
New Kids on the Unblocking: Strategies to Overcome
Blocking Networks

Caio Von Rondow Morais1, Jeronimo Penha1, José A. Nacif, Ricardo Ferreira1

1email: ricardo@ufv.br, Universidade Federal de Viçosa, Brazil

Abstract. Full-crossbar interconnections offer high parallel bandwidth, sim-
ple routing, and performance. However, their cost is prohibitive. Multistage
networks have emerged as a cost-effective alternative, reducing the cost to
O(n log(n)). This study addresses the challenges posed by large networks
with 256 connections, where the configuration space expands exponentially. We
present an approach that efficiently handles routing by reducing the extra stages.
We reduce network cost by a factor of 2×. Our approach enables graph routing
with up to 214 operators within the 256-connection multistage network, dou-
bling performance compared to previous multistage CGRA frameworks.

1. Introduction
Interconnections play a fundamental role in parallel computation. High-performance
Alveo FPGAs have recently incorporated a hardwired built-in partial crossbar network to
provide high throughput for distributing data from its 32 high bandwidth memory (HBM)
channels. Despite the peak memory rate being 460 GB/s, even with dedicated inter-
connection hardware, achieving peak performance in real scenarios remains challenging.
For instance, sort algorithms implemented using the partial crossbar achieve a maximum
throughput of 10 GB/s [Choi et al. 2021] since it requires distributing multiple HBM and
performing all-to-all communication. However, by incorporating a customized reconfig-
urable interconnection using dynamic 2x2 switches and ignoring the built-in crossbar, it
is possible to improve the memory throughput up to 200 GB/s [Choi et al. 2021]. The
customized network relies on the butterfly topology, a classical multistage network.

The hardware cost of a multistage network is O(n log n), which is more efficient
than the O(n2) cost of full crossbar networks. As a result, multistage networks can scale to
accommodate hundreds of channels, while crossbars are typically limited to 32 channels
in most technology implementations. However, it is important to note that full crossbars
do not have routing conflicts, while multistage networks can block.

When considering a network with n inputs/outputs, a network with log(n) stages
will block since the number of possible permutations is smaller than the total number of
n! permutations. As the Benes network proves, one solution to this issue is to double
the number of stages, using at least 2 · log(n) − 1 stages. Benes is a rearrangeable net-
work that allows all permutations by appropriately assigning connections to the network
switches. Nevertheless, when dealing with multicast patterns, the complexity escalates
considerably, and doubling the number of stages may not be sufficient to handle it. In
the domain of parallel computing, the majority of graphs are non-tree structures, conse-
quently exhibiting multicast patterns.

This study proposes strategies to address the blocking issues associated with
multistage interconnections (MIN) in multicast scenarios. The main focus is ac-
celerators by using coarse grained reconfigurable architectures (CGRA). A previous



work [Silva et al. 2019] shows that MINs provides flexible CGRAs that could be recon-
figured at run-time. CGRAs simplify placement by offering reconfigurability at the word
level, rather than the bit level seen in FPGAs. However, it relied on a greedy placement
and routing approaches. We propose to investigate the bounds and the trade-offs of block-
ing and non-blocking as a function of the number of stages and placement algorithms.

This work is organized as follows. Section 2 describes the CGRA mapping with
a multistage. Section 3 presents the challenges of performing a high number of multicast
routing. We outline our mapping approaches in Section 4.4. Section 5 presents the main
results. Finally, Sections 6 and 7 discuss the related work and draw the conclusions.

2. Problem

We evaluate the performance of multistage placement and routing strategies for paral-
lel architectures with n Processing Elements (PEs). While mesh-based architectures
help reduce interconnection costs to O(c), the mapping process is NP-complete. Ex-
act solutions using integer linear programming or SAT solvers do not scale well for
graphs with more than 30 nodes [Walker 2019]. Despite the use of recent state-of-
the-art mapping techniques that employ reinforcement learning and graph attention net-
works [Kong et al. 2023], the mapping process still requires approximately 10 seconds
and is limited to graphs with fewer than 68 nodes. Furthermore, these architectures have
yet to be validated on real devices. As a baseline, we choose a reconfigurable architec-
ture [Silva et al. 2019] consisting of 128 PEs that has been successfully validated on an
FPGA using multistage networks.

a

bc

e d

Dataflow

a

b

c

e

d

Pe0

Pe1

Pe2

Pe3
Pe4

Pe1

Pe2

a

b

c

e

d

Pe0

Pe1

a

b

c

e

d

interconnection
(a) (b) (c) (d)

Figure 1. (a) Dataflow; (b) Routing Conflict; (c) Swapping; (d) Multicast.

The input for the mapping algorithm is an application dataflow graph (DFG) de-
picted in Figure 1(a). The goal of the mapping algorithm is to assign the DFG nodes to
physical PEs and route the edges using the interconnection network. A routing conflict
invalidates a placement solution as shown in Figure 1(b) for the edges a → c and b → d.
There are several strategies to overcome a routing conflict, such as leveraging symmetries
present in the target architectures, as illustrated in Figure 1(c), where the nodes b and c
are replaced by swapping them. Another strategy is considering the design features of the
PEs and interconnection network, as depicted in Figure 1(d), where the PE0 and PE1

(highlighted in blue and orange, respectively) have three outputs as they require multicast
patterns. Key design features include the number of interconnection stages, the types and
quantity of PEs, and input/output permutation assignments.



3. Multistage Network: Why it is Blocking

We will present a simple 4x4 Multistage Interconnection Network (MIN) to illustrate the
blocking properties. A MIN with n inputs and n outputs consists of a set of s stages, each
with 2x2 programmable switches. The interconnection pattern between the stages deter-
mines the network type. In Figure 2(a), we depict a 4x4 MIN with two stages using the
shuffle-exchange pattern, where the input/output permutation pattern routes successfully.

(a)

0 2→0
1→1

3→2
0→3

1

2
3

0 1→0
3→1

0→2
2→3

1

2
3

(b)

I / O
01 00
11 01
00 10
10 11

I / O
00   11
01 01
10 00
11 10

Figure 2. (a) No conflict 0 → 3, 1 → 1, 2 → 0, 3 → 2; (b) Conflict permutation.

When n = 4, there are n! = 24 possible permutations. However, this MIN has
only 4 switches, with two states each (direct and crossover). Consequently, it can accom-
modate only 2number of switches = 24 = 16 distinct permutations. As a result, it is not
possible to route at least 8 patterns. Figure 2(a) and (b) provide examples of one possible
permutation and one blocking permutation pattern, respectively. The connections 0 → 2
and 2 → 3 have a conflict in the first stage, as well as the connections 1 → 0 and 3 → 1
(see Figure 2(b)).

In the presence of a multicast connection, the routing problem becomes more
complex. Each switch in the network exhibits four different states: direct, crossover,
diffusion up-to-all, and down-to-all, as illustrated in Figure 3(a). In a 4x4 network, where
each multicast switch has four states, there can be up to 44 = 256 possible configurations
to cover 256 multicast patterns.

However, specific patterns, such as the simple pattern 0, 2, 0, 2, cannot be routed
as depicted in Figure 3(b). This situation happens because inputs 0 and 2 should broadcast
to both outputs. A third stage can be added to the network architecture to overcome this
limitation, as demonstrated in Figure 3(c). This additional stage increases the number
of possible patterns to 46 = 4096, which is sixteen times larger than the maximum of
256 patterns in the initial configuration. Consequently, the routing problem exhibits a
significantly larger solution space.

direct cross

up-to-all down-to-all

(a) (b)

STAGE 1 STAGE 2
0 0

2

0
2

1

2
3

(c)

STAGE 1 STAGE 2 STAGE 3
0 0

2

0
2

1

2
3

Figure 3. (a) 4 States; (b) Multicast conflict; (c) Extra Level Solution.



However, when we consider a more extensive network, such as an 8x8 config-
uration, the complexity of the routing problem escalates. In an 8x8 network with the
minimum of log(n) = 3 stages, there are 412 = 16 million possible configurations to
cover 16 million possible patterns. However, the network is blocked since it is impossible
to route all patterns.

Additional stages are required to address this limitation. After including one extra
stage, the network would have 4 billion possible configurations for the 16 million patterns
to verify. This number grows exponentially with 4n/2 for each additional level. Consid-
ering that an 8x8 network necessitates at least two extra levels, the routing complexity
becomes an immense challenge in the presence of multicast. Although extra stages in-
crease the latency, a multi-thread approach could be used to hide it [Silva et al. 2019].

4. Mapping Strategies
4.1. How blocking is a Network
Table 1 illustrates the routing capability of 4x4 and 8x8 networks with a minimal size
and an additional level. A minimal 4x4 network experiences blocking for 112 out of 256
patterns, representing 43% of all patterns. Conversely, a minimal 8x8 network encounters
blocking for nearly 97% of the patterns. By introducing an extra level, a 4x4 network
becomes unblocking. However, finding a suitable configuration within a space of 4K con-
figurations poses challenges. Specifically, 48 patterns have only 2 configurations (Cfgs)
out of the 4K possibilities, making them difficult to identify compared to one-to-all pat-
terns like 0 in all outputs, with 176 configurations within the 4K space.

Table 1. Minimal and one extra level blocking patterns in 4x4 and 8x8.
Minimal log(n) One extra level

number of block percentage blocking one-to
net patterns pattern of blocking Cfg patterns 2 Cfgs all
4x4 256 112 43% 4K 0 (0%) 48 4 (176)
8x8 16M 16M 97% 4G 10M (60%) 256K 8 (3M)

For an 8x8 network, the routing problem intensifies. Despite adding an extra level,
60% of the patterns may remain unroutable. Moreover, 256K patterns possess only 2 valid
configurations within a vast space of 4G possibilities. In contrast, broadcast patterns have
3 million valid configurations, rendering them relatively easy to find. Adding two extra
levels, where all one-to-one patterns have a valid solution, the configuration space grows
to 1 Tera possibilities, which becomes hard to explore.

We focus on 256x256 networks, where the configuration space is so vast that
exploring even a small subset becomes unfeasible. We propose a set of strategies to handle
large multistage networks. Our experiment considers multistage networks built using 4x4
local switches, radix 4 instead of radix 2, thus reducing the number of minimal stages to
log4(256) = 4. Each switch has 8 configuration bits and implements 256 possible 4x4
patterns.

4.2. Random Patterns
We propose analyzing the routing capability of a 256x256 network using a random pat-
tern. The total number of multicast patterns in this network is 256256 = 10671. We gener-



ate random patterns with a few multicasts to evaluate the routing capability. To measure
routing success, we focus on pairwise connections. For example, if we can route 192
out of 256 pairwise connections, the routing rate is 192

256
= 75%. We also evaluate partial

patterns using only a subset of inputs. For a 50% partial pattern, we randomly select 128
inputs to generate the pairwise connections, including multicast. This analysis provides
insights into routing challenges and serves as a baseline for exploring unblocking routing
strategies within the network.

4.3. Input and Output Assignments
We generate a routing path in a shuffle-exchange multistage network by concatenating
the input and output addresses. Figure 2(a) provides a few examples. For example, the
routing word 0011 represents the pairwise connection 0 → 3, where the line for the first
stage follows the pattern inside the box 0 01 1. Routing conflicts only arise if the patterns
within the “boxes” are identical. In such a scenario, as illustrated in Figure 2(a), there
are no conflicts. However, as shown in Figure 2(b), the pairwise connections 0 → 2 and
2 → 3 encounter a routing conflict as they both require the same “box” code, specifically
0 01 0 and 1 01 1. One can conclude that conflicts can be amplified when input code
suffixes and output code prefixes are identical.

We propose to compare the sequential and random assignment of input and output
codes for Processing Elements (PEs). In the sequential approach, each PE, denoted as
PEi, is assigned the codes 2i and 2i+ 1 for its two inputs and two outputs. For example,
for PE0, the input/output connections are assigned codes 0 and 1. On the other hand, in
the random approach, the input codes for PE0 can be 45 and 103, while the output codes
can be 3 and 191, for instance.

4.4. Placements: Random, Greedy, Local Search, and Simulated Annealing
We evaluate four placement strategies for mapping graph nodes to Processing Elements
(PEs). Let’s consider nodes a and b, where there is a directed edge from a to b, and we
assume a sequential input/output code. The first strategy is just random placement and
routing. While a random approach may appear less favorable than an ordered approach,
such as sequential assignment, it actually performs better. This is because randomness
helps prevent conflicts, given that input suffixes and output prefixes do not exhibit sim-
ilarities. The second strategy is a greedy approach. This approach places node a in the
first available PE, for example, PE0. Then, it places node b in the next available PE,
PE1. Subsequently, the algorithm checks the routing feasibility from PE0 to PE1. If
the routing is possible, it adds the routing path to the current mapping. However, if the
routing is not possible, the greedy approach assigns node b to the next available PE, such
as PE2. If there is no available and routable PEs to connect to node a (placed in PE0),
the routing adds this edge to the set of unrouted edges and evaluates the next edge. Ulti-
mately, the greedy strategy produces a valid, complete routing or a partial routing with a
set of unrouted edges.

The third strategy is the Local Search (LS) approach. It begins by executing the
greedy placement strategy. If the greedy approach fails to find a feasible routing for all
edges, the Local Search attempts to improve the routing by swapping the positions of
two nodes, denoted as a and b, if such a swap reduces the number of unrouted edges.
For example, let’s assume that the algorithm initially places node a in PE3 and node b



in PE8. The LS evaluates whether swapping the positions of a and b (placing b in PE3

and a in PE8) reduces the number of unrouted edges. The algorithm terminates when
swapping nodes without increasing the number of unrouted edges is impossible.

The last strategy is the meta-heuristic Simulated Annealing (SA). SA prevents
getting trapped in local minima within the solution space by temporarily increasing the
current routing cost. SA conducts node swapping, even if it results in an increase in the
number of unrouted edges. SA starts from a random placement and performs the node
swaps to optimize the solution. Additionally, we execute LS as a post-optimization step
after the SA process.

4.5. Architecture
The final optimization axis investigated in this study is the heterogeneity of the target
architecture. In a homogeneous scenario, all Processing Elements (PEs) in the network
have two inputs and two outputs. However, we propose evaluating a non-uniform distri-
bution where certain types of PEs have different configurations. For example, one type
of PE may have one input and three outputs, while another type may have two inputs
and one output. Introducing this non-uniform distribution adds flexibility. Additionally,
if some PEs have only one input, we could accommodate more than 128 PEs for a
256x256 network, expanding the capacity and capabilities of the architecture.

5. Experimental Results
This study proposes evaluating placement and routing strategies as a function of the Con-
nection Workload (CW). In this context, we define CW as the quotient of the number of
need-to-be-routed edges and the total size of available interconnections in the network.
To illustrate, if we consider a graph containing 128 edges to be placed and routed within a
network comprising 256 connections, the corresponding CW would be 50% (128

256
= 50%).

Since the blocking probability is high, even with a low value of CW could be difficult to
route all edges successfully.

5.1. Random Samples
First, we propose to evaluate the routing capabilities of a 256x256 Omega multistage
network when handling a set of random patterns. Figure 4 illustrates the success rate
of routing edges as a function of the number of extra stages for multicast patterns. We
use a box-plot chart that shows the median (middle value) and quartiles (25th and 75th
percentiles). When there are no extra stages, there is only one option for each edge,
leading to numerous routing conflicts. However, it is possible to reduce the number of
conflicts when using extra stages.

In our experiment, we tested one million random patterns with different CW (con-
nection workload) values, namely 50%, 78.125%, and 100%. These correspond to 128,
200, and 256 out of 256 connections, respectively. A routing rate of 95% indicates that
we routed 243 out of 256 edges without conflicts. When using 256 connections without
extra stages, we could route only 47% of the edges. This rate implies that out of one mil-
lion random patterns attempting to connect 256 inputs to 256 outputs without additional
stages, we should route only 120 edges.

With 128 connections, the best-case scenario resulted in 84 routed edges (or 66%),
as depicted in Figure 4. Therefore, finding a configuration with no routing conflicts is



128 connections
200 connections
256 connections

Figure 4. Random Multicast Patterns and Success Rate.

challenging even when the connection workload is low without extra stages. Even with
four extra stages and a low CW of 50%, the best-case scenario achieved 114 out of 128
edges successfully routed (89% success rate). Thus, none of the evaluated configurations
achieved a conflict-free routing configuration in this experiment.

5.2. Connection Workload and Benchmarks

Low
CW

Medium
CW

High
CW

Figure 5. Percentage of nodes with multicast for the 12 evaluated benchmarks.

Generally, benchmarks for dataflow kernel sizes span from 10 to 100 nodes for
image processing, communications and DSP applications [Lee 1997]. The benchmark
dataset used in this study is publicly available on two website [UCSB 2020, UFV 2023],
ensuring the transparency and reproducibility of our findings. To effectively evaluate the
network routing capability concerning the Connection Workload (CW), we merge two or
more dataflows to generate graphs exhibiting high CW values ranging from 49.21% to
100%. Such an approach emulates real-world scenarios where the concurrent mapping of
multiple graphs is equivalent to executing various applications in parallel.

Figure 5 shows 12 publicly available benchmarks in [UFV 2023]. This set was
created with the objective of generating a diverse range of connection workloads through
the utilization of one or more instances of dataflow graphs from [UCSB 2020, UFV 2023].
It illustrates that out of the 12 selected benchmarks, 3 have approximately 50% multicast
nodes, 4 exhibit multicast in the range of 20-30%, while 2 have around 10% multicast
nodes. Furthermore, 4 benchmarks have less than 10% of nodes with multicast. The
following sections evaluate the mapping strategies in relation to the multicast percentage,
additional network levels, and the placement algorithm.



5.3. Heterogeneous Architectures

In the previous section, we discussed the target architecture, which consisted of a ho-
mogeneous CGRA with 128 Processing Elements (PE). The network has 256 inputs and
outputs; each PE has two inputs and two outputs. However, the application graphs exhib-
ited an irregular degree distribution, meaning that some nodes had only one input while
others had two or three inputs. Similarly, specific nodes had multiple outputs, which could
be mapped onto a single-output PE due to the network’s multicast capability. When deal-
ing with external inputs and outputs, it’s important to consider that mapping them on a
PE would lead to resource wastage. This inefficiency arises because external inputs do
not consume any network output.

Table 2. Processing Elements for Evaluated Architectures.
Homogeneous Heterogeneous

Arch. A0 A1 A2 A3 A4 A5 A6 A7 A8 A9

PEs 128 256 136 140 145 185 187 172 176 191
1 in/out 0 256 76 24 34 114 118 88 96 126
2 in/out 128 0 60 116 111 71 69 84 80 65

We evaluate the adaptability of our mapping approaches in ten architectures, as
displayed in Table 2. Among these, two architectures are homogeneous, while eight are
heterogeneous. Furthermore, “1 in/out” denotes the count of PEs that possess both 1
input and output connections.

5.4. Low Workload Mapping

Table 3 presents the successful routing percentages for benchmarks 0 and 1, using 30%
and 10% of multicast nodes and 49.21% and 53.90% CW, respectively. We evaluated four
strategies: Random, Greedy, Local Search (LS), and Simulated Annealing. The results
consist of two numbers: the minimum number of extra stages required for successful
routing of all edges and the routing rate represented within parentheses. A routing rate
of 100 indicates successfully routing all edges. For example, in benchmark 0, comprising
2 copies of the Fir16 dataflow, both Random and Greedy mapping strategies required 2
extra stages to achieve 100% routing, denoted as 2(100). However, it is important to note
that the possibility of achieving this rate depends on the mapping strategy used.

Table 3. Successful Routing for Low Workload Benchmarks.
Extra (% Routed)

Benchmark (DFG) Arch. CW (%) Random Greedy LS 10×SA
0 (2 copies of Fir16) A0 49.21 2 (100) 2 (100) 0 (100) 0 (100)
1 (6 copies of Mults1) A5 53.90 4 (88.40) 4 (83.33) 0 (100) 0 (100)

The initial mapping experiment reveals that the Local Search and Simulated An-
nealing strategies successfully find the optimal solution for both benchmarks without re-
quiring extra stages. However, the Random and Greedy approaches can only solve bench-
mark 0, and both fail for benchmark 1 even with adding 4 extra stages. The Random
approach outperforms the Greedy approach, achieving an 88.40% success rate in routed
edges compared to the best Greedy approach’s 83.33%.



In Table 3, we evaluate four different greedy approaches but only depict the best
result. These approaches vary in how they traverse the graph and assign mappings to
nodes, each with its unique ID. The sequential approach maps nodes in sequential order,
starting from node 1, followed by node 2, and so on. In contrast, the random approach
randomly selects a node i from the graph for mapping. Additionally, the DFS (Depth-
First Search) and BFS (Breadth-First Search) methods traverse the graph in depth-first
and breadth-first order, respectively. Regarding the Local Search, we apply it based on
the best greedy approach, as described in section 4.4. For the Simulated Annealing, we
execute the process 10 times with random initial placements to explore various solutions.

5.5. Medium Workload

Table 4 presents five benchmarks with Connection Workloads ranging from 73.43% to
83.20%. The Random and Greedy approaches fail to achieve successful routing for all
benchmarks. The Random solution performs better, as it mitigates issues related to similar
input and output codes, as explained in section 4.3. However, even with four extra stages,
at best, only around 82% of the edges achieve successful routing using the Random and
Greedy approaches, leaving an average of 35 edges unrouted.

Table 4. Successful Routing for Medium Workload Benchmarks.
Extra (% Routed)

Benchmark (DFG) Arch. CW(%) Random Greedy LS 10×SA
2 (4 Ewf) A2 73.43 4 (80.31) 4 (82.44) 4 (99.46) 2 (100)
3 (7 Conv3) A7 73.82 4 (74.60) 4 (74.60) 4 (99.47) 3 (100)
4 (16 Mac) A8 81.25 4 (79.32) 4 (78.84) 4 (99.51) 3 (100)
5 (2 Ewf 2 Conv3 4 Horner) A6 82.81 4 (82.07) 4 (75.00) 4 (99.52) 2 (100)
6 (1 Fir16 5 Arf) A9 83.20 4 (80.75) 4 (77.93) 4 (98.59) 3 (100)

Conversely, the LS (Local Search) approach significantly improves the Greedy
method, successfully routing nearly 100% of the edges for a network with 4 extra lev-
els. However, the LS approach must still include routing 1, 2, or 3 edges for the five
benchmarks. In comparison, the SA (Simulated Annealing) method effectively solves the
problem with extra stages when compared to LS. For 2 out of 5 benchmarks, it requires 2
extra stages. The 3 others needed 3 extra stages.

5.6. High Workload

Table 5 presents five examples with workloads exceeding 87%. In addition to previous
benchmarks made by using the application dataflow graph from [UCSB 2020], we add
two new graphs to this set. The first graph is a simple pipeline with 256 nodes as a chain
to evaluate the mapping behavior in a simple regular graph, the benchmark 10. The second
graph, Synthetic, was built based on patterns found in real graphs plus a few cycles. The
graph has 16 nodes and 32 edges with an average degree of 2, as shown in Figure 6.

The Random approach proves ineffective for all benchmarks. In contrast, the
Greedy approach finds a route with only three additional stages for the 7 and 8 copies
of the Synthetic graph. An exception appears in the Pipeline graph, where the Greedy
approach reaches the solution without extra stages. However, the SA approach requires 2
additional stages in most cases. Despite this, the Local Search method manages to route



Table 5. Successful Routing for High Workload Benchmarks.
Extra (% Routed)

Benchmark (DFG) Arch. CW(%) Random Greedy LS 10×SA
7 (5 Synthetic 1 Fir16) A4 87.10 4 (87.44) 4 (85.65) 2 (100) 1 (100)
8 (7 copies of Synthetic) A0 87.50 4 (99.55) 3 (100) 0 (100) 0 (100)
9 (7 Synthetic 1 Mults1) A3 92.96 4 (90.28) 4 (90.28) 4 (100) 4 (99.19)
10 (1 Pipeline) A1 99.6 4 (85.09) 0 (100) 0 (100) 1 (100)
11 (8 copies of Synthetic) A0 100.0 4 (99.60) 3 (100) 2 (100) 1 (100)

all benchmarks successfully. Only in the case of benchmark 9, Simulated Annealing
encounters difficulty routing a single edge out of 238 edges.

0 1 2
3

4

5

6

7 8

9
10 11 12

13

14

15

Figure 6. A Synthetic graph to evaluate the mapping strategies.

5.7. Execution Time for the Graph Mapping
In the case of all graphs, assuming there are no routing conflicts, the execution time
is a single clock cycle, accounting for both temporal pipeline and spatial parallelism.
However, when routing conflicts are present, the execution requires at least two clock
cycles. In this section, we measure the execution time for mapping these graphs.

For each benchmark, we executed all algorithms only once, except for SA. In
the case of SA, we generated 10 random initial solutions to introduce diversity into the
search process. For each of these initial solutions, we ran the SA algorithm and selected
the best result out of the 10 runs. Consequently, Table 6 displays the simple average
execution time, in seconds, of the 12 benchmarks for each mapping strategy on an i7-7700
3.6GHz. The Random and Greedy approaches execute in just a few milliseconds, while
the LS requires a few seconds. Although SA is the most time-consuming strategy, with
an average time of around 1.5 minutes, it proves beneficial by saving area by reducing
extra stages and improving the CGRA performance, enabling it to route graphs with high
workloads efficiently. Considering the vast solution space of 10671 possibilities, SA’s
exploration, utilizing the PE symmetry properties, yields interesting results.

Table 6. Average execution time of mapping strategies, in seconds.

Random Greedy LS 10×SA
0.001 0.010 2.437 93.655

6. Related Work
The Omega or shuffle-exchange network [Lawrie 1975] is a multistage network with
logN stages and n

2
switches. Initially designed to connect a set of processors to a set



of memories, this network offers conflict-free access to common address patterns, such as
rows, columns, diagonals, and more [Lawrie 1975]. Moreover, it has been demonstrated
that any one-to-one permutation pattern can be routed using k extra stages [Shen 1995].
However, for more complex patterns, including multicast [Yang and Wang 1998], if
the single-pass routing fails, they need to be divided into a minimum number of
groups (passes) to establish conflict-free paths for all pairs in each group simultane-
ously [Hu et al. 1996]. Therefore, this approach slows down the parallel communication
by serializing the groups.

Moreover, the complexity of the problem limits the availability of analytical ap-
proaches for solving it. Only initial models have been proposed [Gazit and Malek 1989].
In the context of reconfigurable architecture mapping, such as CGRAs [Silva et al. 2019],
the challenge extends to include both the placement problem and the routing problem.
To address these issues, we introduce two novel placement strategies: Local Search and
Simulated Annealing techniques. These strategies effectively unblock the network and
help reduce the number of extra stages required.

Regarding the application of SA in multistage networks, a previous study sug-
gested its use to mitigate cross-talk in dynamic routing for small-sized multistage
systems [Katangur et al. 2002]. Additionally, within the context of CGRA architec-
ture, SA has been applied to mesh-based architectures [Mei et al. 2005]. However,
for multistage architecture, existing approaches have primarily relied on greedy algo-
rithms [Ferreira et al. 2011, Silva et al. 2019].

Furthermore, our mapping application has demonstrated successful graph map-
ping for ranges spanning from 100 up to 200 nodes. In contrast, exact integer linear
programming and SAT-solvers are restricted to handling only 40 nodes [Walker 2019].
For mesh architecture, SA has been able to find exact solutions for graphs of up
to 80 nodes [Carvalho et al. 2020]. More recently, graph convolutional networks
and reinforcement learning techniques have been utilized to address graphs with 200
nodes [Kong et al. 2023]. Nevertheless, it is important to note that the performance results
for these methods are not presented in this work, making a fair comparison challenging.

7. Conclusion

Efficient parallel communication stands as one of the significant challenges. Multistage
networks mitigate the cost and offer a network with O(n log(n)) switches, but they intro-
duce challenges in routing. They may lead to blocking, thereby requiring serialization of
communication. In the case of large multistage networks with 256 connections, the con-
figuration space explodes to 10671 possibilities. Despite that, we have demonstrated that
a greedy approach, enhanced by Local Search or stochastic Simulated Annealing tech-
niques, can efficiently perform routing without extra stages. Our placement explores the
high symmetry properties available in the CGRA architecture. In addition, our proposed
mapping strategy reduces the network cost by a factor of 2× when no extra stages are
required or at least 25% when 2 extra stages are required. For 256 connections, our ap-
proach enables the routing of graphs with up to 200 operators, effectively doubling the
performance compared to previous multistage CGRA frameworks [Silva et al. 2019]. In
future work, we plan to integrate our mapping approach in a CGRA framework in high-
performance FPGA with HBM memories [Choi et al. 2021].



Acknowledgments
Financial support from FAPEMIG APQ-01577-22, CNPq, and UFV. This work was also
carried out with the support of the Coordernação de Aperfeiçoamento de Pessoal de Nı́vel
Superior - Brasil (CAPES) - Financing Code 001.

References
Carvalho, W., Canesche, M., , Silva, L., Nacif, J., and Ferreira, R. (2020). A design

exploration of scalable mesh-based fully pipelined accelerators. In IEEE ICFPT.

Choi, Y.-k., Chi, Y., Qiao, W., Samardzic, N., and Cong, J. (2021). Hbm connect: High-
performance hls interconnect for fpga hbm. In ACM FPGA.

Ferreira, R., Vendramini, J., Pereira, M. M., and Carro, L. (2011). An fpga-based hetero-
geneous coarse-grained dynamically reconfigurable architecture. In Int conference on
Compilers, architectures and synthesis for embedded systems - CASES.

Gazit, I. and Malek, M. (1989). On the number of permutations performable by extra-
stage multistage interconnection networks. IEEE trans on computers, 38(2).

Hu, Q., Shen, X., and Liang, W. (1996). Optimally routing lc permutations on k-extra-
stage cube-type networks. IEEE transactions on computers, 45(1):97–103.

Katangur, A. K., Pan, Y., and Fraser, M. D. (2002). Message routing and scheduling in
optical multistage networks using simulated annealing. In Parallel and Distributed
Processing Symposium, International, volume 2, pages 8–pp. IEEE Computer Society.

Kong, X., Huang, Y., Zhu, J., Man, X., Liu, Y., Feng, C., Gou, P., Tang, M., Wei, S.,
and Liu, L. (2023). Mapzero: Mapping for coarse-grained reconfigurable architectures
with reinforcement learning and monte-carlo tree search. In ISCA.

Lawrie, D. H. (1975). Access and alignment of data in an array processor. IEEE Trans-
actions on computers, 100(12):1145–1155.

Lee, C. (1997). Mediabench: A tool for evaluating and synthesizing multimedia and
communications systems. In IEEE MICRO.

Mei, B., Lambrechts, A., Mignolet, J.-Y., Verkest, D., and Lauwereins, R. (2005). Archi-
tecture exploration for a reconfigurable architecture template. IEEE Design & Test of
Computers, 22(2):90–101.

Shen, X. (1995). Optimal realization of any bpc permutation on k-extra-stage omega
networks. IEEE transactions on computers, 44(5):714–719.

Silva, L., Ferreira, R., Canesche, M., Penha, J., , and Nacif, J. (2019). Ready: A fine-
grained multithreading overlay framework for modern cpu-fpga dataflow applications.
ACM Transactions on Embedded Computing Systems (TECS), 18.

UCSB (2020). Bench:. https://web.ece.ucsb.edu/EXPRESS/benchmark/.

UFV (2023). Multistage. https://github.com/lesc-ufv/graphs.

Walker, M. J. (2019). Generic connectivity-based cgra mapping via integer linear pro-
gramming. In Symp on Field-Programmable Custom Computing Machines (FCCM).

Yang, Y. and Wang, J. (1998). On blocking probability of multicast networks. IEEE
Transactions on Communications, 46(7):957–968.


