64 3.8e+05 -n 128 -m 4 1.5e+06

Table 1. Execution parameters for each benchmark

The overhead ratios measured for all six experiments according to Eq. 5 are sum-
marized in Fig. 3. We can see that for fine-granularity workloads - for which, according to
Table 1, mean task execution time is not higher than 8K cycles - overhead ratios are over
80%. On the other hand, as task granularity increases to about 380K cycles, overhead
ratios become lower than 10% for both test programs.

These findings support our hypothesis that, although current task scheduling sys-
tems may be fast enough to serve coarse-granularity task workloads, they fail at serving
applications generating smaller tasks, which is indicated by the high overhead ratios mea-
sured for both the Small and Medium workloads.

Fig. 3. Relationship between task
granularity and overhead ratio

Fig. 4. Relationship between task
granularity and program speedup

Fig. 5 showcases the components of scheduling overheads for all six experiments.
The amount of overhead cycles reported for each (scheduling action, experiment) pair is
an average value calculated from the set of all tasks produced by the experiment. This
breakdown shows that actions related to task graph management (addition and retirement)
are the most taxing, while allocation and run-queue dequeuing never take more than 10%
and 5% of total per-task overhead, respectively. Such figure also suggests that both (1)
relative weights of scheduling latency components and (2) mean total per-task overhead
do not vary much depending on task granularity or task graph topology, since they remain
very similar across all six experiments. One major implication of this is that one should
not expect total per-task overhead to be lower than about 30K cycles for any task parallel
application with data dependencies, regardless of its mean task granularity.

The speedup graph of Fig. 4 shows that application speedup will usually improve
as workload granularity increases, going up to 1.37x for SparseLU-large (Texec of about
1.5⇥ 106 cycles), the most coarse-grained workload. Nonetheless, slowdowns as high

WSCAD 2017 - XVIII Simpósio em Sistemas Computacionais de Alto Desempenho

117



Fig. 5. Over-
head components
for each experi-
ment

Fig. 6. Overhead-
ratio-driven Speedup
Bounds

Fig. 7. MTT-driven
Speedup Bounds

as 100x for Jacobi-small (Texec of about 8.0⇥ 103 cycles) and 200x for SparseLU-small
(Texec of about 9.4⇥ 102 cycles) were also measured, illustrating the inability of SW-TS
systems to handle fine-grained workloads.

Moreover, as shown by the optimistic theoretical speedup upper-bounds of Fig. 6
- which considers a perfectly parallelized TS Runtime - supposing a system with 8 cores,
the optimal speedup figures for the fine-grained workloads would not be higher than 1.6
for Jacobi-small and 0.2 for SparseLU-small. By its turn, the more realistic evaluation of
Fig. 7 - which supposes a serial TS Runtime - shows that even if an unbounded number
of cores was available, one would not be able to achieve speedups higher that 0.25 and
0.029 for Jacobi-small and SparseLU-small, respectively.

3.4. Conclusions about SW-TS performance
From the data just showed and analyzed, one can come to the following conclusions
regarding SW-TS performance:

1. SW-TS systems perform best for task applications generating tasks larger than
about 1⇥ 106 cycles, which take around 500us in a 2GHz processor. For finer
workloads, the performance of the parallel program may be considerably worse
than that of its serial counterpart.

2. Mean total per-task overhead does not vary much depending on task granularity
for task applications generating tasks with data dependencies.

3. The most computationally taxing actions performed by a SW-TS RT are those
related to task graph management - namely, addition and retirement.

4. The Case for Native Task Scheduling
The theoretical analysis of Section 3 demonstrated the limitations of current Task
Scheduling Systems relying on software runtimes. This section, in turn, aims to show
how these shortcomings may be avoided by the introduction of enough hardware accel-
eration. Moreover, we show that while ACC-TS systems from the literature already dis-
played substantial gains with respect to organizations without any HW-assistance, Native
Task Scheduling should represent a major step forward from this organization, since it
circumvents its communication-related bottlenecks.

This section hence starts with the description of our proposed Petri Net Model for
Task Scheduling Systems and finishes with the evaluation of the three organizations from

WSCAD 2017 - XVIII Simpósio em Sistemas Computacionais de Alto Desempenho

118



Section 2 according to this model, from which we can gather conclusions regarding their
relative performance and their intrinsic limitations.

4.1. Modelling Task Scheduling Systems with Petri Nets

Fig. 8. ACC-TS Petri Net model

In this section, we present a Petri Net model for an ACC-TS system with realistic
characteristics, which may be used to evaluate system bottlenecks and resource utilization
as well as to predict application speedup. We start by discussing the reasons that lead us
to organize the net topology and set the transitions parameters as they are. Then, we show
how one can use the same net for simulating SW and Native TS systems by setting its
transition rates accordingly. All experiments involving Petri Nets were performed using
the PIPE4 simulation tool [Dingle et al. 2009], and the developed models can be found at
a public Git 1. Table 2 describes the parameters that can be varied across simulations.

High-level simulation feature Dependent features

System characteristics (SW, ACC, Native)
System organization (SW, ACC, Native)

number of CPU cores; timing characteristics
presence/absence of communication queues

Workload characteristics Task granularity; parallelism degree
percentage of dependence-less tasks

Table 2. Tunable simulation features.

4.1.1. System topology analysis

Since their generation at the task parallel code, tasks go through the various sub-systems
of a HW-accelerated Task Scheduling system according to the flow depicted in the system
block diagram of Fig. 1. In the following lines, we show how each of the indicated steps
were mapped to place-transition combinations in our model.

1https://bitbucket.org/lucashmorais/task-scheduling-petri-net-modeling

WSCAD 2017 - XVIII Simpósio em Sistemas Computacionais de Alto Desempenho

119



(1-2) Task-creating API calls and writes to the Submission Queue are modeled by
places {P1, P5, P10, P11} and transitions {T5, T6, T12, T13}. The number of
marks in P5 represent the number of dependence-less tasks that the system was
required to schedule, while the number of marks in P1 represent the number of
tasks with dependencies that the application would like the system to manage.
Additionally, the number of marks in P11 represents the number of task descrip-
tors of dependence-less tasks that have already been enqueued to the Submission
Queue. Analogously, the number of marks in P10 encodes the number of tasks
with dependencies that the system may already start to process. The transition
weights of T5 and T6 define the simulated workload ratio between dependence-
free and dependence-full tasks, while the transition rates of T13 and T12 define
the simulated rate at which the RT may fill the Submission Queues with task de-
scriptors for tasks with or without data dependencies, respectively.

(3) Task dependence inference at the accelerator is represented in our model by
places {P6, P7} and transitions {T7, T8}. The number of marks in P6 repre-
sent the number of dependence-less tasks on the task graph, while P7, the number
of dependence-full tasks on the graph. The transition rate for T7 represents the
rate at which the accelerator may add dependence-less tasks to the graph, while
the rate for T8, the rate at which it may process dependence-full tasks.

(4) Writing to the Runnable Queue is represented in our model by P2 and the transi-
tions T2 and T15. The number of marks in P2 represents the number of tasks on
the Runnable Queue, while the identical rates of T2 and T15 represent the rate at
which the queue may be written to.

(5) Assignment of tasks to the processor cores is represented by P0 and T0. The number
of marks in P0 represent the number of processors that are currently running a
task. The rate for T0 represents the rate at which task descriptors may be read
from the Runnable Queue and assigned to an available core.

(6) Task execution is represented by transition T1. Its rate represents the rate at which
tasks are executed, which is a function of the number of currently active cores and
of task granularity. Such relationship is depicted in Fig. 8 below T1.

(7-8) Task retirement is modeled by places {P3, P8, P9, P12, P13} and transitions {T1,
T3, T9, T10, T14}. The number of marks in P9 represent the number of tasks
on which other tasks depended that have recently finished executing, while the
number of marks on P8 represent the number of tasks on which no other task
depended that were recently finished. The number of marks in P12 represent the
number of task IDs that have been recently written to a HW-register that receives
IDs of retiring tasks. The rate for T14 represents the rate at which packets may
be written to such register. The rate for T3 represents the rate at which the system
may detect two tasks to be ready to execute as a result of the acknowledgement
that one more task has finished executing.

4.1.2. Reasoning behind used rates and place occupancy restrictions

All rate parameters of our Petri Net model may be changed for better reflecting its target
(TS System, workload) pair. In the specific configuration depicted in Fig. 9, we consider
that tasks are 10K/3 ⇡ 3.3K cycles long. The amount of cycles NCaction related to each

WSCAD 2017 - XVIII Simpósio em Sistemas Computacionais de Alto Desempenho

120



of the remaining modeled actions may be calculated with the following formula:

NCaction =
10000

Raction
, (9)

where Raction is the rate of the related timed transition.

The rates for transitions representing memory operations correspond to reasonable
memory access latencies for modern x86 machines. The SW and ACC models abstract
several sources of overheads that would make their actual implementations less efficient,
while pessimistic latency values are set for the Native-TS model. Furthermore, we even
consider the Runtimes behind SW and ACC systems to be able to perform several different
scheduling actions in concurrent fashion, which, although desirable, would be difficult to
implement for real systems. By doing so, our comparison between the Native and the
other configurations is made more favorable towards the latter ones, making any perceived
advantages of the Native TS system more reliable. The weights for the instantaneous
transitions, on their turn, are set in such a way that a workload comprising 99% of tasks
with dependencies and 1% of dependence-less tasks was simulated. Such ratio between
the two task classes correspond to a very taxing task parallel workload, which goes in line
with our goal of comparing the performance of the three system organizations under the
most stressful circumstances. Finally, we set the limit on the number of marks on P0 to
64, which goes to represent that our system has a 64-cores CPU.

4.2. Models for SW and Native systems

We now showcase two petri nets that may be used to simulate the execution of the work-
load of Fig. 9 by SW and Native task scheduling systems. They share the same topology
of the former model, differing only by the rates of some of their timed transitions.

Fig. 9. SW-TS model Fig. 10. Native-TS model

4.3. Experimental evaluation

We now present information regarding the number of cores that each of these solutions
was found to be able to feed, as well as the subsystems that we discovered to be the
bottlenecks of each organization. Results for both analysis are in Table 3.

WSCAD 2017 - XVIII Simpósio em Sistemas Computacionais de Alto Desempenho

121



Organization TCO System Bottleneck C. Places
SW 17 Task-scheduling kernel P11

ACC 33 SW-Queues Comm. interface P1, P13, P12
Native 64 Limited number of CPU cores P7, P0, P13, P2

Table 3. Typical Core Occupancy, System Bottlenecks and Congested Places for
each organization

As discussed in Section 4.1.1, the number of cores currently running tasks during
simulation relates to the number of marks in P0. Hence, the Typical Core Occupancy
(TCO) of each scenario corresponds to most frequent value of marks of P0 after steady
state has been achieved. Such metric represents a close upper-bound for program speedup.

System bottlenecks were evaluated by identifying, for each simulation model, the
modelled system elements corresponding to places with highest typical occupation.

The conducted set of experiments suggests that Native-TS systems should bring
a large leap in performance with respect to SW and ACC systems. In fact, the simulated
ACC system was only able to increase TCO with respect to the SW system by a factor of
1.9 times, while the Native system was able to effectively saturate the available processor
cores with work. These findings agree with our expectations that, by (1) circumventing
the high overhead ratios of SW-TS systems and (2) avoiding the communication latencies
of the FPGA-CPU buses and the queue interfaces of ACC-TS systems, the Native-TS
organization should enable significantly higher performance.

Similar conclusions can be derived from experiments involving a higher ratio be-
tween dependence-less and dependence-full tasks (not depicted). These scenarios lead
to significantly better performance for SW-TS systems. Concretely, if the dependence-
less/dependence-full task ratio is increased to 50/50, Typical Core Occupation rises by
about 50% for the latter organization. All the same, the performance of other configura-
tions is not considerably altered by this change - given that the bottlenecks of ACC and
Native TS systems are not related to slow task-graph management - and the SW-based
systems keep their place at the bottom of the performance scale.

5. Conclusion

In this work, we have shown that the development of Native CPU support for Task Paral-
lelism should enable efficient execution of task parallel workloads comprising tasks on the
fine 1-100us size-range, for which existing task scheduling systems have presented only
poor results. In order to do so, we developed a parametric Petri Net model and theoreti-
cal upper bounds for predicting performance characteristics of Task Scheduling systems
under arbitrary workloads. With that, we believe to have motivated further research on
Native Task Scheduling Systems - that is, systems where full support for Task Parallelism
is provided by the CPU itself - for realizing the potential of the Task Parallelism Paradigm
as not only a very productive, but also as a highly efficient parallelization tool.

6. Acknowledgements

The authors thank the support of FAPESP (2017/02682-2) for this research undertaking.

WSCAD 2017 - XVIII Simpósio em Sistemas Computacionais de Alto Desempenho

122



References
Asanovic, K., Wawrzynek, J., and Patterson, D. (2009). A view of the parallel computing

landscape. In Communications of the ACM, pages 56–67.

Bamnote, R. and Nerkar, R. P. (2015). Review on Dynamic Task Scheduling to Support
OoO Execution in an MPSoC Environment. In Int’l Journal of Computer Applications.

Borkar, S. and Chien, A. (2011). The Future of Microprocessors. In Comm. of the ACM.

César, D. (2016). MTSP: Multicore Task Scheduling Platform.
https://bitbucket.org/lgeunicamp/mtsp/.

Dallou, T., Elhossini, A., and Juurlink, B. (2013). FPGA-Based Prototype of Nexus++
Task Manager. In 6th Wksh. on Many-Task Computing on Clouds Grids and Super-
computers.

Dallou, T. and Engelhardt, N. (2015). Nexus#: A Distributed Hardware Task Manager
for Task-Based Programming Models. In IEEE 29th Int’l Parallel and Distributed
Processing Symposium (IPDPS).

Dallou, T., Lucas, D. S., Araujo, G., Morais, L., Frank, M., and Ferreira, E. (2016).
Task Parallel Programming Model + Hardware Acceleration = Performance Advantage
(poster). In Hot Chips.

Dingle, N. J., Knottenbelt, W., and Suto, T. (2009). PIPE2: A Tool for the Performance
Evaluation of Generalised Stochastic Petri Nets. In ACM SIGMETRICS Performance
Evaluation Review, pages 34–39.

GNU (2013). An OpenMP implementation for GCC. http://gcc.gnu.org/projects/gomp.

Gupta, G. and Sohi, G. (2011). Dataflow Execution of Sequential Imperative Programs on
Multicore Architectures. In Proc. 44th IEEE/ACM Int’l Symp. on Microarchitecture.

Intel (2013). Intel OpenMP Runtime Library. https://www.openmprtl.org.

Kumar, S., Hughes, C., and Nguyen, A. (2007). Carbon: Architectural Support for Fine-
Grained Parallelism on Chip Multiprocessors. In Proc. 34th annual Int’l Symp. on
Computer architecture.

Meenderinck, C. and Juurlink, B. (2010). A Case for Hardware Task Management Sup-
port for the StarSS Programming Model. In Proc. 13th Euromicro Conference on
Digital System Design: Architectures, Methods and Tools.

Virouleau, P., Brunet, P., Broquedis, F., Furmento, N., Thibault, S., Aumage, O., and Gau-
tier, T. (2014). Evaluation of OpenMP Dependent Tasks with the KASTORS Bench-
mark Suite. In 10th Int’l Workshop on OpenMP, pages 16 – 29.

Vuduc, R., Chandramowlishwaran, A., and Choi, J. (2010). On the Limits of GPU Accel-
eration. In Proc. 2nd USENIX conference on Hot topics in parallelism, page 13.

Wang, C., Li, X., and Zhang, J. (2013). MP-Tomasulo: A Dependency-Aware Auto-
matic Parallel Execution Engine for Sequential Programs. In ACM Transactions on
Architecture and Code Optimization (TACO), pages 1–9.

Yazdanpanah, F., Álvarez, C., and Jiménez-González, D. (2015). Picos: A hardware
runtime architecture support for OmpSs. In Future Generation Computer Systems.

WSCAD 2017 - XVIII Simpósio em Sistemas Computacionais de Alto Desempenho

123


