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Abstract. As computational science simulations produce ever increasing vol-
umes of data, executing part or even the entire visualization pipeline in the
supercomputer side becomes more a requirement than an option. Given the
uniqueness of the high performance K computer architecture, the HIVE vi-
sualization framework was developed, focusing on meeting visualization and
data analysis demands of scientists and engineers. In this paper, we present an
analysis on the input/output (I/O) performance of post-hoc visualization. The
contribution of this research work is characterized by an analysis of a set of
empirical study cases considering huge simulation datasets using HIVE on the
K computer. Results from the experimental effort, using a dataset produced by a
real-world global climate simulation, provide a differentiated knowledge on the
impact of dataset partitioning parameters in the I/O performance of large-scale
visualization systems, and highlight challenges and opportunities for perfor-
mance optimizations.

1. Introduction
As the scale of computational science simulations grows to deal with increasingly com-
plex problems, we can also verify a significant increase in the volume of data pro-
duced [Roten et al. 2016]. To derive meaningful information from these huge datasets,
leading to scientific discoveries and breakthroughs, scientists and engineers rely upon
large-scale visualization and data analysis systems [Nonaka et al. 2014]. Such data-
intensive applications pose a great pressure on the shared backend storage system of
modern high performance computing (HPC) environments. As a result, file I/O becomes
a considerable bottleneck.

In order to mitigate performance degradation due to this extreme data move-
ment, approaches have been proposed to execute part or even the entire visualization
pipeline in the supercomputer side [Bennett et al. 2012, Dorier et al. 2016]. This sce-
nario is specially verified in HPC environments employing data staging approaches, such
as the K computer [Miyazaki et al. 2012]. This approach consists of moving applica-
tions’ input data to a high throughput file system prior to job execution (i.e., stage-in),
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and moving generated output data to users’ file system after job completion (i.e., stage-
out) [Tsujita et al. 2017].

Focusing on meeting large-scale visualization needs on the K computer environ-
ment, a visualization framework, named Heterogeneously Integrated Visual-analytics En-
vironment (HIVE), has been developed [Nonaka et al. 2016]. The HIVE visualization
framework offers a scalable approach for both post and in-situ visualization at hetero-
geneous computing environments, taking advantage of increasing parallelism of modern
supercomputers as well as harnessing hardware acceleration capabilities when they are
available. An example of the HIVE capabilities is illustrated in Figure 1, in which is
presented a projection of a 16K resolution image produced by the HIVE framework on
the K computer using a dataset of 1.1 TiB generated by a global climate simulation.

Figure 1. Projection of a 16K resolution image produced by the HIVE framework
on the K computer. Data courtesy of JAMSTEC, AORI/The University of Tokyo
(HPCI SPIRE3), and RIKEN AICS Computational Climate Science Research Team.

Although results achieved using the HIVE visualization framework have been
promising, we have verified file I/O plays a significant role in the execution time. More
specifically, when used for post-processing (i.e., post-hoc visualization), normally, a
smaller number of compute nodes is allocated for the visualization processing, compared
to the number of compute nodes used for simulation, because of the difference in process-
ing power demands of both applications. Considering that a common approach among
simulation systems is to output data into multiple files, in a per process, per variable,
and/or per time step basis, this difference in scale arises as a particular problem. Mostly
because the original simulation output dataset needs to be repartitioned in order to balance
the workload among visualization processes [Ono et al. 2014].

In this paper, we report results of an experimental analysis on the impact of dataset
partitioning parameters on the I/O performance of the HIVE visualization framework
executing on the K computer. Such experimental efforts have previously demonstrated
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interesting behavior on parallel storage systems [Inacio et al. 2015, Inacio et al. 2017].
This study is part of an ongoing research work collaboration that focuses on optimizing
parallel I/O and storage related parameters for large-scale visualization systems running
on supercomputers. While the initial focus has been the execution of the HIVE frame-
work on the K computer, results from this research work are expected to provide helpful
insights for the enhancement of the data management features of the HIVE framework
on next-generation systems, including the post-K supercomputer.

The remainder of this paper is organized as follows. Section 2 provides a brief
overview of the HIVE visualization framework on the K computer environment. In Sec-
tion 3, the dataset partitioning problem is described. The experimental methodology and
environment employed in this study is detailed in Section 4, while experimental results
are discussed in Section 5. Section 6 concludes this paper with a summary of the observed
results and our future research directions.

2. HIVE – Post-hoc Visualization on the K Computer
The HIVE visualization framework [Nonaka et al. 2016] was designed to run on hetero-
geneous hardware platform environments found on traditional HPC infrastructures, such
as the K computer operational environment. The development of HIVE was mainly moti-
vated by the demand of visualizing huge datasets generated by large-scale computational
science simulations executed on the K computer. Another reason, relies upon the unique
architecture of the K computer, that makes it difficult to directly adopt existing visualiza-
tion systems, such as PARAVIEW [Fabian et al. 2011] and VISIT [Childs et al. 2012].

The design of HIVE follows a client/server paradigm. This approach offers a
great flexibility for users to select configurations that better suit their visualization needs.
For instance, a client can be executed on a local machine, exploring interactivity, while
a server could be deployed at a visualization cluster, fully utilizing abundant hardware
resources. A web-based graphic user interface (GUI) permits easily definition of visual-
ization pipelines, which are later exported as Lua scripts, allowing for the automation of
the visualization workflow. Moreover, a command-line interface allows for batch execu-
tion of visualization workflows, which is particularly helpful for post-hoc visualization in
the K computer.

An overview of a post-hoc visualization using the HIVE framework on the K
computer environment is illustrated in Figure 2. The shared backend storage of the K
computer has two layers: a Local File System (LFS), designed to support high throughput
I/O; and a Global File System (GFS), that offers a large storage capacity (> 30 PB) for
users’ applications and data files; both implemented through the Fujitsu Exabyte File
System (FEFS), an enhanced version of the LUSTRE parallel file system (PFS). Since
only executing jobs have access to the LFS, simulation output data is available to users
after the job completion, when this data is staged-out to the GFS.

In order to execute a post-hoc visualization on the K computer using HIVE, the
user must provide a visualization scene, which contains the parameters for the visual-
ization processing. This visualization scene can be produced manually, or using one of
the editors provided with the HIVE framework. With the simulation output data avail-
able at the GFS, the user can submit a job script invoking HIVE rendering command
(hrender), passing the visualization scene as argument. It is worth noting that, given
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Figure 2. An overview of a post-hoc visualization using the HIVE framework on
the K computer environment.

the staging approach of the K computer, simulation output data is staged-in again before
the visualization job is launched for execution, which translates into a massive data move-
ment. Once the visualization job is finished, image files stored in the LFS are staged-out,
and can be analyzed by users.

3. The M x N Dataset Partitioning
The number of processes required by a visualization job for rendering a simulation output
dataset is usually smaller than the number of processes used for generating the dataset.
Also, computational science simulations executed on K computer usually adopt a file per
processes approach when outputting data, mostly motivated by particular optimizations
provide by the FEFS for such access pattern [Tsujita et al. 2017]. Consequently, in post-
hoc visualization, the problem domain must be repartitioned in order to achieve load
balance among visualization processes. As a result, a single visualization process can
access data points in multiple files, and a single file can be concurrently accessed by
multiple visualization processes.

The M x N dataset partitioning problem refers to these situations, in which a sim-
ulation generates M output files, and N visualization processes, with N usually smaller
than M, will consume the dataset. The dataset partitioning options, which include the
number of visualization processes and the number of partitions in the x, y, and z dimen-
sions (for a Cartesian three dimensional problem space), are provided by the user through
the visualization scene script. As previously stated, the way the output dataset is parti-
tioned can have significant impact in the I/O performance of the post-hoc visualization,
mainly due to conditions of concurrent access to shared files. Nevertheless, identifying
the optimal options for the partitioning parameters can be a daunting task, considering the
innumerous options available.

More specifically, the alignment of the visualization dataset partitioning with the
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original partitioning of the simulation output could avoid concurrent file accesses condi-
tions. Figure 3 provides an example of an aligned dataset partitioning. The simulation
dataset consists of 12 files, partitioning the two dimensional problem domain into 4 x 3
grids. At post-hoc visualization, four processes were used, partitioning the simulation
dataset into 4 x 1 grids. Under these partitioning parameters, it is possible to observe that
each visualization process would independently access tree simulation output files.

Figure 3. Example of a visualization dataset partitioning aligned with the parti-
tioning used at simulation output files (M = 12, N = 4).

A very different situation is observed when the visualization partition parameters
are defined as 2 x 2, even keeping the same number of visualization processes, as demon-
strated in Figure 4. This configuration results in an aligned partition of the simulation
output. Consequently, beyond visualization process accessing multiple files, it can be
verified that some files are concurrently accessed by two processes. In this example, files
5 and 6 are concurrently accessed by visualization processes 1 and 3, while files 7 and 8
are accessed by visualization processes 2 and 4.

Figure 4. Example of a visualization dataset partitioning unaligned with the par-
titioning used at simulation output files (M = 12, N = 4).

Based upon these simple examples provided, it is possible to conceive that at
larger scales, with hundreds to thousands of processes and files involved, the complexity
of the M x N partitioning problem can increase drastically. Consequently, a significant
impact in the overall performance of the post-hoc visualization on the K computer can be
attributed to I/O performance degradation associated to dataset partitioning parameters.
Next sections details the experimental effort carried out focusing on better understanding
the magnitude of such impact.
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4. Experimental Environment and Method
In order to observe the impact of using different partitioning parameters into the post-hoc
visualization of a huge simulation dataset, several experiments were conducted process-
ing a real-world simulation dataset using the HIVE visualization framework on the K
computer. The K computer [Miyazaki et al. 2012] is a Japanese flagship-class supercom-
puter, developed by Fujitsu in collaboration with RIKEN and currently operated by the
RIKEN Advanced Institute for Computational Science (AICS), consisting of 82,944 com-
pute nodes, with a SPARC64fx CPU and 16 GB RAM each, connected through a 6D Tofu
interconnect [Ajima et al. 2011]. At full capacity, the K computer is capable of perform-
ing 10 Petaflops (10 quadrillion floating-point operations per second), which granted it the
top position at the list of the 500 fastest supercomputers in the world for two consecutive
times in 2011 [Dongarra et al. 2017], when it started operation.

A dataset generated by a real-world simulation was used in these experi-
ments. This dataset corresponds to a sub-kilometer global simulation of deep moist
atmospheric convection using the Nonhydrostatic Icosahedral Atmospheric Model
(NICAM) [Miyamoto et al. 2013] executed on the full configuration of the K computer.
The NICAM simulation outputs variables in a file per process for each time step. After
simulation, variables in the dataset are remapped from the icosahedral grid to a geodesic
(latitude-longitude) grid [Satoh et al. 2017]. In this simulation dataset, the x, y, and z
dimensions have respectively 11,520, 5,760, and 94 points, and 48 time steps. For this
analysis, a single variable and four time steps were considered, resulting in a dataset of
94 GiB. It is worth noting that time steps are processed by the visualization system se-
quentially. Therefore, using 48 times steps would mainly result in 12-fold larger execution
times.

Furthermore, simulation data points were redistributed into 384 files per time step,
as if they were generated by a simulation using 384 processes. As a result, files became
larger in this configuration than in the original one, keeping the dataset size fixed. This
approach was adopted in order to have a baseline performance (i.e., an M x M mapping)
for comparison of different M x N configurations. Executing an M x M post-hoc visual-
ization using the full configuration of the K computer (i.e., 82,944) would not only be an
unrealistic scenario, but also undesirable from an operational perspective.

Each process (MPI rank) is allocated to a different compute node. Before exe-
cution, the dataset is staged-in to the K computer LFS. It is worth mentioning that the K
computer resource management system (RMS) allocates Object Storage Servers (OSSs)
for a job accordingly to the number and shape of allocated compute nodes. Basically,
OSSs in the same racks of allocated compute nodes are made available for jobs. This
policy focuses making data closer to processes and mitigating cross-application interfer-
ences.

Table 1 presents dataset partitioning parameters considered in the experiments
with post-hoc visualization of the NICAM simulation output dataset using the HIVE
framework on the K computer. It can be observed that a wide range of parameters were
evaluated. Depending on the number of processes used for visualization, which ranges
from the same number of files in the dataset up to 16 times less processes, varying aligned
and unaligned partitions were considered. The grid size refers to the number of points in
each dimension (i.e., x x y x z) per process and per time step.
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Table 1. Dataset partitioning parameters considered in the experimental evalua-
tion using the HIVE visualization framework in the K computer.

# Processes # Partitions Grid Size (Pts) File Size Alignment
384 32 x 12 x 1 360 x 480 x 94 62 MiB Aligned
192 32 x 6 x 1 360 x 960 x 94 124 MiB Aligned

6 x 32 x 1 1920 x 180 x 94 124 MiB Unaligned
16 x 12 x 1 720 x 480 x 94 124 MiB Aligned
12 x 16 x 1 960 x 360 x 94 124 MiB Unaligned

96 16 x 6 x 1 720 x 960 x 94 248 MiB Aligned
6 x 16 x 1 1920 x 360 x 94 248 MiB Unaligned
8 x 12 x 1 1440 x 480 x 94 248 MiB Aligned
12 x 8 x 1 960 x 720 x 94 248 MiB Unaligned

48 4 x 12 x 1 2880 x 480 x 94 496 MiB Aligned
12 x 4 x 1 960 x 1440 x 94 496 MiB Unaligned
8 x 6 x 1 1440 x 960 x 94 496 MiB Aligned
6 x 8 x 1 1920 x 720 x 94 496 MiB Unaligned

24 8 x 3 x 1 1440 x 1920 x 94 992 MiB Aligned
3 x 8 x 1 3840 x 720 x 94 992 MiB Unaligned
4 x 6 x 1 2880 x 960 x 94 992 MiB Aligned
6 x 4 x 1 1920 x 1440 x 94 992 MiB Unaligned

In the context of this research work, an experiment run consists of the dataset
loading phase of the HIVE visualization framework, using one of the partitioning param-
eters presented in Table 1. I/O performance metrics (i.e., response variables) evaluated in
this research work are the time each process takes to load the required data for each time
step, and the time required to load the complete dataset, including all time steps. Each
experiment run was replicated three times to account for experimental variance. The exe-
cution order of the experiment runs was completely random to assure response variables
are independent and individually distributed.

5. I/O Performance Analysis

As discussed in Section 3, depending on the partitioning parameters, the visualization
processes may need to read from multiple files. Furthermore, multiple processes may
simultaneously access the same file, which can result in a contention translated into an
I/O performance degradation. To verify such behavior, an analysis was carried out on the
time that each process takes to load its designated data points per time step.

Figure 5 presents the load time per process according to different dataset parti-
tioning parameters. Boxes delimits the first and third quantiles (i.e., the 25th and 75th
percentiles), thus, comprising 50% of the measurements. The horizontal line inside boxes
denotes the median value (i.e., 50th percentile), while vertical lines, known as whiskers,
extend to largest and smallest values no further than 1.5⇥ the inter-quartile range (IQR)
above or below boxes, respectively. Data points beyond whiskers denote outliers. Red
boxes denote unaligned partitions, while blue boxes denote aligned partitions.
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Figure 5. Load time of a single time step of the simulation dataset per process
using different number of processes and partitions.

The most evident behavior in these results is the decrease of the load time per
process with the increase in the number of processes used for visualization. This behavior
can be mostly associated with the amount of data read by each visualization process. Con-
sidering the dataset size is fixed for the experiment, increasing the number of processes
translates into each process loading a smaller number of points, and, thereby, reading a
smaller fraction of the dataset. However, it is worth noting that the load time did not
reduce in the same rate of the increase of the number of processes. Comparing the mean
load time using 24 processes with the baseline case, with 384 processes, the I/O perfor-
mance was approximately 3.8 times better at the cost of 16 times more compute nodes, an
efficiency of 23.5%. For 96 processes, the compared efficiency increases to 35.4%, which
can still be considered low. These results shed light upon this important trade-off faced
by this large-scale visualization systems executing on the K computer.

Another prominent behavior observed in these results regards the variance of the
load time per process across varying partitioning parameters. In general, it is possible to
observe a larger variance for unaligned partitions compared to aligned ones; not only by
the length of the boxes, but also by the number of outliers observed. Moreover, based
upon the shape of the boxes and predominance of upper outliers, it is possible to conceive
that the response variable has a skewed distribution with a long tail to the right. This
means that most of the measurements are concentrated around smaller values, but with a
number of measurements way above the average. Although many factors can contribute
to this delay observed in some processes while loading their respective data points from
the dataset, it is reasonable to infer that contention due to multiple processes accessing
the same file has a non negligible impact in the I/O performance. Precisely controlling the
computing environment for isolating such effect in an experiment is challenging, because
of the number and variety of elements involved, including other concurrent jobs running
at the supercomputer. A further investigation is in progress focusing on addressing this
matter.
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While the analysis of the time for a process to complete loading data points from
a time step of the simulation datasets gives insight about the contention effects resulting
from partition parameters, it is also important, from the visualization system perspective,
to verify the overall performance behavior, since the delay of some parallel processes may
overlap and have their direct impact in performance less perceived. In Figure 6, the time
to load the complete dataset considering different partitioning parameters is presented. In
other words, this response variable represents the time elapsed for all processes to read
their respective data points from all time steps of the dataset in the LFS of the K computer.
Red bars denote the mean value for unaligned partitions, while blue bars denote the mean
value for aligned ones. Vertical error bars represent the standard error around the mean.

24 48 96 192 384

3x
8x

1
8x

3x
1

6x
4x

1
4x

6x
1

12
x4

x1
4x

12
x1

6x
8x

1
8x

6x
1

6x
16

x1
16

x6
x1

12
x8

x1
8x

12
x1

6x
32

x1
32

x6
x1

12
x1

6x
1

16
x1

2x
1

32
x1

2x
1

0

25

50

75

100

125

Dataset Partitioning (XxYxZ )

To
ta

l L
oa

d 
Ti

m
e 

(s
)

Unaligned

Aligned

Figure 6. Time to load the complete dataset using varying number of processes
and partitions.

Through these results, the comparison of the load time among different number of
processes becomes more clear. It is noticeable that experiments with 24 processes had a
total load time significantly higher compared to the other experiments. However, it can
be observed that for 48, 96, 192, and the baseline case, 384 processes, the mean values
became closer for some partitions. For the unaligned partitions 12 x 4 x 1 (48 processes),
6 x 16 x 1, 12 x 8 x 1 (96 processes), 6 x 32 x 1, and 12 x 16 x 1 (192 processes), both
mean values and standard error values overlap. This indicates that it is not possible to
discern the I/O performance among these partition parameters. In other words, using a
partition 12 x 4 x 1 with 48 processes may outcome in the same total load time as using
a 6 x 32 x 1 partition with 192 processes. The same interpretation is valid for the aligned
partitions 32 x 6 x 1, 16 x 12 x 1 (192 processes), and 32 x 12 x 1 (384 processes).
This means that, using half of the number of processes used in the simulation for HIVE
post-hoc visualization in the K computer, with proper aligned partitioning parameters, a
comparable I/O performance can be achieved, while saving computing resources.

Comparing aligned and unaligned partitions inside a fixed number of processes,
it is possible to verify how the partitioning alignment can affect the total load time in the
post-hoc visualization in the K computer. Except for one case, namely, the partition 4
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x 6 x 1 (24 processes), unaligned partitioning resulted in a larger load time. The scale
of the differences varies significantly, though. Results suggest the difference is affected
by the number of concurrent processes in a file, which is a result from the partitioning
parameters. For instance, in the 6 x 32 x 1 partition (192 processes), each file in the
original dataset is accessed by at least three visualization processes, while some files
are accessed by six processes. Based upon these results, it is possible to conceive the
importance of properly choosing the partitioning parameters for post-hoc visualization
combined with a more efficient use of the computing resources of the K computer.

6. Conclusions and Future Works

In this research work, we present a contribution that could be understood as the anal-
ysis of experiments carried out using the HIVE framework to visualize a huge dataset
produced by a real-world computational science simulation on the K computer, and how
significant was the impact of dataset partitioning in the I/O performance of a large-scale
visualization system. The research presented in this paper will contribute to advance a
collaborative research work in progress that aims at optimizing parameters available at
the parallel I/O software stack of modern supercomputers for large-scale visualization
purposes. Moreover, these results can provide insights on visualization requirements for
the design of next-generation supercomputers, including the post-K computer.

Analyzing the time taken by each process to load its data points from the simula-
tion output dataset, it was observed a strong influence of the volume of data transferred
in the I/O performance. However, while increasing the number of process effectively re-
duced the load time per process, results indicate the efficiency of this approach can be
low, pointing out an important trade-off between load time and computation resource uti-
lization. On extreme cases, the load time was reduced by 3.8 times using 16 times more
processes. Such observation provides compelling reasons for further research in the sub-
ject in order to more efficiently explore the available computing resources Furthermore,
the variance of the load time across processes suggests while most processes complete
loading a time step of the simulation output within a particular time window, a number
of processes get significantly delayed. Based on the conditions of the experiment, we
argue that such behavior can be associated, in part, to contention in file I/O access due to
partitioning parameters.

Considering the time taken by HIVE to load all the simulation dataset, it was ob-
served that the difference in I/O performance becomes less prominent. It is reasonable
to consider that differences in load time per tasks get overlapped by parallel processing.
Such observation gives insight on real opportunities for executing post-hoc visualization
on K computer using a smaller number of processes than what was used for simulation
execution, with comparable I/O performance. Nevertheless, dataset partitioning parame-
ters can play a significant role in these situations, resulting in performance degradation if
not properly addressed.

As part of this ongoing research work, we intend to, in short-term, perform a more
detailed analysis, instrumenting the HIVE code to obtain fine-grained measurements of
I/O operations performed during dataset loading. Furthermore, experiments should be
conducted to assess the impact of factors related to the parallel I/O software stack of the
K computer, such as file striping options of the FEFS, which could also be leveraged for
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improved visualization performance. After this characterization effort, an optimization
approach for the dataset management of the HIVE visualization system will be designed
and developed, focusing on providing efficient large-scale visualization for extreme-scale
supercomputers.
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