Evaluating the Parallel Simulation of Dynamics of Electrons in
Molecules on AWS Spot Instances

Vanderlei Munhoz', Marcio Castro', Luis G. C. Rego?

! Federal University of Santa Catarina (UFSC)
Department of Informatics and Statistics (INE)

2 Federal University of Santa Catarina (UFSC)
Department of Physics (FSC)

vanderlei.filho@proton.me, marcio.castro@ufsc.br
luis.guilherme@ufsc.br

Abstract. In this paper, we evaluate the cost-effectiveness and performance of
simulating the dynamics of electrons in molecules on AWS and investigate the
implications of using various types of storage solutions, contrasting the results
with those obtained on a traditional HPC cluster. Our findings reveal key insights
into the computational efficiency and cost-effectiveness of these diverse platforms,
contributing to the critical discourse on how to optimally harness the power of
modern computing infrastructures for complex molecular simulations.

1. Introduction

The dynamics of electrons in molecules is a critical area of study that has implications for
various fields, from fundamental science to practical applications in technology and indus-
try [Marcus 1993, Evers et al. 2020]. Understanding changes in the electronic structure of
the atoms and molecules can help predict the outcome of chemical reactions, significantly
aiding pursuits in drug discovery and materials science [De Vivo et al. 2016, Carter 2008].
Moreover, deeper knowledge in this domain can produce groundbreaking data processing
and transmission methods. In certain quantum computing architectures, electrons play a
crucial role as information carriers. Therefore, a thorough understanding of their dynamics
becomes indispensable in fostering advancement in this promising and rapidly evolving
field [Yu et al. 2022, Ollitrault et al. 2021].

Computer simulations play a vital role in this field of study, offering a practical and
efficient method for exploring complex quantum phenomena that are otherwise difficult to
observe directly. Using computational models, researchers can investigate how electrons
behave under various conditions, providing an invaluable tool for understanding the
intricacies of molecular behavior [Ciccotti et al. 2022]. As computational power continues
to grow, simulations will allow for examining increasingly complex molecular systems,
enabling breakthroughs that might not be achievable through traditional experimental
methodologies alone.

Public cloud platforms have effectively democratized access to computational
power, extending their benefits to millions of users worldwide. They are versatile tools,
especially for small organizations and independent scientists, who may lack the access or
the financial means to run intensive simulations on their own [Buyya et al. 2019]. How-
ever, navigating these platforms can be riddled with challenges. One significant hurdle is
the need for more standardization among providers, causing users to struggle with making
fair and informed comparisons. The pricing models, frequently opaque and subject to

continual change, further complicate matters, adding another layer of complexity and
making it difficult for users to anticipate costs and budgets effectively. The hardware
abstraction inherent in cloud platforms presents another sizable obstacle, specifically for
High Performance Computing (HPC) applications that often require precise performance
characteristics [Netto et al. 2018]. This level of abstraction damps the optimization pro-
cess for these applications, making it hard for users to fully leverage their performance
capabilities.

In prior research, we proposed the HPC@ Cloud tool to assist users in creating
HPC clusters and executing HPC applications in public clouds while reducing costs by
employing transient Virtual Machines (VMs) from Amazon Web Services (AWS) known as
Spot instances [Wang et al. 2018]. These instances represent idle infrastructure that cloud
providers offer at a significantly discounted rate, although they are subject to revocation at
any time [Munhoz et al. 2022]. It also provides a comprehensive suite of tools to monitor
potential Spot failures and promptly recover parallel applications based on the Message
Passing Interface (MPI) standard, thereby offering users an effective way to maximize the
benefits of their cloud resources.

In this paper, we dissect the significant issues of running parallel simulations of
dynamics of electrons in molecules using the AWS cloud infrastructure. We provide
a thorough cost-effectiveness assessment of AWS Spot instances and different storage
solutions, comparing their performance and costs with a traditional on-premise HPC cluster.
We focus on the DynEMol application, which is capable of describing the nonadiabatic
excited state of molecules adsorbed on extended solid surfaces as well as charge transfer
processes.

In summary, we bring the following contributions to the HPC and Cloud Computing
convergence:

1. A comprehensive evaluation of the efficacy of the HPC @ Cloud tool when deployed
for a real-world HPC application (DynEMol) on public cloud platforms.

2. A series of experiments that illustrate the advantages and disadvantages of utilizing
public cloud infrastructure for molecular dynamics simulations, thereby providing
a lucid overview of the potential costs and the scale of experiments that can be
efficiently conducted within these environments.

3. An examination of the various compute and storage options provided by AWS,
focusing on differentiating their unique features and potential applications.

The remainder of this work is organized as follows. In Section 2, we briefly present
the DynEMol simulation tool. In Section 3, we present our method for migrating the
DynEMol application to the public cloud, with a detailed discussion regarding the major
trade-offs and the reasoning behind our decisions. In Section 4, we present our applied
evaluation method and gathered experimental data. In Section 5, we analyze and discuss
the results. In Section 6, we discuss related research. Finally, we draw our conclusions and
discuss future work in Section 7.

2. The DynEMol Simulation Tool

Charge Transfer (CT) and Electronic Excitation Dynamics (EED) are ubiquitous in pho-
tochemistry. They constitute the underlying mechanisms for electron transfer reactions,
light-harvesting in natural and artificial molecular structures, energy transduction phenom-
ena, and many other processes. They are often influenced by the non-adiabatic coupling
between electronic and nuclear degrees of freedom.

|:| Cluster Nodes Main Control Loop

D MPI Workers MPI Master

E;ﬂ OpenMP Threads
XN]

‘mu‘...‘um‘ ‘mu‘...‘mu

(a) Simulation results. (b) Parallelization strategy.

Figure 1. Overview of DynEMol simulation results and parallelization.

The Dynamics of Electrons in Molecules (DynEMol') is a sophisticated simulation
tool for accurately representing how molecules behave when they are attached to large
solid surfaces and during processes where electrical charge is transferred. It performs
simulations of the excited-state dynamics of molecular systems in the solid and liquid
phases.

The method combines tight-biding Quantum Mechanical (QM) with classical
Molecular Mechanics (MM) formalisms in a semi-empirical hybrid quantum-classical
model capable of simulating the non-adiabatic dynamics of large atomistic models at the
lowest computational cost.

This hybrid method provides the tools for studying a variety of photoinduced
effects, including the charge and energy transfer dynamics in large molecular and
nanostructured materials subject to complex structural deformations [Torres et al. 2018,
Abraham et al. 2019]. Simulations are carried out within the framework of the self-
consistent Ehrenfest method and the Coherent Switching with Decay-of-Mixing (CSDM)
method [Shu et al. 2020].

DynEMol is written mainly in Fortran and leverages OpenMP and Message Passing
Interface (MPI) to execute compute-intensive tasks in parallel. The dynamics simulation
consists of a main loop (the time loop) that executes fifty to a hundred thousand time-steps.
Parallel computations are restricted to interaction calculations in a given time slice. A
master MPI process (rank 0) undergoes the entire time evolution of the simulation and
exchanges data with MPI worker processes distributed across the cluster. It also executes a
few compute-intensive tasks, such as matrix diagonalizations. Most MPI worker processes
are set to dwell in specific subroutines, particularly the ones that calculate the forces on the
atoms. A smaller number of MPI worker processes are used for eigenvalue and eigenvector
calculations as well as matrix inversions.

Figure 1a shows an example of a simulation output by DynEMol (in this case, an
azobenzene molecule in ethanol), whereas Figure 1b shows an overview of the hybrid
MPI/OpenMP parallelization strategy adopted in DynEMol. Parameters of the parallel
solution include the number of: (i) HPC cluster nodes; (ii) MPI worker processes per cluster
node; and (iii) OpenMP threads per MPI worker process. A variety of communications
are used to send tasks and receive solutions to/from MPI processes. DynEMol achieves
better performance when the number of MPI workers and OpenMP threads are fine-tuned

'https://luisrego.sites.ufsc.br/

to the target system based on its atomic size. Linear algebra calculations, such as matrix
diagonalization and matrix inversion, benefit from OpenMP threads, whereas the atomic
force calculations are efficiently parallelized via MPI processes.

DynEMol also employs a data fault tolerance mechanism that preserves the state of
simulations in a set of files. The frequency of these backups, determined by the number of
iterations, can be adjusted to suit the needs of the simulation. We have marginally adapted
this existing mechanism to save backup files only when an eviction alarm for a Spot
instance is detected. This optimized approach helps conserve computational resources,
allowing them to be wholly dedicated to running the simulation, thus enhancing overall
efficiency and reducing costs.

3. The Proposed Cloud-based HPC Cluster Architecture

Leading public cloud providers, such as Amazon Web Services (AWS), offer ser-
vices and hardware infrastructures to a broad audience over the Internet, eliminat-
ing the need for long-term commitments or direct engagements with the service
provider [Mell and Grance 2011]. With hardware strategically located in multiple data
centers, AWS extends computing capabilities to users in the form of instances. An instance,
often typified as a VM, represents a virtual allocation on shared physical infrastructure and
remains a prevalent and cost-effective computing choice. AWS provides a diverse spectrum
of instances, each differing in attributes such as hypervisor type, CPU design, number of
vCPUs, memory capacity, and more, enabling users to pinpoint the ideal configuration for
their unique requirements. Besides the VMs, AWS offers APIs to create and manage other
infrastructure elements, such as networking and storage.

To facilitate the migration of legacy HPC applications to public cloud plat-
forms, we leverage the HPC @ Cloud toolkit?, introduced by [Munhoz and Castro 2022].
HPC@ Cloud offers a suite of tools that can be executed on the user’s machine. These tools
enable users to configure cloud infrastructure, execute jobs, monitor performance, predict
costs, and interact with the provisioned resources in an automated and provider-agnostic
manner. HPC@ Cloud is open-source software.

In this section, we detail the proposed HPC cluster architecture built on top of
AWS using HPC@ Cloud. We first discuss its topology in Section 3.1. Then, we give the
details about its network infrastructure in Section 3.2.

3.1. Cluster Topology and Storage Devices

We build a cluster architecture in AWS akin to a classical on-premise homogeneous HPC
cluster. Given its ephemeral character — being instantiated solely for a singular task before
termination — there is no distinction between master and worker nodes. As such, every
node will be dedicated to workload execution.

We leverage Spot instances, a cost-efficient option that utilizes spare EC2 compute
capacity at significant discounts. However, these instances carry the risk of interruptions
(failures), with AWS providing a two-minute notification should the capacity be required
elsewhere. This makes Spot instances an ideal solution for applications that are adaptable,
can tolerate faults, or can manage potential disruptions, which is the case for DynEMol.

The cluster configuration is based on a shared storage topology, where multiple
EC2 nodes access a shared storage system, ensuring they can all read and write data to the

https://github.com/lapesd/hpcac—toolkit/

same set of files concurrently. A centralized storage approach simplifies data management
and provides a consistent data view to all nodes. The performance, however, relies heavily
on the network, depending on the type of device used to implement the shared storage
system. In this paper, we discuss two options: Elastic Block Storage (EBS) and Lustre.

At a low level, EBS volumes operate like raw, unformatted block devices, which
can be individually attached to the cluster’s EC2 instances. Once attached, they are
formatted with a file system. EBS volumes can also be configured in terms of Input/Output
Operations Per Second (IOPS), and we test a variety of setups in our experiments. Our
cluster design allocates a distinct EBS volume to each node, maintaining a consistent [OPS
configuration across all volumes. To establish a shared file system, we implement a Linux
Network File System (NFS) directory accessible throughout the entire cluster. The NFS
server is hosted on an on-demand instance, ensuring consistent availability and eliminating
the risk of unexpected disruptions arising from a Spot instance eviction, thereby preventing
a single point of failure.

Lustre is a file system tailored for rapid processing, prevalent in HPC settings. For
our cloud-based clusters, we utilize Amazon FSx for Lustre, a managed version of the
Lustre file system. Unlike EBS volumes, which can only be attached to a single EC2
instance at once, FSx supports concurrent attachment to multiple instances, providing a
ready-to-use, high-performance shared file system. A notable distinction between EBS-
based shared storage and FSx, beyond the financial implications, is that the latter is
equipped with its dedicated computational infrastructure, not requiring the allocation of
resources and management of an NFES server in one of the cluster nodes, further improving
performance. EC2 costs can also be slightly reduced when using Lustre, as all nodes can
be based on Spot instances.

3.2. Network Infrastructure

AWS provides a robust and scalable network infrastructure for EC2 instances. At its core
is the Virtual Private Cloud (VPC), a logically isolated section of the underlying AWS
cloud infrastructure where resources, including EC2 instances, can be launched. It enables
configurations of resources like subnets, route tables, and network gateways, mimicking
conventional network elements. We have opted to deploy a single Availability Zone VPC
for our cloud cluster architecture. This ensures all nodes are housed within the same
physical data center, minimizing geographic spread and, consequently, reducing latency.

Moreover, when launching multiple EC2 instances, AWS strategically positions
them to ensure a spread distribution across the underlying hardware, mitigating the risk
of simultaneous failures. Although ideal for enterprise web applications focused on
fault-tolerance through redundancy, this default behavior results in high network latency,
damping the performance of tightly-integrated node-to-node communications commonly
seen in HPC applications, including DynEMol. To improve this, we configured the EC2
service to pack instances within a singular Availability Zone using the AWS placement
groups feature, thus further improving the network performance.

The basic network interface provided by AWS is called Elastic Network Adapter
(ENA), which provides bandwidth capabilities above 100 Gbps for some specific instances.
AWS also offers an improved network interface to be attached to EC2 instances named
Elastic Fabric Adapter (EFA). EFA provides all of the functionality of an ENA but is
specifically designed to boost network performance by allowing instances to bypass the
typical TCP/IP stack when communicating with each other, resulting in lower network

latency. EFA is an optional EC2 networking feature that can be enabled at no additional
cost. A downside is that a limited number of operating systems and EC2 instance types are
compatible with EFA adapters.

4. Evaluation Method

4.1. Experimental Environment

In this study, we employed a conventional HPC cluster (named ON-PREMISE in our
experiments) housed within the Department of Physics at the University of Santa Catarina
(UFSC). We used four homogeneous nodes, each powered by Intel Xeon E5-2687W CPUs
equipped with 16 physical cores with hyperthreading enabled (32 virtual cores). These
nodes are interconnected via a high-speed InfiniBand network. We leverage InfiniBand’s
Remote Direct Memory Access (RDMA) capabilities, which allow direct data transfers
with the RAM, achieving high-speed data transfers. The cluster operating system is based
on the Linux Ubuntu 20.04.4 LTS distribution.

We also assessed a variety of AWS public cloud clusters, all configured to run with
the same MPI distribution and compilers from the Intel OneAPI package, mirroring the
setup of the ON-PREMISE cluster. Although having two extra physical cores, we opted for
the c5n.9x1large instance type due to its close resemblance to the ON-PREMISE nodes.
Table 1 shows the cluster configurations used in the experimental evaluation. In AWS,
we considered clusters composed of on-demand instances (named ON-DEMAND in our
experiments) and Spot instances (named SPOT in our experiments). We also considered
different storage technologies (EBS and FSx) and interconnection technologies (ENA and
EFA) provided by AWS.

We executed preliminary tests varying the number of MPI ranks per cluster node
and number of OpenMP threads per rank, which revealed that DynEMol attained the
best performance when executed with four MPI ranks and four OpenMP threads per
cluster node. We thus kept this configuration as the standard one for all of the remaining
experiments. To investigate the performance implications of DynEMol’s checkpointing
mechanism, we measured the time required to save checkpoint files and restart execution
from a checkpoint.

4.2. Evaluated Scenarios

We carried out simulations using DynEMol that describe the vibrational relaxation of
photoexcited molecular systems, whereby a photon excites the molecular system from
the ground quantum-state to an unoccupied quantum-state of higher energy, thus leaving
the ground state unoccupied (with an excitation known as a “hole”). As the simulation

Table 1. Cluster configurations evaluated.

Platform Nodes Cores* per Node Infrastructure Type Storage Network Adapter

4 36 VM - On-demand EBSio2 ENA (TCP/IP)
AWS 4 36 VM - Spot EBS io2 ENA (TCP/IP)
4 36 VM - Spot EBS io2 EFA
4 36 VM - Spot FSx EFA
On-Premise 4 32 Baremetal SSD InfiniBand

*Virtual (logical) cores with hyperthreading enabled.

Table 2. Workload sizes.

Workload Size Quantum Atoms Orbitals Force Pairs Time-Steps (¢;) Simulated Time

Small 35 95 595 100, 000 1 ps
Medium 451 2,351 4,656 100 1072 ps
Large 628 3,412 4,005 100 1072 ps

progresses, the photo-excited high-energy electron decays back to the ground state and
eventually annihilates the hole. In these simulations, electronic decay occurs through the
generation of vibrational states on the molecular arrangement. Therefore, electronic energy
is converted into vibrational energy of the molecular system.

We executed three different molecular simulations using the parameters described
in Table 2. Only one isolated molecule is in the gas phase in the small system. The medium
and large systems comprise a molecular dye attached (anchored) to the surface of a titanium
dioxide (TiO2) anatase cluster. In these cases, in addition to generating vibrations in the
molecule and the cluster arrangements, the photoexcited electron is transferred from the
molecular dye into the TiO2 cluster (the process is called interfacial electron transfer). This
type of inorganic substrate sensitized with molecular dyes is used in photoelectrochemical
fuel cells.

We pursue the following primary objectives when running DynEMol across diverse
cluster architectures in AWS (ON-DEMAND and SPOT) as well as on the on-premise
HPC cluster (ON-PREMISE): (i) assess both the performance enhancements and cost-
effectiveness of FSx for Lustre relative to EBS; (ii) investigate the performance benefits
derived from employing ENA and EFA to optimize network communications; and (iii)
gauge the performance overhead associated with DynEMol’s fault tolerance mechanism
when a variable number of simulated Spot evictions occur during the execution of the
application.

For each scenario, we compute the performance improvements (speedups) achieved
by DynEMol when multiple nodes of the cluster are used. These speedups are relative
to the parallel execution of DynEMol using a single node of the cluster. All speedups
of SPOT clusters are relative to the non-optimized SPOT cluster variant (EBS/ENA). To
evaluate the cost-effectiveness of each cluster configuration, we vary the number of nodes
and induce spot instance evictions, analyzing the number of executed time-steps per USD
spent.

The frequency of checkpoints, denoted by f, is determined for each SPOT cluster
according to the time-steps ¢, as detailed in Table 2. The frequency is calculated using
the function f(¢s) = %. We do not make checkpoints when running DynEMol on ON-
DEMAND and ON-PREMISE clusters. All results were derived from the average of 3
executions per experiment.

5. Experimental Results

Figure 2 showcases the results obtained from the three workload sizes (Table 2) across the
five cluster configurations (Table 1). This initial analysis does not consider the impact of
spot instance evictions. As noted in Figure 2a, horizontal scaling performed poorly for
small workloads, producing a negligible speedup on all clusters. The enhanced networking
and storage solutions on the SPOT cluster (EFA and FSx) did not yield significant improve-
ments for small workloads either. Results in Figure 2 presents that a better horizontal

1.30 1.30 1.30

B On-Premise
mmm On-Demand EBS ENA
1.251 mm spot EBS ENA 1.254 - 1.25
I Spot EBS EFA
1.20 Spot Lustre FSx EFA 1201 = 1.20 i
5115 51.15 5115
© © & ©
Q (9} Q
g 2 2100/ Lo
&1.10 81.10 &11
1.05 i i . 1.05+ 1.05
1.00 I 1.00+ 1.00
0.95 " " ; 0.95 " " i 0.95 " " ;
2 3 4 2 3 4 2 3 4
Nodes Nodes Nodes
(a) Small Workload (b) Medium Workload (c) Large Workload

Figure 2. Speedups achieved with different cluster configurations.

IS
IS

—— On-Demand EBS ENA
—*— Spot EBS ENA
—e— Spot EBS EFA

Spot Lustre FSx EFA

w
w

/

/

-- On-Demand EBS ENA
—»— Spot EBS ENA
—e— Spot EBS EFA
Spot Lustre FSx EFA

N

un

Experiment Costs (USD)
N
Experiment Costs (USD)

!

o
o

1 2 3 4 01 4 8 12 24
Nodes Spot Evictions (Failures)
(a) Increasing Nodes (0 failures) (b) Increasing Failures (4 nodes)

Figure 3. Execution costs (large workload).

scaling was observed with medium and large workloads for all cluster configurations,
achieving speedups of up to 1.22x (FSx) and 1.29x (ON-DEMAND clusters) over 4-node
clusters. The advantages of using EFA are more apparent for larger workloads, producing
up to 9% increase in performance compared to ENA.

Figure 3 illustrates the monetary costs (in US dollars) of running DynEMol on
AWS with the large workload across a variable number of nodes with no spot evictions
(Figure 3a) and with four nodes and a variable number of spot evictions (Figure 3b). Based
on the results in Figure 3a, we can conclude that FSx becomes cost-effective when running
larger workloads in large clusters. Although spot instances can be much cheaper than
on-demand infrastructure, the performance impact of the fault tolerance strategy can easily
translate to higher infrastructure costs (Figure 3b). The checkpoint restoration process
employed in DynEMol is CPU-intensive, demanding little I/O throughput for performance.
This is reflected in the steep cost increase for experiments with FSx (Figure 3b), indicating
that experiencing more than four spot evictions could lead to costs higher than simply
opting for on-demand instances.

Figure 4 presents the ratio between executed time-steps and each US dollar spent
on cloud resources. Overall, SPOT clusters offer a much more cost-effective alternative

~
o

200 —e— On-Demand EBS ENA ---- On-Demand EBS ENA
—<— Spot EBS ENA —<— Spot EBS ENA
Spot EBS EFA Spot EBS EFA
Spot Lustre FSx EFA Spot Lustre FSx EFA

(o))
o

=
wv
o

w

o

—
[=]
o
N
o

Time-Steps Executed
per USD Spent
Time-Steps Executed
per USD Spent

50 - - 30
o
1 2 3 4 2051 3 8 12 24
Nodes Spot Evictions (Failures)
(a) Increasing Nodes (0 failures) (b) Increasing Failures (4 nodes)

Figure 4. Time-steps per USD spent (large workload).

than ON-DEMAND clusters when there are no spot evictions (Figure 4a), executing up to
54% more time-steps for the same price. However, the cost-efficiency of SPOT clusters
undergoes a steep decline with a rising number of failures (Figure 4b), potentially rendering
the utilization of spot instances less advantageous. Still, SPOT clusters with EBS were
cheaper than ON-DEMAND clusters with up to 12 failures.

Finally, we noticed that FSx is only better than EBS when employed in larger
clusters (four nodes or more). Given that FSx is approximately 233% costlier than EBS, it
may only be worth for heavy I/O applications.

6. Related Work

Several recent studies have examined the cost-effectiveness of utilizing Spot instances
for HPC. Notably, Zhou et al. proposed FarSpot, a framework that centers on forecast-
ing cloud infrastructure expenses using Machine Learning ensemble methods, such as
xgboost [Zhou et al. 2022]. While aligning with the broader theme of cost optimization,
our study serves a distinct purpose and offers a complementary perspective. Rather than
developing a generalized model for predicting costs, we specifically explore and evaluate
the application of a real-world HPC solution using fault-tolerant Spot instances, thus
focusing on practical implementation and performance.

Teylo et al. conducted an in-depth assessment of AWS Spot instances in the context
of scheduling bag-of-tasks applications [Teylo et al. 2021]. While their research is comple-
mentary to ours, our study extends the exploration into a different dimension. We present
a comprehensive analysis of DynEMol, a tightly-coupled, real-world HPC application,
which is a context that presents notable variances from bag-of-tasks applications.

Sharma and Jadhao conducted a comprehensive survey of the main chal-
lenges of executing molecular dynamics simulations using public cloud infrastruc-
ture [Sharma and Jadhao 2021]. Their work also touched on the integration of TensorFlow
and other Machine Learning frameworks in the field of molecular dynamics simulation.
While their investigation offers valuable insights, our study goes a step further, actively
engaging in the migration and execution of molecular simulations using AWS Spot in-
stances. This practical approach allows us to directly address and overcome some of
the infrastructure management challenges highlighted by Sharma and Jadhao, thereby
providing a more hands-on perspective.

Sena et al. presented a comprehensive exploration of the potential advantages users

might extract from the diversity of instances and contract models offered by public cloud
providers, aiming to reduce financial expenditure. Their research delineates a methodology
for dynamically scheduling applications subject to deadline constraints across both Spot
and persistent instances [Sena et al. 2023]. Rather than emphasizing scheduling strategies
and pricing model analyses, we concentrate on the practical nuances of running real-world
applications using the aforementioned infrastructure. Thus, our work offers valuable
insights into the application side of leveraging such resources.

Brum et al. offers a comprehensive review of the fault tolerance techniques most
commonly employed by cloud and HPC applications operating within these environments.
Their focus primarily revolves around checkpoint-rollback and replication strategies, in ad-
dition to exploring fault detection approaches and existing reliable storage solutions within
the cloud [Brum et al. 2023]. In our study, we empirically examine the checkpoint-rollback
method specifically adapted for less reliable AWS Spot clusters. This analysis contributes
practical insights to the existing theoretical landscape, enhancing our understanding of
how these fault tolerance techniques perform in real-world cloud computing scenarios.

Finally, studies such as [Dancheva et al. 2023] and [Fernandez 2022] present a
broad analysis of [aaS from public cloud providers, using micro and macro benchmarks
to assess the performance of MPI operations across various vendors and architectures.
Our research differs in several key aspects: (i) our research is centered explicitly around
DynEMol, real-world HPC application, which is a distinct departure from the use of MPI
benchmarks in the referenced studies; (i1) we address the challenges of migrating and
managing such HPC applications in a public cloud environment, which is not explicitly
addressed by Dancheva et al. and Fernandez; (iii) we focus on strategies for further
reducing costs associated with cloud-based HPC, such as leveraging transient virtual
machines like AWS Spot instances, rather than just relying on on-demand pricing models;
and (iv) our study also delves into a practical application of a fault tolerance technique
tailored for AWS Spot clusters, taking advantage of a eviction notification system to
minimize checkpoint frequency and overhead. Therefore, our research offers a more
applied perspective on cloud-based HPC, addressing both the performance and operational
challenges associated with such an approach.

7. Conclusion and Future Work

In this paper, we migrated the DynEMol simulation tool to the cloud using the
HPC@Cloud framework. We tested DynEMol over various cluster configurations, evaluat-
ing different available technologies, such as spot and on-demand instances for computa-
tional infrastructure; EBS and FSx for storage; and EFA and ENA for networking.

Our experimental results suggest that while cloud-based resources configured opti-
mally exhibit slightly inferior scalability compared to the on-premise infrastructure tested,
they still offer substantial benefits. The existing fault tolerance mechanism in DynEMol,
specifically its checkpointing feature, is sufficiently lightweight and its performance foot-
print is virtually undetectable for medium to large workloads. This feature enables us
to increase checkpointing frequency, thereby circumventing unnecessary rework when
restoring from these checkpoints. Moreover, limiting the number of instances enhances
the cost-effectiveness of spot infrastructure due to the associated reduction in failure prob-
ability. Utilizing spot instances and maintaining a finely-tuned parallel composition for the
workload is crucial for achieving cost-effectiveness. However, if users need immediate
access or a specific workload lacks a fault tolerance mechanism, they can utilize on-demand

instances instead of spot instances, albeit at a higher cost.

Regarding the available storage in AWS, although FSx can be costly, the benefits
outweigh the costs when a high number of nodes (at least four) perform parallel I/O.
Furthermore, advances in networking technologies have paved the way for high-bandwidth,
low-latency communications in the public cloud. When testing networking technologies,
we observed better performance when using EFA, attesting to this fact. Furthermore, EFA
can be enabled at no additional cost, further improving the speedup efficiency.

Future research includes a deeper analysis of DynEMol’s parallelization methods
to further improve the obtainable speedups through code improvements and fine-tuning of
the number of MPI ranks per node and OpenMP threads per MPI rank. We also intend to
test the GPU-accelerated version of DynEMol using cloud resources, a different range of
instance types, and cloud providers. Future objectives also include the development of a
cloud-native version of DynEMol for easy deployment by any researcher in the field.

Acknowledgements

The authors would like thank the National Laboratory for Scientific Computing
(LNCC/MCTI), whose resources have contributed to this research. This work was partially
funded by the National Council for Scientific and Technological Development (CNPq) and
Amazon Web Services (AWS) through the CNPq/AWS call N° 64/2022 — Cloud Credits
for Research.

References

Abraham, B., Rego, L. G. C., and Gundlach, L. (2019). Electronic—vibrational coupling
and electron transfer. The Journal of Physical Chemistry C, 123(39):23760-23772.

Brum, R., Teylo, L., Arantes, L., and Sens, P. (2023). Ensuring Application Continuity
with Fault Tolerance Techniques, pages 191-212. Springer International Publishing,
Cham.

Buyya, R. et al. (2019). A Manifesto for Future Generation Cloud Computing: Research
Directions for the Next Decade. ACM Computing Surveys, 51(5).

Carter, E. A. (2008). Challenges in modeling materials properties without experimental
input. Science, 321(5890):800-803.

Ciccotti, G., Dellago, C., Ferrario, M., Hernandez, E., and Tuckerman, M. (2022). Molec-
ular simulations: past, present, and future (a topical issue in epjb). The European
Physical Journal B, 95.

Dancheva, T., Alonso, U., and Barton, M. (2023). Cloud benchmarking and performance
analysis of an hpc application in amazon ec2. Cluster Computing, pages 1-18.

De Vivo, M., Masetti, M., Bottegoni, G., and Cavalli, A. (2016). Role of molecular
dynamics and related methods in drug discovery. Journal of Medicinal Chemistry,
59(9):4035-4061. PMID: 26807648.

Evers, F., Korytar, R., Tewari, S., and van Ruitenbeek, J. M. (2020). Advances and
challenges in single-molecule electron transport. Rev. Mod. Phys., 92:035001.

Fernandez, A. (2022). Evaluation of the performance of tightly coupled parallel solvers
and mpi communications in iaas from the public cloud. IEEE Transactions on Cloud
Computing, 10(4):2613-2622.

Marcus, R. A. (1993). Electron transfer reactions in chemistry. theory and experiment.
Rev. Mod. Phys., 65:599-610.

Mell, P. M. and Grance, T. (2011). SP 800-145. The NIST Definition of Cloud Computing.
Technical report, National Institute of Standards & Technology, Gaithersburg, MD,
USA.

Munhoz, V. and Castro, M. (2022). HPC@Cloud: A provider-agnostic software framework
for enabling hpc in public cloud platforms. In Anais do Simpdsio em Sistemas Com-
putacionais de Alto Desempenho (WSCAD), pages 157-168, Florianopolis. Brazilian
Computer Society.

Munhoz, V., Castro, M., and Mendizabal, O. (2022). Strategies for fault-tolerant tightly-
coupled hpc workloads running on low-budget spot cloud infrastructures. In /IEEE

International Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD), pages 263-272, Bordeaux. IEEE Computer Society.

Netto, M., Calheiros, R., Rodrigues, E., Cunha, R., and Buyya, R. (2018). HPC Cloud
for Scientific and Business Applications: Taxonomy, Vision, and Research Challenges.
ACM Computing Surveys, 51.

Ollitrault, P. J., Miessen, A., and Tavernelli, I. (2021). Molecular quantum dynamics: A
quantum computing perspective. Accounts of Chemical Research, 54(23):4229-4238.
PMID: 34787398.

Sena, A. C., Boeres, C., Teylo, L., Drummond, L. M. A., and Rebello, V. E. F. (2023). Har-
nessing Low-Cost Virtual Machines on the Spot, pages 163—189. Springer International
Publishing, Cham.

Sharma, P. and Jadhao, V. (2021). Molecular dynamics simulations on cloud computing
and machine learning platforms. In IEEE International Conference on Cloud Computing
(CLOUD), pages 751-753.

Shu, Y., Zhang, L., Sun, S., and Truhlar, D. G. (2020). Time-derivative couplings for
self-consistent electronically nonadiabatic dynamics. Journal of Chemical Theory and
Computation, 16(7):4098-4106.

Teylo, L., Arantes, L., Sens, P., and Drummond, L. M. d. A. (2021). Scheduling Bag-of-
Tasks in Clouds using Spot and Burstable Virtual Machines. IEEE Transactions on
Cloud Computing, pages 1-1.

Torres, A., Prado, L. R., Bortolini, G., and Rego, L. G. C. (2018). Charge transfer driven
structural relaxation in a push—pull azobenzene dye—semiconductor complex. The
Journal of Physical Chemistry Letters, 9(20):5926-5933.

Wang, C., Liang, Q., and Urgaonkar, B. (2018). An empirical analysis of amazon ec2 spot
instance features affecting cost-effective resource procurement. ACM Trans. Model.
Perform. Eval. Comput. Syst., 3(2).

Yu, Q., Alonso, A. M., Caminiti, J., Beck, K. M., Sutherland, R. T., Leibfried, D.,
Rodriguez, K. J., Dhital, M., Hemmerling, B., and Hiftner, H. (2022). Feasibility study
of quantum computing using trapped electrons. Phys. Rev. A, 105:022420.

Zhou, A. C., Lao, J., Ke, Z., Wang, Y., and Mao, R. (2022). Farspot: Optimizing monetary
cost for hpc applications in the cloud spot market. IEEE Transactions on Parallel and
Distributed Systems, 33(11):2955-2967.

