
Analyzing and Estimating the Performance of Concurrent
Kernels Execution on GPUs

Rommel Cruz1, Lucia Drummond1, Esteban Clua1, Cristiana Bentes2

1Institute of Computing, Federal Fluminense University, RJ - Brazil
2Department of System Engineering, State University of Rio de Janeiro, RJ - Brazil

{rquintanillac,esteban,lucia}@ic.uff.br, cris@eng.uerj.br

Abstract. GPUs have established a new baseline for power efficiency and com-
puting power, delivering larger bandwidth and more computing units in each
new generation. Modern GPUs support the concurrent execution of kernels
to maximize resource utilization, allowing other kernels to better exploit idle
resources. However, the decision on the simultaneous execution of different ker-
nels is made by the hardware, and sometimes GPUs do not allow the execution
of blocks from other kernels, even with the availability of resources. In this
work, we present an in-depth study on the simultaneous execution of kernels on
the GPU. We present the necessary conditions for executing kernels simultane-
ously, we define the factors that influence competition, and describe a model
that can determine performance degradation. Finally, we validate the model
using synthetic and real-world kernels with different computation and memory
requirements.

1. Introduction
Graphics Processing Units (GPUs) have emerged as a cost-effective platform for high per-
formance computing and has become ubiquitous as accelerator devices. Modern GPUs
contain thousands of computing cores, very large register files, hardware thread manage-
ment, and access to fast on-chip and high-bandwidth external memories. Programming
models like CUDA exploit this processing power using massive thread-level parallelism,
where applications are offloaded to the GPU as kernels.

As the GPU resources continue to increase, sharing these resources between dif-
ferent applications becomes imperative. However, GPUs need to be able to efficiently
handle a variety of applications and provide compatible throughput to be used as shared
devices. Still, GPUs are not multiprogrammed devices with an operating system as are
the current CPUs. NVIDIA GPUs have hardware support for simultaneous execution
of kernels. However, the hardware policy used in scheduling the kernels is proprietary,
and no explicit information has been made available. Previous experiments indicate that
the resource partitioning is not even among kernels, but the scheduling policy follows a
leftover strategy [Pai et al. 2013, Aguilera et al. 2014]. The first kernel allocates all the
resources needed and, then, the leftover resources are distributed to the next kernel. So,
even if the kernels are independent and submitted to run concurrently, the first kernel may
consume too many resources and contrain the concurrent execution with another kernel.

Although some spatial multitasking mechanism have been proposed to improve
the GPU throughput [Adriaens et al. 2012, Janzén et al. 2016], they are not currently im-
plemented in the hardware. In the current scheduling policy, the order in which kernels

WSCAD 2017 - XVIII Simpósio em Sistemas Computacionais de Alto Desempenho

136



are submitted for execution and their resource usage have great impact on the system
throughput, occupancy rate, and GPU utilization.

This work presents an in-depth study on the simultaneous execution of kernels in
the GPU. We studied the necessary conditions for real simultaneous execution, proposing
an algorithm that identifies whether the hardware will actually execute two kernels simul-
taneously. We also analyze the effects of the concurrent execution on the performance
of the two kernels and propose a model for slowdown estimation. Our concurrency al-
gorithm and slowdown estimation model are validated with both synthetic and real-world
kernels that have different computation and memory requirements.

The remainder of this paper is organized as follows. Section 2 presents previous
work on concurrent execution on the GPU. Section 3 explains the concurrent execution
environment of a NVIDIA GPU. Section 4 shows the algorithm proposed to determine
whether two kernels will execute concurrently on the GPU. Section 5 presents the slow-
down estimation model. Section 6 validates our algorithm and model with synthetic and
real-world applications execution. Finally, section 7 presents our conclusions and direc-
tions for future work.

2. Related Work
In contrast to CPU multiprogramming, GPU multiprogramming is a relatively new trend,
and still largely unexplored. There are only a few works that address the interference on
concurrent kernel execution. Most of these works focus only on memory interference. Hu
et al. [Hu et al. 2016] introduced a slowdown estimation model for GPUs, whose focus is
on memory contention of concurrent kernels. They applied two CPU interference models
known as MISE and ASM [Subramanian et al. 2015] to some GPU applications. These
multicore models are based on the observation that the concurrent access of applications
to memory resources is correlated to their overall slowdown compared to their sequential
execution. However, this approach resulted in predictions with low accuracy. In a similar
direction, and also seeking a balanced execution, Jog et al. [Jog et al. 2015] proposed a
low-level memory scheduling mechanism that extends the hardware memory scheduler
to a more fair policy relying on the bandwidth and L2 behavior of kernels. In contrast to
our work, these interference studies consider an ideal case where the GPU resources are
statically assigned to each kernel, while we show the behavior of the actual thread block
scheduler of modern GPUs. Consequently, we perform our experiments in real hardware
instead of validating our proposal using a GPU simulator.

There are also some works that focus on the CPU-GPU memory interference.
Ausavarungnirun [Ausavarungnirun 2017] analyzed three types of memory interference
in a CPU-GPU system, and propose an application-aware CPU-GPU memory request
scheduler. Jeong et al. [Jeong et al. 2012] proposed a memory scheduler that guarantees
the performance of GPU applications by prioritizing graphics applications over CPU ap-
plications. Our work, on the other hand, focuses on the interference of concurrent kernels
execution.

On a different direction, improving GPU utilization with concurrent execu-
tion was studied in several previous works. Software techniques, such as reorder-
ing [Wende et al. 2012, Li et al. 2015, Breder et al. 2016] focus on the order in which
GPU kernels are invoked on the host side. Hardware techniques, such as pre-

WSCAD 2017 - XVIII Simpósio em Sistemas Computacionais de Alto Desempenho

137



emption [Tanasic et al. 2014, Park et al. 2015] control the resource usage by applying
preemptive multitasking on the GPU. GPU virtualization techniques [Li et al. 2011,
Suzuki et al. 2014] allow multiple VMs to share the GPU resources among the cores in a
heterogeneous system.

Several studies on GPU benchmark characterization [Che et al. 2010,
Goswami et al. 2010, Lal et al. 2014, Ukidave et al. 2015] contribute to demonstrate that
applications with irregular memory access patterns and complex control flow behaviors
usually produce kernels that do not take advantage of all the GPU resources. According
to Pai et al. [Pai et al. 2013], the Parboil2 benchmark suite uses only from 20% to 70% of
the Fermi GPU resources. Adriens et al. [Adriaens et al. 2012] perform similar studies
for 12 real-world applications, and show that most of them exhibit unbalanced GPU
resource utilization.

3. Concurrent Kernel Execution
In CUDA, the parallel task submitted to run on the GPU is called a kernel. Each kernel
can have tens of thousands of threads organized into blocks that are assigned to run on
Streaming Multiprocessors (SMs).

The first generations of NVIDIA GPUs were not able to execute more than one
kernel at a time, and the hardware resources were exploited using only thread-level par-
allelism. Concurrent kernel execution was introduced in the Fermi architecture, with the
concept of streams. CUDA streams allows the programmer to express execution inde-
pendence. Kernels that belong to different streams do not depend on each other and can
execute concurrently. On the Fermi architecture, the hardware was responsible for mul-
tiplexing the kernels into a single work queue, where two successive kernels can execute
concurrently if they were assigned to different streams. This earliest form of kernel con-
currency in the GPU, however, can cause false-serialization. If two successive kernels on
the queue belong to the same stream, they have to complete before additional kernels in
different streams can be executed. The Kepler architecture provides the Hyper-Q tech-
nology, where 32 hardware work queues were introduced. False serialization can still
occur for more than 32 streams. Recently, NVIDIA introduced the Multi-Process Service
(MPS) that enables kernels from different applications to share the GPU resources. The
MPS server filters the work from different processes and submit to concurrent execution.

The GPU scheduler assigns blocks to run on a specific SM, without the possibility
of runtime migration. Within each SM, the threads are scheduled in the GPU scheduling
unit called warp. The warp scheduler multiplexes the warps to execute in the CUDA cores
of the SM. All the threads that belong to the same warp are executed simultaneously. A
warp is considered active from the time its threads begin executing to the time when all
threads in the warp have exited from the kernel. There is a maximum number of warps
which can be active on a SM described by the compute capability of the device.

The NVIDIA scheduling policy is, however, proprietary. No published material
describes the policy used for block and warp scheduling. Some previous work performed
microbenchmark experiments to disclose it [Hu et al. 2016]. The speculation is that the
hardware uses a leftover policy that assigns as many resources as possible for one kernel
and then assigns the remaining resources to another kernel, if there are sufficient leftover
resources. Using this policy, a resource-hungry kernel can prevent the concurrent execu-

WSCAD 2017 - XVIII Simpósio em Sistemas Computacionais de Alto Desempenho

138



tion of other small kernels. According to Pai et al. [Pai et al. 2013], around 50% of the
kernels from the Parboil2 and Rodinia 2 benchmark suites consume too many resources
and prevent concurrent execution of other kernels.

Another important aspect of the concurrent kernel execution is the interference
that one kernel cause in the other due to simultaneous execution. Inter-kernel interference
can have a negative impact in the application execution time. In the following sections,
we propose a thorough analysis of concurrent execution in the GPU. We first identify
whether the concurrency can occur between two independent kernels. Then, we model
the slowdown caused by inter-kernel interference. The correct characterization of the
concurrency capability may be an important step for maximizing GPU usage and kernels
throughput.

4. Analyzing Concurrency in GPUs
Although concurrent kernel execution can be easily expressed using streams or the MPS
tool, the actual simultaneous execution depends on the hardware leftover policy. We
propose here an algorithm to identify whether the hardware will actually execute simul-
taneously two kernels submitted for concurrent execution.

Suppose two kernels k1 and k2 were submitted to concurrent execution in this
order in a particular GPU. Basically, each attempt to run k1 and k2 concurrently may fall
into three cases: (a) the two kernels are executed concurrently from the beginning, (b) the
second kernel start its execution when the first kernel begins to release resources, (c) the
two kernels are executed sequentially. Figure 1 illustrates these cases.

k
1

2
k

Case A

k
1

k
1

2
k

2
k

Case B Case C

Figure 1. Concurrent execution possibilities.

We present in Algorithm 1 what we identified experimentally as the guidelines to
actual concurrent execution. Suppose that the number of SMs in the GPU is nSM and
that the overhead of launching a kernel is Launch overhead. Also suppose that Blocksk1
is the total number of blocks of k1, ExecT imek1 is the execution time of k1.

Since the GPU scheduler will first allocate the available resources for k1 and, if
there are leftover resources, will allocate resources for k2, the number of blocks which
can execute concurrently with k1 on an SM is limited by: (i) the number of thread blocks
available on each SM, (ii) the maximum active thread blocks imposed by the hardware,
(iii) the number of thread blocks that the shared memory can accommodate given the
consumption of each thread block, (iv) the number of thread blocks that the registers can
accommodate given the consumption of each thread block. We define ActiveBlocksk1 as
the number of blocks from k1 that can be active in one SM, considering these restrictions.

Initially, the algorithm tests if k1 execution time is greater than the overhead of
launching a kernel on the target device. If k1 executes for less than the launching overhead
time, the time the GPU takes to launch k2, k1 has finished, and no concurrency is achieved.

WSCAD 2017 - XVIII Simpósio em Sistemas Computacionais de Alto Desempenho

139



Algorithm 1 Concurrent scheduling
1: function AREEXECUTEDCONCURRENTLY(k1, k2, G)
2: if ExecT imek1 > Launch overhead then
3: cond1 Blocksk1 < (ActiveBlocksk1 ⇥ nSM)
4: cond2 GetAllocatableBlocksPerSM(k1, k2, G) > 0
5: if (cond1 = true) and (cond2 = true) then
6: return Case A . Kernels are executed concurrently from beginning
7: else if (Blocksk1 mod (ActiveBlocksk1 ⇥ nSM)) > 0 then
8: return Case B . Kernels are executed concurrently but not from beginning
9: end if

10: end if
11: return Case C . Kernels are executed sequentially
12: end function

For k1 and k2 to run concurrently from the beginning (Case A), two conditions
must be satisfied. First, k1 blocks must not occupy all the SMs entirely, so the number
of blocks of k1 must be smaller than the number of blocks of k1 that can be active in all
SMs (ActiveBlocksk1 ⇥nSM ), which means that k1 is leaving space for another kernel
execution. The second condition tests if at least one block of k2 can be allocated in the
SMs. The function GetAllocatableBlocksPerSM returns the number of blocks from k2
that can be allocated in a SM after the blocks from k1 have been already allocated.

The function GetAllocatableBlocksPerSM is shown in Algorithm 2. It exam-
ines if there is space for k2 blocks, according to the amount of leftover resources from k1
in terms of registers, number of threads and shared memory. First the algorithm computes
the unused resources, freeRegs, freeThreads, freeShMem, by subtracting k1 alloca-
tion from the hardware limits for all these resources. After that, the algorithm computes
k2 allocation on these resources dividing the amount of free resource by the k2 request on
each resource. The number of blocks allocated for k2 is the minimum of all the possible
allocations.

Algorithm 2 Calculating allocatable blocks according free resources
1: function GETALLOCATABLEBLOCKSPERSM(k1, k2, G)
2: freeRegs limitRegsPerSM � (regsPerBlockk1 ⇥ activeBlocksk1)
3: freeThreads limitThreadsPerSM � (threadsPerBlockk1 ⇥ activeBlocksk1)
4: freeShMem limitShMemPerSM � (shMemPerBlockk1 ⇥ activeBlocksk1)

5: allocBlByRegs freeRegs/regsPerBlockk2
6: allocBlByThreads freeThreads/threadsPerBlockk2

7: if shMemPerBlockk2 = 0 then
8: allocBlByShMem limitBlocksPerSM
9: else

10: allocBlByShMem freeShMem/shMemPerBlockk2
11: end if

12: return min(allocBlByRegs, allocBlByShMem, allocBlByThreads)
13: end function

WSCAD 2017 - XVIII Simpósio em Sistemas Computacionais de Alto Desempenho

140



There is also a possibility of concurrent execution, when the number of blocks
of k1 exceeds the amount of blocks that can be active in all SMs ((Blocksk1 mod
(ActiveBlocksk1 ⇥ nSM)) > 0). In this case, k1 must be allocated in rounds. A round
represents an execution of part of the blocks of k1. For example, suppose that k1 has 128
blocks, and the GPU allows 8 active blocks to execute on one SM. For a GPU with 2 SMs,
k1 will execute in 8 rounds. The number of rounds is calculated as shown in equation (1).

Rounds =

⇠
Blocks

ActiveBlocks⇥ nSM

⇡
(1)

We distinguish the last round as the round at which there maybe resources left for
concurrent execution. In the last round, if (Blocksk1 mod (ActiveBlocksk1⇥ nSM)) >
0, it means that k2 can run concurrently with the remaining blocks of k1 (Case B).

When k1 execution time is smaller than the overhead of launching a kernel, or k1
blocks occupy all the SMs, or the last round of k1 does not leave space for k2 execution,
the kernels are executed sequentially (Case C).

5. Slowdown Estimation
The algorithm explained in Section 4 exposes the conditions under which two kernels
actually execute concurrently in the GPU. In this section, we analyze the effects of the
concurrent execution on the performance of the two kernels. We propose a slowdown
estimation model that quantifies the slowdown in k2 when it is executed concurrently
with k1 since the beginning (Case A).

According to the leftover policy, we assume that k1 execution is not affected by the
scheduling of k2 blocks. Our slowdown estimation model considers only the performance
reduction due to the lack of SM resources to the second kernel. It does not consider the
interference caused by contention in memory access, which is quite difficult to quantify.
Usually it requires a heavily instrumented GPU simulator and also requires a fair partition
of the SMs across the concurrent applications [Jeong et al. 2012, Ausavarungnirun 2017].
GPU architectures evolve rapidly, and there is no available GPU simulator for the current
architecture.

We define the estimated slowdown of k2 as follows:

slowdown =
RoundsLimRes

Rounds
(2)

RoundsLimRes accounts for the number of rounds in k2 execution, considering
that there are limited resources available. The idea is to account for the allocatable blocks
from k2 according to the resources leftover by k1. This is computed according to equation
(3).

The computation of the number of rounds with limited resources has to consider
two cases of the allocation of k1 blocks on the SMs. In the first case, k1 blocks are allo-
cated to nOccupied SMs, and leave nFree SMs completely free. In the second case, k1
blocks use all the SMs but do not fill them, leaving space for k2 blocks. The number of
k2 blocks that can be allocated per SM in this case is AllocBlk2, that is computed by the

WSCAD 2017 - XVIII Simpósio em Sistemas Computacionais de Alto Desempenho

141



function GetAllocatableBlocksPerSM presented in Algorithm 2. So, the computation
of RoundsLimRes is performed by dividing the number of blocks of k2 by nFree mul-
tiplied by the number of blocks from k2 that can be active in one SM, ActiveBlocksk2, or
divided by the number of SMs occupied by k1, nOccupied, multiplied by the number of
k2 blocks that can be allocated per SM, AllocBlk2.

RoundsLimRes =

⇠
Blocksk2

(nFree⇥ ActiveBlocksk2) + (nOccupied⇥ AllocBlk2)

⇡
(3)

6. Experimental Results
In this section, we validate our slowdown model through the execution of pairs of con-
current kernels on the GPU. We first show the results using synthetic applications whose
size and resource usage can be varied experimentally. After that, we execute pairs of
real-world kernels from the Rodinia benchmark suite.

6.1. Hardware Environment
The results were obtained by direct measurements on a GPU K40. Table 1 shows the de-
vice specifications. The profiling information was obtained using the NVIDIA command-
line profiler. Each experiment was repeated 30 times and we measured the average slow-
down.

Table 1. GPUs configurations
K40

Number of cores 2,880
RAM 12GB
Memory Bandwidth 288 GB/s
Capability 3.5
Number of SMs 15
Shared Memory per SM 48KB
Number of Registers per SM 64K
Max number of threads per SM 2048
Max thread blocks per SM 16
Max registers per thread 255
Maximum thread block size 1024
Architecture Kepler

6.2. Framework for Concurrent Execution
In most of the GPU applications, before launching a kernel, the application has to transfer
data from the CPU to the GPU and after the kernel finishes, the data has to be copied
back from the GPU to the CPU. So, if two applications are submitted to execute at the
same time, there maybe no actual concurrency among their kernels depending on the time
taken for memory transfers. Since we are interested in the actual kernel concurrency, we
implemented a framework that isolates the execution of the kernels.

Our framework guarantees that the kernels are submitted to execute at the same
time, generating potential concurrency. A set of kernels are placed in a waiting queue

WSCAD 2017 - XVIII Simpósio em Sistemas Computacionais de Alto Desempenho

142



until all of their associated initialization and memory transfers were performed. After
that, the framework launches the kernels on different CUDA streams. The framework
inserts a synchronization barriers before and after launching the kernels.

The framework was implemented in C++ and built with g++ version 4.8.4 together
with the host codes of the benchmark applications. The GPU kernels were compiled with
NVCC CUDA version 7.5.

6.3. Synthetic Applications
In order to evaluate scenarios where there is no memory contention between the kernels,
we created a set of synthetic kernels. These kernels evaluate the slowdown when different
resource requirements are established.

Each synthetic kernel ki performs a set of arithmetic operations on register values.
The number of blocks, number of threads and shared memory requirements are created
randomly.

In this experiment, two sets of 50 kernels were created. In the first set, we select k1
kernels and in the second set, we select k2 kernels. The kernels in the first set were created
to allow concurrency from the beginning (Case A), so their number of blocks satisfies
Blocksk1 < (ActiveBlocksk1 ⇥ nSM) (Algorithm 1). A huge number of experiments
were set, but we show here only a random sample of these experiments. Table 2 shows 12
kernels, numbered from 1 to 12, where the odd-numbered kernels were derived from the
first set and the even-numbered were derived from the second set.

Table 2. Synthetic applications characteristics
Kernel # Blocks # Threads Sh Memory (B)
S1 110 256 1024
S2 450 256 0
S3 100 256 4096
S4 60 256 0
S5 42 512 256
S6 120 128 0
S7 90 256 896
S8 467 512 256
S9 35 256 2048
S10 130 512 1024
S11 35 256 0
S12 230 256 0

6.3.1. Results

Table 3 shows the results of the estimated and the actual slowdown for a set of pairs
from the 12 first kernels. The estimated slowdown is computed by equation (2). The
actual slowdown is the ratio between the execution time when the kernel is executed
concurrently and the execution time when the kernel is executed alone. The percentage
relative error is computed by equation (4).

WSCAD 2017 - XVIII Simpósio em Sistemas Computacionais de Alto Desempenho

143



error =
estimated� actual

actual
⇥ 100% (4)

Table 3. Estimated vs Actual slowdown (synthetic kernels)
Kernel Pair k1� k2 Estimated Actual Perc. Error

S1-S2 11.25 11.312 0.55%
S3-S4 3.00 3.018 0.61%
S5-S6 2.00 1.998 0.12%
S7-S8 4.00 3.937 1.59%

S9-S10 1.30 1.333 2.49%
S11-S12 1.50 1.494 0.39%

We can observe in Table 3 that the combinations of S1-S2 and S7-S8 provided the
highest slowdowns. This occurs because, in these cases, k2 has a great number of blocks,
but k1 left almost no space for their execution. In the K40 GPU, the maximum number of
active blocks per SM is 16.

Comparing the estimated and the actual slowdown obtained, we can observe that
the percentage relative error is small, at most 2.49%. For the whole experiment, with the
100 kernels, we obtained an average of 3.49% of error and a standard deviation of 6.43%.

6.4. Real-World Applications
In order to evaluate real-world scenarios, we used 8 applications from the Rodinia bench-
mark suite: k-Nearest Neighbors (kNN), Path Finder (PF), Hotspot 3D (HS3), Breadth-
First Search (BFS), Hotspot 2D (HS2), Speckle Reducing Anisotropic Diffusion version
2 (SRAD), LU Decomposition (LUD), and Particle Filter (PFL). Table 4 summarizes
these applications resource requirements. We used the most relevant kernel (in terms of
percentage of execution time) for each application in the experiments.

Table 4. Rodinia applications characteristics
App Kernel #Registers # Blocks # Threads Sh Memory (B)
kNN euclid 8 3840 256 0
PF dynproc kernel 13 463 256 2048
HS3 hotspotOpt1 36 1024 256 0
BFS Kernel 19 1954 512 0
HS2 calculate temp 38 1849 256 3072
SRAD srad cuda 2 21 16384 256 5120
LUD lud diagonal 32 1 16 1024
PFL KernelFindIndex 13 47 128 0

6.4.1. Results

Among all possible pair combinations of these applications, we present the results of the
pairs in which k1 is the PFL application. PFL allows concurrency from the beginning
(Case A), since BlocksPFL < (ActiveBlocksPFL ⇥ nSM).

WSCAD 2017 - XVIII Simpósio em Sistemas Computacionais de Alto Desempenho

144



Table 5 shows the comparison between the estimated and the actual slowdown
for the combinations of PFL with all the other applications. We observed an average
error of 10.6%. The highest error was produced by the combination PFL-HS3. In this
case, our model estimated a smaller slowdown than the real achieved value. HS3 is the
application with the highest percentage of usage of the memory bandwidth, around 60%.
The experiments with the kernel HS3 suggest that the slowdown was increased by the
memory contention. For the other applications, we can observe that the main source of
performance reduction in concurrent execution is the amount of resources leftover by PFL
kernel.

Table 5. Estimated vs Actual slowdown (Rodinia kernels)
Kernel Pair Estimated Actual Perc. Error
PFL-kNN 1.250 1.185 5.46%
PFL-PF 1.250 1.252 0.17%

PFL-HS3 1.290 2.409 46.46%
PFL-BFS 1.240 1.357 8.60%
PFL-HS2 1.240 1.260 1.55%

PFL-SRAD 1.250 1.117 11.94%
PFL-LUD 1.000 1.004 0.36%

7. Conclusions
This work presented an in-depth study on the concurrent kernel execution in the GPU.
Modern GPU architectures support concurrent sharing of the GPU resources among mul-
tiple kernels, which can unleash the power of the GPU for dynamic and highly virtualized
environments. However, the GPU does not have an operating system and the hardware
implements a leftover policy that assigns as many resources as possible for one kernel
and then assigns the remaining resources to another kernel. Under this policy, a resource-
hungry kernel can prevent the concurrent execution of other small kernels. Based on
this, we studied the necessary conditions for simultaneous execution, and proposed an
algorithm that describes when actual concurrency can occur. We also proposed a model
for slowdown estimation. Our algorithm and slowdown model do not require simulation
instrumentation. They use only the resource requirement data of the kernels.

We validated our slowdown model with synthetic and real-world applications. Our
model was able to predict the slowdown in different resource requirements scenarios. For
the synthetic applications, that do not present memory interference, our model was able
to predict the slowdown with an average of 3.49% of error. For real-world applications,
the average error was higher, around 10.6%. The application with the greatest memory
bandwidth requirements was the one that provided the greatest error. Our results show that
the GPU resources can be shared among the kernels, but the hardware does not provide a
fair scheduling policy. In this sense, it is important to identify the kernel characteristics to
co-schedule applications with complementary resource requirements. Further studies are
necessary to evaluate the impact of memory interference in our model.

For future work, we intend to investigate memory contention in real-world appli-
cations and include in our model this study. We also intend to study the effects of distinct
GPU architectures in our model.

WSCAD 2017 - XVIII Simpósio em Sistemas Computacionais de Alto Desempenho

145



References

Adriaens, J. T., Compton, K., Kim, N. S., and Schulte, M. J. (2012). The case for GPGPU
spatial multitasking. In 2012 IEEE 18th International Symposium on High Perfor-
mance Computer Architecture (HPCA),, pages 1–12.

Aguilera, P., Morrow, K., and Kim, N. S. (2014). Fair share: Allocation of GPU re-
sources for both performance and fairness. In 32nd IEEE International Conference on
Computer Design (ICCD), 2014, pages 440–447.

Ausavarungnirun, R. (2017). Techniques for Shared Resource Management in Systems
with Throughput Processors. PhD thesis, Carnegie Mellon University.

Breder, B., Charles, E., Cruz, R., Clua, E., Bentes, C., and Drummond, L. (2016). Max-
imizando o uso dos recursos de GPU através da reordenação da submissão de kernels
concorrentes. In Anais do WSCAD 2016 Simpósio de Sistemas Computacionais de Alto
Desempenho, pages 98–109. Editora da Sociedade Brasileira de Computação (SBC).

Che, S., Sheaffer, J. W., Boyer, M., Szafaryn, L. G., Wang, L., and Skadron, K. (2010).
A characterization of the rodinia benchmark suite with comparison to contemporary
CMP workloads. In IEEE International Symposium on Workload Characterization
(IISWC), 2010, pages 1–11.

Goswami, N., Shankar, R., Joshi, M., and Li, T. (2010). Exploring GPGPU workloads:
Characterization methodology, analysis and microarchitecture evaluation implications.
In IEEE International Symposium on Workload Characterization (IISWC), 2010, pages
1–10.

Hu, Q., Shu, J., Fan, J., and Lu, Y. (2016). Run-time performance estimation and fairness-
oriented scheduling policy for concurrent GPGPU applications. In 45th International
Conference on Parallel Processing (ICPP), 2016, pages 57–66.

Janzén, J., Black-Schaffer, D., and Hugo, A. (2016). Partitioning GPUs for improved
scalability. In 28th International Symposium on Computer Architecture and High Per-
formance Computing (SBAC-PAD), 2016, pages 42–49.

Jeong, M. K., Erez, M., Sudanthi, C., and Paver, N. (2012). A qos-aware memory con-
troller for dynamically balancing GPU and CPU bandwidth use in an mpsoc. In 49th
Annual Design Automation Conference, pages 850–855.

Jog, A., Kayiran, O., Kesten, T., Pattnaik, A., Bolotin, E., Chatterjee, N., Keckler, S. W.,
Kandemir, M. T., and Das, C. R. (2015). Anatomy of GPU memory system for multi-
application execution. In Proceedings of the 2015 International Symposium on Mem-
ory Systems, pages 223–234.

Lal, S., Lucas, J., Andersch, M., Alvarez-Mesa, M., Elhossini, A., and Juurlink, B. (2014).
GPGPU workload characteristics and performance analysis. In International Con-
ference on Embedded Computer Systems: Architectures, Modeling, and Simulation
(SAMOS XIV), 2014, pages 115–124.

Li, T., Narayana, V. K., El-Araby, E., and El-Ghazawi, T. (2011). GPU resource sharing
and virtualization on high performance computing systems. In International Confer-
ence on Parallel Processing (ICPP), 2011, pages 733–742.

WSCAD 2017 - XVIII Simpósio em Sistemas Computacionais de Alto Desempenho

146



Li, T., Narayana, V. K., and El-Ghazawi, T. (2015). A power-aware symbiotic scheduling
algorithm for concurrent GPU kernels. In IEEE 21st International Conference on
Parallel and Distributed Systems (ICPADS), 2015, pages 562–569.

Pai, S., Thazhuthaveetil, M. J., and Govindarajan, R. (2013). Improving GPGPU concur-
rency with elastic kernels. In ACM SIGPLAN Notices, volume 48, pages 407–418.

Park, J. J. K., Park, Y., and Mahlke, S. (2015). Chimera: Collaborative preemption
for multitasking on a shared GPU. ACM SIGARCH Computer Architecture News,
43(1):593–606.

Subramanian, L., Seshadri, V., Ghosh, A., Khan, S., and Mutlu, O. (2015). The appli-
cation slowdown model: Quantifying and controlling the impact of inter-application
interference at shared caches and main memory. In 48th International Symposium on
Microarchitecture, pages 62–75.

Suzuki, Y., Kato, S., Yamada, H., and Kono, K. (2014). Gpuvm: Why not virtualizing
GPUs at the hypervisor? In USENIX Annual Technical Conference, pages 109–120.

Tanasic, I., Gelado, I., Cabezas, J., Ramirez, A., Navarro, N., and Valero, M. (2014).
Enabling preemptive multiprogramming on GPUs. In ACM SIGARCH Computer Ar-
chitecture News, volume 42, pages 193–204.

Ukidave, Y., Paravecino, F. N., Yu, L., Kalra, C., Momeni, A., Chen, Z., Materise, N.,
Daley, B., Mistry, P., and Kaeli, D. (2015). Nupar: A benchmark suite for modern
GPU architectures. In 6th ACM/SPEC International Conference on Performance En-
gineering, pages 253–264.

Wende, F., Cordes, F., and Steinke, T. (2012). On improving the performance of multi-
threaded CUDA applications with concurrent kernel execution by kernel reordering. In
Symposium on Application Accelerators in High Performance Computing (SAAHPC),
2012, pages 74–83.

WSCAD 2017 - XVIII Simpósio em Sistemas Computacionais de Alto Desempenho

147


