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Abstract. Multi-tier is one of the most used architectures to create applications
and easily deploy them to the cloud. In the literature, there are a great num-
ber of research works focusing on the placement of these applications. While
some of these works take into consideration performance, most of them are con-
cerned about reducing infrastructure costs. Besides, none of them take into con-
sideration the interference and network affinity characteristics. Therefore, in
this work, we create placement policies that aim to improve the performance of
multi-tier applications by analyzing the interference and network affinity char-
acteristics of each tier. These characteristics work as a force pushing tiers closer
or farther depending on the interference and affinity levels. Moreover, by using
these placement policies, we show that multi-tier applications can better utilize
the infrastructure, using the same infrastructure but with an improved perfor-
mance.

1. Introduction

With the advent of cloud computing and the constant changes in software development,
multi-tier applications have become a very popular method of development of every type
of application [Christoph et al. 2003]. In this approach, the application is broken down
into several modules, called tiers, and each module is responsible for executing a specific
task. Moreover, modules may depend on the execution of other modules; thus, they may
need to communicate in order to finalize the requested task. This strategy of development
brings several advantages, such as the ease of reusability and maintainability. On the other
hand, as there are multiple modules to be deployed, it becomes difficult to make placement
decisions. This is not a major concern when deploying the application on public clouds
since the customers do not have much control over the placement of their applications.
However, on a private cloud data center, administrators in general, have total power to
decide how to deploy each application, and it is their goal to take the most advantage of the
computing resources. Therefore, they must employ placement techniques that place the
multi-tier applications maximizing Quality of Service (QoS) and reducing infrastructure
costs.

The use of shared environments, such as the virtualized ones, brings the advantage
of using a large pool of resources to deploy several distinct applications [Chi et al. 2014].
If only one application would be placed in a physical machine (PM), this application
would most likely operate with a nearly optimal performance. However, much of the
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resources available would be underutilized. In contrast, when placing multiple applica-
tions in the same PM, the resources are better utilized, but there is some performance
degradation due to limited resources and performance interference. Consequently, it is
important to find a good balance between applications per PM in order to maintain a
good performance. Furthermore, when dealing with multi-tier applications, another con-
cern rises, which is the fact that some tiers must communicate with each other in or-
der to answer the requests. This communication is usually done by a physical network,
and as the complexity of the applications increases, the pressure on the network also
increases, causing the network to be a possible bottleneck on the applications’ perfor-
mance [Ferdaus et al. 2017]. Taking into consideration these two sources of performance
degradation, we have the problem seen in Figure 1. In the placement a, we might have
performance degradation due to interference, while in the placement b, we might have
performance degradation due to network overhead.

..................................

Figure 1. Conflicting placement of a multi-tier application: interference vs. affin-
ity.

Due to this problem faced by private cloud administrators, this paper has as its
main goal the creation of a set of placement policies that should lead to better application
QoS and good resource utilization. The main factors that will be taken into consideration
for the creation of such policies are the resource interference and network affinity of the
applications. Moreover, the execution of a multi-tier benchmark with different workload
and placement settings was the base the policies.

The rest of this paper is organized as follows: Section 2 goes into detail on perfor-
mance interference and characteristics of multi-tier applications; Section 3 describes the
placement problem and how related works aim to solve it; Section 4 shows the analysis of
the multi-tier benchmark execution; Section 5 lists the placement policies; finally, Section
6 concludes the paper and describes the future work.

2. Background
2.1. Performance Interference

Shared environments, such as clouds, clusters, and data centers, are examples of multi-
tenant architectures that share their resources to host several related or unrelated applica-
tions. These applications may have different purposes, such as the use for scientific re-
search or for running the back-end of software systems. Moreover, each application uses
a slice of the resource of the physical machine it is running on. The resource sharing tech-
nique varies according to each environment, but the applications may be running as pro-
cesses, containers or virtual machines (VMs). Furthermore, each resource sharing tech-
nique provides different levels of resource isolation. For instance, VMs have a lower inter-
ference level between co-hosted VMs, but they have a higher overhead, while containers
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and processes have a higher interference level with lower overhead [Felter et al. 2015].
Therefore, it is important to understand the characteristics of the applications when de-
ciding which resource sharing technique is most adequate.

Even though virtualization provides a good level of resource isolation, there is still
some degree of resource interference between VMs running on a same physical machine
(PM). This interference is due to the fact that each VM uses a slice of the resource avail-
able, such as storage, CPU, and memory. However, there are some resources that cannot
be sliced, such as disk I/O, network I/O and shared cache [Ibrahim et al. 2011]. There-
fore, applications running in the same PM will contend these resources, which leads to an
environment that is not fully isolated, and applications may suffer performance degrada-
tion [Lin and Chen 2012].

There are several research studies that demonstrate the performance degradation
that comes from the use of these multi-tenant architectures. [Chi et al. 2014] tested sev-
eral workload combinations running in the same PM. The authors showed how depending
on the applications that are co-hosted, the performance varies considerably. To illus-
trate, the application called handbrake, which is CPU intensive, does not suffer much
performance degradation when co-hosted with other CPU intensive workloads. On the
other hand, the application called dd, which is disk I/O intensive, suffers considerably
when co-hosted with other disk I/O workloads. In addition, [Jersak and Ferreto 2016]
showed that when running multiple applications that use the same resource intensively on
the same host, the performance degrades considerably. They have also found a similar
behavior as the previous research, where CPU had a maximum performance degrada-
tion of 14%, while for memory and disk I/O this number was as high as 90%. Finally,
[Xavier et al. 2015] studied the impact of performance interference on disk intensive ap-
plications running on container-based clouds. Their experiments showed that while some
combination of workloads running on the same host led to a performance degradation of
38%, they could combine workloads with no performance degradation. Therefore, these
studies show how the placement of the applications can impact in the performance of the
applications.

2.2. Multi-tier Application Characterization

In these multi-tenant environments, several types of workloads are executed. These work-
loads include high-performance systems, big data processing, multi-tier applications and
so on. The performance requirements of these applications vary, but it is always desir-
able to ensure that the maximum performance is achieved from the resources available.
In this paper, we focus specifically on multi-tier applications, which are characterized by
having multiple modules that may communicate in order to execute tasks. The multi-tier
architecture is widely used nowadays, but it is not a new concept. The first use of this
architecture dates back to the 90s, where client/server applications were commonly used
[Data Abstract 2017]. However, this architecture has suffered many changes to adequate
to technology evolution and security concerns.

Web and mobile applications heavily rely on the multi-tier architecture as the main
method of development [Christoph et al. 2003, Huang et al. 2004]. An important rea-
son is the fact that the multi-tier architecture brings better maintainability and reusability
[Huang et al. 2004]. Therefore, tiers may be used to provide services to both web and
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mobile systems due to its good reusability, and it is easier to develop and maintain since
each tier will be responsible for a specific task. Moreover, a good example of a multi-tier
application is the online latex editor ShareLaTeX [ShareLaTeX 2017]. This application
contains several tiers that are responsible to execute specific tasks. For example, the web
tier is responsible for building the web interface, the real-time tier is responsible for sync-
ing the document changes in real time, the latex compiler tier generates the PDF files,
and the spelling checking tier verifies for writing mistakes. Each tier in this application
has different resource requirements, and some need higher performance guarantees than
others. Thus, it is important to the service provider to ensure that the performance needed
for each tier is achieved.

As the applications grow more complex, the number of tiers grow lin-
early; therefore, it becomes vital to have a good management of the infrastructure
[Huang et al. 2004]. This management becomes harder because there are many factors
that impact the workload of different applications tiers. The periodicity of the workload
is one of these factors since some applications have different number of users during dif-
ferent periods of time such as hours and days of the week. Moreover, the number of users
may impact the tiers differently. While for one tier, having a varied number of requests
per second will have no impact on the performance, for another tier it might have a high
impact. Furthermore, tiers need to communicate through the network in order to finish the
user’s requests. Thus, it is important to have a good understanding of the characteristics
of each tier, making a placement that takes these characteristics into consideration.

3. Problem Statement and State-of-the-Art

Improving the performance of applications by making better placement decisions is
widely studied in the literature. Most of these existing strategies use factors such as
resource utilization, number of active PMs, and data-center traffic in order to decide the
best placement configuration [Masdari et al. 2016]. Moreover, some works are concerned
about the interference that is generated by co-hosted applications, while others are con-
cerned about the network affinity of them. However, there is no strategy that takes into
consideration both interference and affinity characteristics. Furthermore, in the following
paragraphs, we describe the most relevant research studies related to both interference
and affinity placement strategies.

A performance-aware placement of virtual machines was created, tak-
ing into consideration the interference levels of VMs running in the same PM
[Jersak and Ferreto 2016]. The authors have built an interference model that extracts the
interference levels of CPU, RAM, and disk I/O intensive applications. Based on this
model, they make placement decisions, trying to minimize the interference while keeping
the quantity of PMs necessary low. In addition, with the same purpose, VUPIC, which is
a placement scheme that takes into consideration the performance isolation and resource
utilization in order to decide the best placement, was developed [Somani et al. 2012]. It
classifies the VMs in groups of interference, and those VMs which interferes the same
resources intensively are placed in different PMs.

Focusing specifically on network interference, a placement scheme was imple-
mented to reduce the performance degradation [Lin and Chen 2012]. Since network I/O
is a resource that cannot be sliced, whenever multiple VMs are using it, they will con-
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tend for the same resource, leading to performance loss. Thus, they favor placing VMs
that stress the network in different PMs. Moreover, using a different approach, a network
affinity aware placement was built [Su et al. 2015]. In this approach, the authors group
VMs that have network affinity, and try to place them in the same PM; thus, reducing the
network overhead across physical networks. Besides, [Ferdaus et al. 2017] considered
the network affinity, and created a placement of multi-tier applications in the cloud. They
could reduce network costs, as well as keeping the server well utilized.

It is clear the importance of both resource interference and network affinity strate-
gies. However, none of the placement strategies consider both characteristics at the same
time. The main reason for this is due to the fact that these are opposed characteristics, and
it is not simple to find the best trade-off. For this reason, this paper focuses on reducing
the resource interference while considering the network affinity. Moreover, it should keep
the quality of service (QoS) high, while maintaining the number of necessary PMs low.

4. Performance Analysis

As a first step to perform the performance analysis, we had to decide which multi-tier
application we would use as our target. We analyzed the characteristics of the bench-
marks that are used in other research projects in the literature, and we found that none of
them were suitable for our purposes. We needed a multi-tier benchmark, but most of the
benchmarks used to characterize performance interference are not implemented with this
architecture. Most of them execute a large task, which usually takes up to several minutes
to finish and stress a specific resource. However, the tasks in multi-tier applications take a
short time to finish, usually less than a second. The high load comes from the high num-
ber of requests arriving at the same time, rather than the execution of a big task. Thus,
this type of benchmarks would not be useful for characterizing the multi-tier applications.
Furthermore, there is a widely used multi-tier benchmark called RUBIS, which simulates
an e-commerce application [OW2 Consortium 2001]. RUBiS, however, is not very flex-
ible when it comes to customization of resource utilization, and its use is more adequate
for use cases rather than to perform deep analysis.

Given the lack of an appropriate benchmark, we decided to build a multi-tier
benchmark that would allow us to do fine grained customization of both resource and
network utilization. We built a multi-tier benchmark that allows to use up to n tiers,
where each tier might be CPU or disk intensive or non-intensive. Moreover, it is flexible
and more types of tiers, such as memory or cache intensive, may be added. Besides the
ability to modify the characteristic of each tier, the benchmark allows modifying the re-
quest size for each arriving request, which will directly affect the network performance.
Thus, this benchmark allows us to easily test different combinations of workloads. The
architecture of the benchmark is shown in Figure 2, and the source code is found in a
Github repository’.

In order to generate load in the application, we used a tool called Artillery
[Shoreditch Ops Ltd 2017]. It allows us to create virtual users, and each user will exe-
cute HTTP requests in the server. Since each request by itself does not take a long time to
finish, the best way to impact the resource utilization and the performance is by varying

'"https://github.com/uillianluiz/node-tiers
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Figure 2. Multi-tier architecture of the implemented benchmark with N tiers.

the quantity of arriving requests. Thus, we configured Artillery to vary the request de-
mand from 1 to 300 requests per second. Moreover, at the end of the processing, Artillery
provides a detailed report, listing response times, requests per second processed, and so
on.

The execution environment consisted of two physical machines with: 2x Intel(R)
Xeon(R) CPU X6550, 64GB RAM, 128GB of storage and a gigabit ethernet connection
between both of them. Each tier was set to use the maximum of 4 CPU and unlimited
RAM. Moreover, we set two request size configurations for the communication of each
tier: 1KB and 512KB.
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Figure 3. Response time of application CPU-CPU while varying the workload.
The lines are in log scale.

Figure 3 shows the performance of an application consisted of two CPU intensive
tiers. The response time axis is shown in logarithmic scale for better visualization. It can
be noticed that the execution with higher request size (512KB) had a worse performance
as compared with the lower request size (1KB). This is a natural behavior since the higher
the request size is, the more pressure it puts on both operating system and network. Ad-
ditionally, while the request rate was low, the performance for all executions remained
stable. However, as the request rate increased, the execution with high request size run-
ning in different hosts suffers performance degradation. In this case, the network becomes
flooded with many requests, and as the network bottleneck is reached, the response time
increases exponentially. On the other hand, while running with same request size, but in
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same hosts, there is no impact on the performance. Therefore, we can conclude that the
network affinity is the most impacting factor when dealing with CPU intensive tiers.
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Figure 4. Response time of application Disk-Disk while varying the workload.

Figure 4 presents the response time of the application that had two disk I/O inten-
sive tiers. The response time kept acceptable while the workload was low. However, as
the workload increased, the application presents a different behavior from the one seen in
the CPU intensive application. All four executions of this application have performance
degradation, but this degradation comes earlier in the executions that run the tiers on the
same host. Furthermore, the network affinity also has an impact on the performance, and
the higher the request size is, the higher the impact is. As a conclusion of this execution,
disk I/O intensive applications tend to suffer more from the interference of co-hosted tiers,
but there is still impact generated from the network affinity levels.
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Figure 5. Response time of application Non-Intensive-Non-Intensive while vary-
ing the workload. The lines are in log scale.

Figure 5, which contains the execution of an application with two non-intensive
tiers, shows a similar behavior to the one seen in the CPU intensive application. This
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is due to the fact that both applications are not highly affected by interference, and the
characteristic that generates the most impact is the network affinity.
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Figure 6. Impact of increasing the request rate in the response time and request
status of the execution of the DISK-DISK application with 512KB of request size.

Going further into the analysis of these executions, Figure 6 shows how the re-
quests’ status was affected by the increase in the request rate. It shows the impact of the
execution of the disk intensive application with 512kb of bandwidth. The chart on the
left shows the results of the execution in the same host. It can be noticed that while the
request rate was low, the response time was constant and the number of requests with
OK status was growing linearly. However, as the request rate surpassed 150, the response
time started to grow rapidly, the requests started taking longer to finish, and, finally, all
of them were failing. In contrast, the chart on the right shows the execution of the same
benchmark configuration but running in different hosts. As we saw in the previous anal-
ysis, the execution on different hosts had a better performance. Here, we can see that the
effect on the request status matched the response time, and requests only failed when the
request rate was above 270.

Configuration 1 Configuration 2

Cepu H—H{cpu | cpu |

Lcpu |

| cpu |
| cpu |

Configuration 3

Figure 7. Different configurations of execution of two multi-tier applications.

In addition to analyzing the placement of one multi-tier application, Figure 7
shows three different placement configurations of two multi-tier applications. One ap-
plication has two CPU intensive tiers, using S12KB of request size. The other one has
two disk I/O intensive tiers, using 1KB of request size. For this experiment, we setup
three configurations, where each one favors different characteristics. The configuration 1
favors the reduction of the interference by placing the tiers that stress the same resource

o
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in different PMs. The configuration 2 favors the network affinity by placing the tiers that
communicate in the same machine. Finally, the configuration 3 tries to find the best com-
promise between interference and network affinity by placing the application with high
affinity in the same PM and the application with high interference in different ones.
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Figure 8. Response time of three combinations of placement of two multi-tier
applications in two physical hosts.

The response time of the execution of the three configurations is shown in Figure
8. As seen in the previous experiments, the response time for lower request rate did not
vary in the different configurations of placement. The configuration 1, which favors the
interference, had a poor performance for both applications. In this case, since the CPU in-
tensive application has a high network affinity, and the tiers were placed in different hosts,
the performance is degraded. Moreover, this placement, in theory, should contribute to the
performance of the disk I/O intensive application. However, it can be noticed that it also
degrades. The reason behind this fact is a network interference generated from the CPU
intensive application. Therefore, since the tiers of the CPU intensive application were
placed in different PMs generate performance degradation on both applications placed in
the infrastructure.

In addition, in the configuration 2, which favors the network affinity, the CPU in-
tensive had no performance degradation since its tiers were placed in the same PM and
there was no network overhead. On the other hand, the disk I/O intensive application had a
high performance degradation due to interference, and it presented the worst performance
of all executions. Finally, in the configuration 3, which tries to find the best trade-off
between affinity and interference, the best performance was achieved. Even though in
this configuration the quantity of tiers per host was not well-balanced, it achieved the best
overall performance. The disk I/O intensive application still had performance degrada-
tion, but it was the lowest among all configurations. Therefore, these experiments showed
how a better performance can be achieved by taking into consideration both interference
and network affinity characteristics.
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5. Placement Policies

Taking the results of the experiments into consideration, we may proceed and create a
set of placement rules. As seen in the experiments, the workload has a great impact on
the performance of the application. For this reason, the following rules focus on max-
imizing the workload that the application is able to handle without having performance
degradation.

R1. Tiers that interfere the same resource should be placed in different hosts. When
there are few servers available, PMs might have to host tiers that interfere the
same resource. However, it should be given preference for separating the tiers
that generate the most performance degradation. In this case, disk I/O tiers have a
strong repulsion, while CPU intensive tiers have a weak repulsion.

R2. Tiers that have network affinity should be placed in the same PM. When all the
resources of a given PM are being used, it should be given preference to place in
the same PM the tiers that have higher affinity, i.e. higher request size. Moreover,
the higher the affinity is, the more attraction force it generates.

R3. Tiers that do not interfere nor have network affinity may be placed anywhere in
the infrastructure. There is no force pushing the tiers.

R4. Tiers that interfere and have network affinity should follow a sub-set of rules.
These sub-rules extract the best trade-off, which should generate a placement that
leads to the best QoS possible.

R4a. CPU intensive tiers should be placed in the same PM. The attraction force
generated by affinity is stronger than the repulsion force generated by the
interference.

R4b. Disk I/0 intensive tiers should be placed in separate PMs. The perfor-
mance degradation that comes from interference leads to a stronger repul-
sion than the attraction generated by the network affinity.
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E Cpu Ccpu ; E I cpu I_.’ ‘_I dlSkI i Attraction
Interference Affinity | e
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5 o disk > ] disk 1|
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Figure 9. lllustration of the placement policies based on the forces pushing them.
While interference repel tiers to different PMs, affinity attracts them to the same
one.

Figure 9 shows an illustration of each rule. It demonstrate the forces that affinity
and interference put in the tiers, attracting them to the same PM (affinity) or repelling
them to different PMs (interference). The line width represents the strength of the force
pushing them. Moreover, these rules would be enough if the infrastructure was able to
scale out and up without any restrictions. However, such infrastructure does not exist, so
it is important to think of how to deal whenever the resources bottleneck is reached. In
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this case, a way to deal with this problem is to use a business rule that gives the priority
of each tier. For example, a slowdown in a tier that handles logs is less detrimental than
a slowdown in a tier that handles users authentication. Therefore, tiers with less priority
may be placed in the same PM even with interference, or in different PMs even with
network affinity since this placement will not directly affect the business. However, tiers
with high priority must follow the placement rules for achieving better QoS.

6. Conclusion and Future Work

The multi-tier architecture is undeniable one of most important methods of development
of applications from all computing segments. Its wide utilization brings some important
concerns related to how to achieve better performance. Besides optimizing the appli-
cations’ code itself, the best way to achieve such performance is by better utilizing the
infrastructure resources, which may be achieved by using smart placement techniques.
Through the experiments, it was demonstrated that different placements have a great im-
pact on the applications’ performance, and that the characteristics of resource interference
and network affinity should be carefully analyzed in order to decide the best placement.

By observing the difference in performance while executing the multi-tier bench-
mark in different placement settings, we were able to create a set of placement policies.
These policies are important on determining the best placement configuration of multi-
tier applications, leading to a better performance while keeping the same infrastructure.
Besides, the multi-tier benchmark has a good potential, and it can be used with many
purposes, such as to characterize the environment and to test placement settings.

During the experiments, we only considered CPU and disk I/O, but as future work,
we plan to expand the multi-tier benchmark adding memory and cache intensive tiers.
Therefore, we may be able to make decisions based on a broad type of resource inten-
sive applications. Moreover, in addition to the placement policies, we plan to create a
placement model that would receive the interference and affinity levels, and return the
best placement setting for the tiers. This model will have as its base the results of this
work and the experiments with the other resource intensive tiers that we will implement.
After that, the model will be used to build a placement algorithm, which can be used to
automate the placement process.
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