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Abstract. Many applications, require finding a dataset’s k-Nearest Neighbors
Graph (kNNG), crucial for many Machine Learning tasks like clustering and
anomaly detection. However, its computation can be costly due to the com-
plexity of finding all kNN for every data point. To address this issue, scalable
approximated algorithms have been proposed to speed up the kNNG and main-
tain its quality. This paper presents an adaption of NNDescent using multi-GPU
and an experimental comparison of distributed and parallel approximate kNNG
algorithms in GPUs, assessing their scalability, computational cost, and solu-
tion quality. Our goal is to identify the most efficient method without significant
accuracy loss, enabling faster techniques and handling large datasets.

1. Introduction
Given an integer number k, the process of finding the k nearest neighbors - kNN of all the
dataset’s objects can be accomplished by building the k nearest neighbor graph - kNNG,
i.e., a directed graph structure that connects the kNN of each object under a specific dis-
tance metric, where each edge contains the distance between connected objects. The
kNNG is crucial for applications in various areas like Machine Learning, including clus-
tering (e.g., Watershed Clustering [Xia et al. 2022], classification (enabling textual clas-
sification [Wang and Liu 2010]), and outlier detection (e.g., Local Outlier Factor - LOF
[Kang et al. 2012]). The fast construction of the kNNG is paramount for many tasks.

Building the kNNG is challenging due to its asymptotic computational complexity
of O(n2) for n points in the dataset, which arises from the pairwise comparison of points
[Dong et al. 2011]. It may be computationally unfeasible for large datasets due to compu-
tational effort and memory limitations of most computing systems [Xing and Bei 2020].

Heuristics were proposed for faster approximate kNNG with very similar results to
the exact ones [Turan et al. 2020]. For example, NNDescent exploits neighbor relations
for significant speedup [Dong et al. 2011, Shimomura et al. 2021]. Another example is
using an Inverted File to reduce similarity calculations and maintain fast and high-quality
kNNG construction [Amato and Savino 2010, Zhang et al. 2013].

Nowadays, many tasks are running on Graphical Process Unit - GPU, like in clas-
sification and clustering areas, where many algorithms benefit from the acceleration pro-
vided by the GPU [Kuttranont et al. 2017, Andrade et al. 2013]. Additionally, this accel-
erator has an architecture that supports massive data parallel processing. This means that
a single GPU can process an exceptionally large number of data instances in parallel,
resulting in faster applications compared to those running on CPUs [Asano et al. 2009].



As datasets increase and GPUs face physical limitations, finding the kNNG be-
comes more challenging [Pereira et al. 2012]. Despite GPUs’ inherent parallelism, mem-
ory limitations hinder exact kNNG construction for large datasets, leading to memory
overflow issues. Besides the physical constraint, the data transfer between primary and
GPU memory can become a burden due to bus limitations [Croix and Khatri 2009].

The utilization of multiple GPUs can considerably accelerate computational pro-
cesses, offering scalability—a term that denotes the ability to maintain or enhance per-
formance as the problem size increases. Scalability becomes especially important when
dealing with large datasets. A scalable method should be capable of efficiently construct-
ing the approximate kNNG, even for large datasets [Jogalekar and Woodside 2000].

Due to the variety of algorithms, there is an increasing need for analysis regard-
ing the approximation quality, construction time, and scalability. Initially, we present
an adaption of NNDescent compatible with multi-GPU systems. Then, we focus on our
primary goal, evaluating the use of approximate heuristics for estimating the kNNG in
multi-GPU systems, especially for offering a higher amount of overall memory compared
to a single-GPU system, which allows us to deal with larger datasets [Fogal et al. 2010].
By comparing their performances, we will assess which ones are faster and more accurate,
their benefits, and drawbacks. Additionally, we review GPU architectures to understand
the principal issues the compared algorithms have when dealing with different types of
parallel/distributed systems. Finally, we assess the scalability of these algorithms to un-
derstand the computational boundaries of each method and check the resulted kNNG,
considering memory usage, building time, quality, and dataset size. We consider two sce-
narios: when the dataset fits one GPU memory (Small scenario) and when we must divide
the dataset across multiple GPUs (Large scenario). We hope our work sheds light on new
ways to enhance and provide scalability for Machine Learning tasks based on the kNNG.

2. Related Work
Selecting suitable algorithms for this research was challenging. It was crucial to consider
specific properties during the evaluation. First and foremost, the compatibility of the
algorithms with a multi-GPU system, as the research aims to investigate the scalability of
parallel and distributed algorithms. Another critical property was the requirement for the
algorithm to be approximate, given that the exhaustive search becomes impractical when
dealing with large datasets due to its aforementioned computational complexity.

The authors in [Johnson et al. 2019] introduce data quantization for constructing
the kNNG, including Inverted File algorithms. They partition the dataset into clusters and
the search process is limited to relevant cells and avoid exhaustive search, making them
promising for research. This idea results in the Inverted File Flat - IVFFlat algorithm,
multi-GPU compatible and provide an approximate kNNG, which is compared here.

[Johnson et al. 2019] presents a comparison of Inverted File methods, focusing
on querying approximate kNN for datasets across multiple GPUs. Their objective is not
to construct the approximate kNNG itself but rather to facilitate efficient querying. By
evaluating the performance and characteristics of these methods, the research aims to
provide valuable insights and comparisons in the context of multi-GPU systems.

In [Dong et al. 2011], a method called NNDescent is proposed for constructing
neighborhood graphs using the heuristic that the nearest neighbors of a given data point



are likely to be neighbors amongst themselves. By leveraging this heuristic, the algorithm
generates a high-quality approximate kNNG avoiding the need for an exact search. How-
ever, this method has a memory overhead, challenging large-scale dataset processing.

[Wang et al. 2021b] introduces a single GPU kNNG merging algorithm using
NNDescent for incremental construction. While the approach faces memory limitations
due to the merging process being confined to a single GPU, they present a solution to
mitigate these challenges by incorporating disk input/output - I/O operations. Our paper
adapted their algorithm for multi-GPU systems, further enhancing efficiency and scala-
bility, and allowing the construction of the approximate kNNG for large-scale datasets.

[Shimomura et al. 2021] present a survey on exact/approximate kNNG construc-
tion on CPU for small-scale datasets. The survey delves into an exploration of algorithms’
performance over various features of datasets, e.g., dimensionality and cardinality. Differ-
ently from [Shimomura et al. 2021], we present a comparative analysis focused on multi-
GPU systems towards datasets of large-scale size. We also conduct empirical experiments
and analyze scalability, considering datasets that fit single and multiple GPUs. We aim to
provide a more practical understanding of the algorithms’ performances.

3. Theoretical background
3.1. Quantization techniques
Quantization is a fundamental method that maps continuous infinite values to a smaller
set of discrete finite values. By employing techniques such as Product Quantization
[Jégou et al. 2011] or Standard Quantization [Zhou et al. 2012], memory usage can be re-
duced while enabling the processing of larger datasets. Additionally, combining quantiza-
tion techniques with the Inverted File heuristic presents an excellent approach to decrease
memory consumption further and facilitate the efficient handling of extensive datasets.

One specific combination of techniques is the utilization of Product Quantization
- PQ alongside Inverted File to minimize memory usage, resulting in Inverted File with
Product Quantization - IVFPQ [Jégou et al. 2011]. PQ compresses high-dimensional vec-
tors for efficient nearest-neighbor searches, decomposing vectors into low-dimensional
subspaces quantized independently, reducing the vector size for handling large datasets.

Similarly, the combination of Standard Quantization - SQ with Inverted File gives
rise to Inverted File with Standard Quantization - IVFSQ [Zhou et al. 2012]. IVFSQ aims
to decrease memory usage without compromising the quality of the approximation. Un-
like PQ, SQ is not commonly employed alongside the Inverted File algorithm. However,
it offers a unique approach by transforming vectors in each partition into bits vectors.

3.2. Inverted File parameters influence
Inverted File depends on two parameters: “nList” (number of partitions created) and
“nprobe” (number of partitions searched). A partition denotes a unique space of multi-
ple cells where dataset vectors are mapped to a cell based on their characteristics. The
parameter “nList” impacts search efficiency and accuracy, as few partitions lead to slow
searches, while more cells reduce search time but lower approximation quality and in-
crease mapping time. On the other hand, overestimating “nprobe” can result in slower
performance, as more cells need to be examined. Conversely, small values are not rec-
ommended as they may lead to reduced approximation quality, as only a few partitions



are searched. Thus, the implicit trade-off between speed and quality using Inverted File
algorithms is explored in the present paper for a variety of scenarios.

3.3. Multi-GPU parallelism
Multi-GPU systems have become increasingly frequent in the architecture of HPC
systems and servers, accelerating tasks in scientific simulations [Wang et al. 2020,
Spampinato et al. 2010]. Despite GPU’s remarkable processing capabilities, limited
memory poses challenges, necessitating careful management. Therefore, tasks on multi-
GPU systems can be handled via Replication and Sharding [Johnson et al. 2019].

Replication copies the dataset over the GPUs, which implies that the dataset must
fit into one GPU memory; otherwise, the task can not be realized. The process can query
points simultaneously in each GPU by splitting the queries over the GPUs, which can
make the whole process faster. However, a considerable amount of memory is required.

Sharding is a technique where we divide the dataset into sub-datasets called
shards, that has the same columns but contains different vectors. The vectors held in
each partition are unique and independent from the vectors from other shards. It is slower
than Replication but manages more memory simultaneously to deal with larger datasets.

4. Multi-GPU NNDescent
We present an adapted version of [Wang et al. 2021b] for multi-GPU and large datasets.
The algorithm divides data into shards, merging the resulting kNNG of each fragment
using I/O disk operations to prevent GPU memory overflow. The algorithm’s structure
is easily parallelized over all the GPUs, guaranteeing that the processes are synchronized
and avoiding two or more GPUs merging the same shards simultaneously to construct a
satisfactory approximate kNNG. We divide the algorithm into three steps: Shard division,
kNNG construction with NNDescent for each shard, and sub-graph merging.

4.1. Proposed approach
At first, we divide the dataset into S subsets called shards. We must ensure that each GPU
in the system can merge 2 kNNG simultaneously, such that each kNNG corresponds to a
specific shard Si.1 After that, we construct the kNNG for each shard Si, as illustrated in
Algorithm 1. Consequently, as we use a multi-GPU system and threads to perform this
task, we build the kNNG for num shards simultaneously, using NNDescent, where num
is the number of GPUs in the system. The number of shards should be iterable by the
number of GPUs, i.e., the shards should be equally divided over the GPUs.

After constructing the kNNG for all the shards, we need to merge these partial
graphs to obtain the final kNNG. The process is described in Algorithm 2 and loading
the kNNG0 into GPU0, merging it with the other kNNG graphs, and storing the re-
sult. Completing the process, all S kNNG graphs would have been merged, potentially
containing new neighbors from previous merges. To construct the final kNNG for each
shard, we need to merge all kNNG graphs. We achieve this by running the merging
process for all S kNNG graphs. At each iteration, we merge the current kNNGi with
S− i kNNG graphs since kNNGi has already been merged. To ensure synchronization,
a mutex is used to allow merging only when the kNNGi is ready. Our approach enables
parallelization across multiple GPUs, resulting in a better performance than a single GPU.

1In our experiments, our shards had at most 3.7 GB to fulfill this requirement.



Algorithm 1 Simultaneously construct the kNNG for each shard Si

Require: Path: dataset path on disk; k: number of neighbors; S: number of shards;
num: number of GPUs;

Ensure: Each GPU can construct two kNNG at once
Iters← S

num

for i in [0,1,...,Iters− 1] do
for g in [0,1,...,num− 1] do in parallel ▷ Each device computes shards in parallel

shardID ← i× num+ g.
kNNGshardID ← NNDescent(shardID, k) ▷ Runs in parallel within a GPU
save to disk(kNNGshardID);

end for
end for

Algorithm 2 Simultaneously merge each shard’s kNNG
Require: Path: dataset path on disk; S: number of shards; num: number of GPUs;
Ensure: Each GPU can merge two kNNG at once

Iters← S
num

for i in [0,1,...,Iters− 1] do
for g in [0,1,...,num− 1] do in parallel ▷ Each device computes merge in parallel

graphID ← i× num+ g.
merged kNNGgraphID ←MergeKNNGs(graphID) ▷ Merge

kNNGgraphID with S − graphID kNNGs, managed by a mutex for synchronization.
save to disk(merged kNNGgraphID)

end for
end for

5. Experiments
Our study is accomplished in a multi-GPU server with 3 NVIDIA GeForce RTX 2080
Super with 8192 MiB of memory each, 2 Intel(R) Xeon(R) Silver 4208 with 16 CPU
cores, and 128GB of primary memory. The algorithms were compiled with CUDA 12.0
over Ubuntu 22.04. The code for the experiments is presented in a Github repository.2.

5.1. Algorithms
In our study, we consider two distinct scenarios for comparing the algorithms. The Small
scenario involves datasets that can fit entirely into the memory of a single GPU. We lever-
age the GPU techniques discussed in Section 3.3 for this scenario. By examining the
algorithms under these conditions, we can evaluate their performance and effectiveness
when the entire dataset can fit the memory constraints of a single GPU. The Large sce-
nario involves datasets that are too large to be stored in the memory of a single GPU and
must be divided into shards to distribute the workload across multiple GPUs. As described
in Section 3.3, only the Sharding technique is applicable in this scenario. By comparing
the algorithms under these conditions, we can assess their scalability and efficiency when
dealing with datasets that exceed the memory capacity of a single GPU. Table 1 presents
the compared algorithms, the strategies adopted, and which scenarios will be considered.

2All the scripts used in this paper are available at https://github.com/gorlando04/
Scalable-distributed-algorithms-for-approximating-the-kNNG

https://github.com/gorlando04/Scalable-distributed-algorithms-for-approximating-the-kNNG
https://github.com/gorlando04/Scalable-distributed-algorithms-for-approximating-the-kNNG


Table 1. Strategies and algorithms used on the comparison proposed
GPU parallelism technique Scenario

Algorithms Replication Sharding Small Large
IVFFlat [Amato and Savino 2010] YES YES YES NO
IVFPQ [Jégou et al. 2011] YES YES YES YES
IVFSQ [Zhou et al. 2012] YES NO YES NO
NNDescent [Wang et al. 2021b] YES NO YES NO
NNDescent I/O NO YES YES YES
Exact-Construction YES YES YES YES

5.2. Datasets

Artificial datasets were generated using probabilistic distributions to build a controlled
environment with scalable properties (e.g. dimensionality), which is crucial when work-
ing with GPU processing and kNN algorithms. We used the Python-based platform
Scikit-Learn [Pedregosa et al. 2011] that encompassed various data distributions
and sizes to ensure a diverse range of test cases. All the datasets used in our experiments
were real-valued and created using two principal distributions. The Gaussian distribution
generated isotropic blobs, while the make biclusters method produced objects exhibiting
biclustering characteristics [Dhillon 2001]. The shape of each artificial dataset generated
for the experiments in the Small scenario can be found in Table 2.

Table 2. Articial datasets used for the Small scenario
Name Number of samples Dimensions Size(GB)

SK-1M-12d 1 million 12 0.048
SK-10M-12d 10 million 12 0.48
SK-20M-12d 20 million 12 0.96
SK-30M-12d 30 million 12 1.44
SK-40M-12d 40 million 12 1.92
SK-50M-12d 50 million 12 2.4

Moreover, for the Large scenario, the dataset exceeds the memory capacity of a
single GPU and necessitates partitioning across multiple GPUs, as described in Table 3.

Table 3. Articial datasets used for the Large scenario
Name Number of samples Dimensions Size(GB)

SK-100M-12d 100 million 12 4.8
SK-150M-12d 150 million 12 7.2
SK-200M-12d 200 million 12 9.6
SK-250M-12d 250 million 12 12
SK-300M-12d 300 million 12 14.4
SK-350M-12d 350 million 12 16.8
SK-400M-12d 400 million 12 19.2

5.3. Evaluation method

One satisfactory way to measure an approximate algorithm performance is to compare
the approximate result with the exact one. For example, Recall@k can be used to
measure the quality of the constructed kNNG and is a great way to verify the quality of
the constructed kNNG [Patel et al. 2022, Wang et al. 2021a]. We calculate Recall@k
using Equation 1, where R(i, k) represents the number of truth-positive first k neighbors
for the object i. Here, the value of k for Recall was defined as 10, as Recall@10 has
been constantly used in other research work [Johnson et al. 2019, Wang et al. 2021a].



Recall@k =

∑n
i=1R(i, k)

n ∗ k
(1)

Recall@10 of the whole dataset will be used to measure the approximate kNNG
quality for the datasets described in Table 2. However, the datasets in Table 3 will have
the quality assessed by Recall@10 for the first 10.000 nearest neighbors because our
system cannot handle building of the full kNNG for datasets with over 200 million points.

5.4. Parameters settings

We defined (nList) for Inverted File methods as nList = 2log10 n
2 , where n is the dataset’s

number of samples, and probe varied from 5 to 100. Inverted File algorithms limit shards
to the number of GPUs, while NNDescent I/O needs more due to disk operations and
memory overhead. However, as discussed, NNDescent I/O does disk operations and has
a significant memory overhead as explained in Section 2, so we would not be able to
construct the approximate kNNG using three shards, and then we need to split the dataset
in more shards, which can explain the difference in the number of shards for Inverted
File algorithms and NNDescent I/O. Therefore, the number of shards for NNDescent I/O
follows the proposal in Section 4 to optimize GPU usage.

Finally, we need to define the main parameter of the kNNG algorithms, the value
of the hyperparameter k. This step is crucial because we need to choose a value for k
that is sufficient to test the GPU memory usage, but on the other hand, the value must not
be enormous because we could overflow the GPU memory for most datasets. Therefore
we define k as being 32 for our experiments because is a value ”rule of thumb” adopted
in similar work [Johnson et al. 2019, Wang et al. 2021b] and was a great value to test the
GPU usage without overflowing the GPU memory for the datasets.

5.5. Small scenario results
In this section, datasets fit entirely in one GPU memory and can be replicated over the
GPUs’ memories. Although replication is an appropriate solution for this scenario, we
compare both techniques, as sharding is also a possibility. In Fig. 1, the time to construct
the approximate kNNG and the quality of the approximate kNNG using Replication is
shown. Additionally, all the dataset’s results are presented in Table 4.3

Table 4. Results of the approximate kNNG construction using Replication for
datasets described in Table 2. For Inverted File methods, nprobe = 50 was cho-
sen. Exact-Construction method will also be shown. Speedup is relative to the
Exact method

IVFFLat IVFPQ IVFSQ NNDescent Exact
Datasets Time Rec@10 Speedup Time Rec@10 Speedup Time Rec@10 Speedup Time Rec@10 Speedup Time

SK-1M-12d 5.51s 0.98 1.86x 20.26s 0.81 - 7.62s 0.778 1.35x 4.37s 0.973 2.35x 10.29s
SK-10M-12d - - - 72.33s 0.786 13x 60.22s 0.686 15.64x 45.90s 0.862 20.52x 941.96s
SK-20M-12d - - - 115.47s 0.782 32.55x - - - - - - 3767.88s
SK-30M-12d - - - 290.16s 0.779 29.15x - - - - - - 8460.95s
SK-40M-12d - - - 649.45s 0.746 23.16x - - - - - - 15045.11s
SK-50M-12d - - - 564.14s 0.744 41.63x - - - - - - 23486.75s

With the results, we could check that Replication has a restriction in terms of
memory, shown in Table 4, where it is possible to observe how scalable each method is.

3In some cases, the method could not complete the kNNG construction for some settings due to memory
overflow, and were indicated with a “-”.



Figure 1. Running time and Recall@10 of approximate kNNG construction using
Replication for 1M(Fig. 1a, Fig. 1b) dataset with Inverted File methods. In this ex-
periment, nprobe parameter was varied from 5 up to 100, to produce the curves.

IVFPQ was the only one able to construct the approximate kNNG for all datasets, having
more than 0.74 on Recall@10 for most datasets. For vast GPU memory, IVFFLat
and NNDescent with Replication technique could construct a higher quality approximate
kNNG, as these methods build excellent kNNG approximations. Otherwise, IVFPQ is
recommended, as this algorithm has a low GPU memory usage and can handle large-scale
datasets.

In Fig. 2, the time to construct the approximate kNNG and the quality of the
approximate kNNG using Sharding is shown. Also, it is essential to emphasize that in
some cases, the method could not complete the kNNG construction for some settings
due to insufficient GPU memory. Additionally, all the dataset’s results are presented in
Table 5. 4

Figure 2. Running time and Recall@10 of approximate kNNG construction using
Sharding for 1M(Fig. 2a, Fig. 2b) dataset with Inverted File methods. In this
experiment, nprobe parameter was varied from 5 up to 100,to produce the curves.

In Table 5, we could observe that, even though Sharding allows the larger datasets
to be handled IVFFlat is an approximate method with a high GPU memory usage and
was unsuccessful for some datasets. On the other hand, NNDescent I/O and IVFPQ

4As has been discussed in this paper, NNDescent I/O has different values of Shards for the datasets
because we must ensure that our GPU could merge to kNNG at once, which explains larger datasets having
greater number of shards.



Table 5. Results of the approximate kNNG construction using Sharding for
datasets described in Table 2. For Inverted File methods, nprobe = 50 was cho-
sen. Exact-Construction method will also be shown. Speedup is relative to the
Exact method.

IVFFLat IVFPQ NNDescent I/O Exact
Datasets Time Rec@10 Shards Speedup Time Rec@10 Shards Speedup Time Rec@10 Shards Speedup Time Shards

SK-1M-12d 8.06s 0.981 3 1.27x 23.89s 0.826 3 - 12.19s 0.978 3 - 10.29s 3
SK-10M-12d 109.58s 0.970 3 8.59x 93.33s 0.802 3 10.09x 77.44s 0.866 3 12.16 941.96s 3
SK-20M-12d 305.45s 0.902 3 12.33x 155.64s 0.737 3 24.2x 156.80s 0.775 3 24.02x 3767.88s 3
SK-30M-12d 614.43s 0.768 3 13.77x 224.76s 0.614 3 37.64x 395.36s 0.897 6 21.40x 8460.95s 3
SK-40M-12d - - - - 531.92s 0.775 3 28.28x 522.26s 0.877 6 28.80x 15045.11s 3
SK-50M-12d - - - - 597.80s 0.788 3 39.28x 851.01s 0.927 9 27.59s 23486.75s 3

could construct the approximate kNNG for all the datasets presented in Table 2. Although
NNDescent uses disk I/O operations, it performs well for large datasets, constructing the
approximate kNNG at almost the same time as IVFPQ but with a finer recall. Therefore,
even though IVFPQ is quicker than NNDescent I/O, regarding approximate kNNG qual-
ity, NNDescent I/O shows better results than IVFPQ, achieving more than 0.8 for most
scenarios. However, NNDescent I/O’s less satisfactory kNNG is due to the small num-
ber of shards, which results in fewer merging operations, decreasing the quality of the
approximate kNNG.

5.6. Large scenario results
In this section, we analyze the Large scenario, where datasets don’t fit in one GPU mem-
ory. Only Sharding compatible methods (IVFPQ and NNDescent I/O) are tested. We
compare time and Recall@10 for 10,000 objects due to computational constraints as
described in Section 5.3. The parameters for both algorithms will follow the proposal
presented in 5.5. Finally, IVFFlat will not be used in this scenario because this algorithm
has an extensive memory overhead. We present the results in Table 6.5

Table 6. Results of the approximate kNNG construction using Sharding for
datasets described in Table 3. For IVFPQ, nprobe = 100 was chosen for obtaining
the max Recall@10. Exact-Construction method will also be shown. Speedup is
relative to the Exact method

IVFPQ NNDescent I/O Exact
Datasets Time Rec@10 Shards Speedup Time Rec@10 Shards Speedup Time Shards

SK-100M-12d 2266.92s 0.749 3 41.51x 2350.44s 0.973 15 40.03x 94106.28s 3
SK-150M-12d 3499.38s 0.748 3 60.37x 4804.50s 0.981 24 43.97x 211258.76s 3
SK-200M-12d 5041.69s 0.734 3 74.48 7639.18s 0.982 30 49.15x 375534.77 3
SK-250M-12d 6851.70s 0.737 3 - 10297.53s 0.983 36 - - 3
SK-300M-12d 8638.30s 0.734 3 - 15915.68s 0.985 45 - - 3
SK-350M-12d 11441.11s 0.763 3 - 21094.86 0.986 51 - - 3
SK-400M-12d 12845.55s 0.754 3 - 27721.59s 0.987 60 - - 3

The results in Table 6 reveal the differences between IVFPQ and NNDescent I/O
for large-scale datasets. IVFPQ is fast and efficient in constructing the kNNG, making
it suitable for quick approximations. However, its quality is lower, with Recall@10
mostly below 0.76, which may be a concern if seeking higher-quality approximations.
On the other hand, even though NNDescent I/O is slower than IVFPQ, the quality of the
approximate kNNG is impressive, having more than 0.92 for Recall@10. Additionally,
when comparing the construction time to the exact algorithm, NNDescent I/O provides
significant acceleration, addressing the main challenge in kNNG building.

5Exact algorithm had a 5-day time limit (120h) for the experiments, noted as “-” in Table 6.



Therefore, IVFPQ and NNDescent I/O have proved to be a scalable approximate
kNNG method that works fine with multi-GPU systems as it could construct the approxi-
mate kNNG for all the datasets with both techniques. Additionally, we could check for a
trade-off between speed (IVFPQ) and approximation quality (NNDescent I/O).

6. Conclusion
The paper fulfilled its goals, introducing and studying multiple kNNG algorithms. We
test scalability in two scenarios: replication, which faced memory limitation issues, and
sharding, which could handle larger datasets.

In the Small scenario, IVFFlat, NNDescent, and IVFSQ had significant GPU
memory usage, which made them unable to construct the kNNG for datasets over 20M
samples. However, NNDescent and IVFFlat had high-quality approximations, having
more than 0.95 of Recall@10. IVFPQ was rapid but lower quality than IVFFlat and
NNDescent. NNDescent I/O performed well, constructing kNNG for all datasets in ade-
quate time when compared to the exact construction, and had a high recall, having more
than 0.86 for most datasets. In the Large scenario, IVFPQ constructed kNNG quickly for
large-scale datasets with multi-GPU and Sharding benefits, 74x faster than exact construc-
tion. However, IVFPQ had lower quality, while NNDescent I/O provided good speed,
compared to the exact-construction, 49x faster than exact-construction, and high-quality
approximations with Recall@10 over 0.92. Therefore, it indicates a trade-off between
speed and quality when using IVFPQ and NNDescent I/O.

Finally, it is essential to note that the scope of our investigation is confined to
single-node systems. While we speed up the construction of the kNNG through the uti-
lization of multiple GPUs, our analysis does not extend to the evaluation of algorithms
in the context of multi-node systems. The exploration of multi-node system scenarios
represents a promising avenue for future research endeavors.

In the future, we plan to use the results of this research to enhance several Machine
Learning techniques that rely on the construction of the kNNG. Our findings will guide
our choices of algorithm and parameters based on the scenario of application and dataset
characteristics.

Acknowledgment
G.O. and M.N. thanks FAPESP (contract number 2019/09817-6, 2022/04934-7 and
2023/00993-1) and CAPES for their support. H.S. thanks FAPESP (contract number
2019/26702-8, 2021/00199-8, and 2023/00566-6) for their support.

References
[Amato and Savino 2010] Amato, G. and Savino, P. (2010). Approximate similarity search

in metric spaces using inverted files. In Proceedings of the 3rd International ICST
Conference on Scalable Information Systems. ICST.

[Andrade et al. 2013] Andrade, G., Ramos, G., Madeira, D., Sachetto, R., Ferreira, R., and
Rocha, L. (2013). G-dbscan: A gpu accelerated algorithm for density-based clustering.
Procedia Computer Science, 18:369–378. 2013 International Conference on Compu-
tational Science.



[Asano et al. 2009] Asano, S., Maruyama, T., and Yamaguchi, Y. (2009). Performance com-
parison of fpga, gpu and cpu in image processing. In 2009 international conference on
field programmable logic and applications, pages 126–131. IEEE.

[Croix and Khatri 2009] Croix, J. F. and Khatri, S. P. (2009). Introduction to gpu program-
ming for eda. In Proceedings of the 2009 International Conference on Computer-Aided
Design, pages 276–280.

[Dhillon 2001] Dhillon, I. S. (2001). Co-clustering documents and words using bipartite
spectral graph partitioning. In Proceedings of the Seventh ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’01, page 269–274, New
York, NY, USA. Association for Computing Machinery.

[Dong et al. 2011] Dong, W., Charikar, M., and Li, K. (2011). Efficient k-nearest neighbor
graph construction for generic similarity measures. In Srinivasan, S., Ramamritham,
K., Kumar, A., Ravindra, M. P., Bertino, E., and Kumar, R., editors, Proceedings of
the 20th International Conference on World Wide Web, WWW 2011, Hyderabad, India,
March 28 - April 1, 2011, pages 577–586. ACM.

[Fogal et al. 2010] Fogal, T., Childs, H., Shankar, S., Krüger, J. H., Bergeron, R. D., and
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