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Abstract. Platform-aware programming is a usual practice of HPC perfor-
mance engineering programmers that is becoming more challenging due to the
increasing heterogeneity of parallel computing platforms. In this paper, it is
proposed a structured approach to platform-aware programming based on three
concepts: platform typing, multiple dispatch, and feature detection. It has been
implemented and evaluated through a proof-of-concept prototype built in Ju-
lia. It is evidenced that structured platform-aware programming provides better
modularity and ease of maintenance with minor performance overhead.

1. Introduction
The unprecedented demand for high-performance computing (HPC) resources is currently
motivated by applications in Big Data Analytics and Artificial Intelligence (AI). Parallel
computing techniques have become widespread, and Heterogeneous Computing has be-
come essential for supporting these applications.

Platform-aware programming is the performance engineering practice of cod-
ing by making assumptions about features of the execution platform, to face HPC re-
quirements. It becomes more difficult by using unstructured means as parallel comput-
ing platforms become more heterogeneous. Designers of programming languages and
frameworks attempt to find high-level abstractions and unified interfaces to circumvent
platform-aware programming [Rocki et al. 2014].

There are reasons to encourage attempts to improve the practice of platform-aware
programming for performance engineers. First, performance portability issues of high-
level approaches will continue to be challenging to mitigate. Second, it encourages hard-
ware designers to propose new accelerators, with new programming interfaces, to target
specific computation patterns, such as deep learning (e.g., Google’s TPUs and NVIDIA’s



tensor cores) and irregular applications [Carneiro et al. 2021]. Third, heterogeneous com-
puting platforms tend to become more heterogeneous as the industry introduces increas-
ingly specialized accelerators to meet the requirements of applications.

This paper proposes a structured approach to platform-aware programming based
on platform typing, multiple dispatch, and feature detection. It is prototyped in Ju-
lia [Bezanson et al. 2017] as a package named PlatformAware.jl, evaluated using two
case studies. The first accelerates ImageQuilting.jl [Hoffimann et al. 2017], a solver from
GeoStats.jl, a framework for geostatistics. The second accelerates a combinatorial search
algorithm on several heterogeneous computing platform scenarios. The results evidence
that structured platform-aware programming improves the ability to deal with a large
number of assumptions about platform features with minor performance overhead.

This paper has five more sections. Section 2 discusses Related Work in the liter-
ature and programming language designs. Section 3 introduces platform-aware program-
ming. Section 4 presents structured platform-aware programming and PlatformAware.jl,
i.e., how it is implemented in Julia. Section 5 presents case studies to demonstrate Platfor-
mAware.jl and evaluate structured platform-aware programming in terms of performance
and productivity. Finally, Section 6 concludes the study and discusses future work.

2. Related Work
The literature on the implementation of algorithms exploring specific features of execu-
tion platforms is large. It became a major field of interest in the 2000s with the increasing
interest of researchers to investigate how to use GPUs and FPGAs efficiently for their
HPC applications [Hijma et al. 2022].

In Heterogeneous Computing, researchers propose high-level abstractions (e.g.,
[Nieplocha et al. 1996, De Wael et al. 2015]), unified programming interfaces (e.g.,
OpenCL, OpenACC, oneAPI), and auto-tuning tools [Park et al. 2022], hiding the
heterogeneity of computational resources. Although successful in code portabil-
ity, performance portability remains challenging [Rocki et al. 2014, Bertoni et al. 2020,
Kwack et al. 2021]. This is why performance engineers still prefer architecture-oriented
parallel programming interfaces (e.g. MPI and OpenMP), as well as proprietary APIs to
program accelerators (e.g. CUDA and ROCm).

[Ernstsson and Kessler 2020] are the first that use the term platform-aware pro-
gramming, to introduce multi-variant user functions to SkePU, a skeleton programming
framework, which allows writing multiple versions of functions that exploit specific fea-
tures of the execution platform. However, they do not exploit the idea of automatic feature
detection nor the use of types and multiple dispatch to represent platform features and se-
lection between function variants dynamically.

The function multi-versioning feature from the GNU C compiler (GCC) 4.8 uses
label annotations to distinguish function versions that exploit special instruction sets of
processors (e.g., SIMD). The compiler may optimize function versions according to the
target instruction set, and they are selected at runtime. However, it only supports in-
struction sets as features and uses a priority list of labels to resolve dispatch ambiguities
when multiple versions can be applied. In turn, this work resolves dispatch ambiguities
through platform types, subtyping relations, and multiple dispatch semantics, but the use
of platform assumptions to guide compiler optimizations is still a topic for future work.

https://github.com/PlatformAwareProgramming/PlatformAware.jl
https://github.com/JuliaEarth/ImageQuilting.jl
https://github.com/JuliaEarth/GeoStats.jl
https://www.khronos.org/opencl
https://www.openacc.org
https://www.oneapi.io
https://www.mpi-forum.org
https://www.openmp.org
https://developer.nvidia.com/cuda-toolkit
https://rocmdocs.amd.com


Finally, Rust’s RFC 2045 (Request-for-Comments) was published in 2017 to in-
troduce target features [The Rust RFC Book 2017], analogous to GCC’s function ver-
sions. It covers a smaller set of features than PlatformAware.jl, expresses concern about
the feasibility of runtime feature detection, and discusses safety drawbacks and limitations
that are addressed in PlatformAware.jl through platform typing and multiple dispatch.

3. Platform-aware programming

Ad hoc platform-aware programming is the practice of performance engineers to code
by making assumptions about the features of the target execution platforms without the
support of specific platform-aware programming language constructs or abstractions, to
meet HPC requirements. It becomes more difficult as performance and heterogeneous
computing requirements of parallel computing platforms become more critical.

Listing 1. The FFT kernel (fft) using ad hoc platform-aware programming� �
module MyFFT

import CUDA; const cu = CUDA; const cufft = cu.CUFFT
import FFTW; const fftw = FFTW
import OpenCL; const cl = OpenCL
import CLFFT; const clfft = CLFFT

fft_cpu(X) = fftw.fft(X)
fft_cuda(X) = cufft.fft(X)
function fft_opencl(X)

_, ctx, queue = cl.create_compute_context()
bufX = cl.Buffer(Complex64, ctx, :copy, hostbuf=X)
p = clfft.Plan(Complex64, ctx, size(X))
clfft.set_layout!(p, :interleaved, :interleaved)
clfft.set_result!(p, :inplace)
clfft.bake!(p, queue)
clfft.enqueue_transform(p, :forward, [queue], bufX, nothing)
result = cl.read(queue, bufX)

end

nvidia_cuda_ok() = all([cu.functional(), !isempty(cu.devices()),contains(cu.name(cu.device()), "NVIDIA")])
opencl_ok() = !isempty(cl.devices())

function selectKernel()
nvidia_cuda_ok() && return fft_cuda
opencl_ok() && return fft_opencl
return fft_cpu

end

fft = selectKernel(); export fft

end� �
Listing 1 presents the code of a module in Julia that exports the fft function. If

a GPU exists, the CUDA or the OpenCL method of fft is selected, depending on the
GPU’s manufacturer (NVIDIA or another, like AMD or Intel). Otherwise, a fallback
CPU version based on FFTW.jl is selected. The selection is driven by a selection function
(selectKernel) that checks if a GPU exists and whether it supports CUDA or OpenCL.

The above solution separates code variants and the selection code. However, for
small-scale scenarios (e.g., few assumptions), using a single monolithic fft method whose
code variants are scattered across multiple branches may work. Also, when functions
have different assumptions, it is better to write a selection function for each kernel.

The selection of code variants may be static (compile time) or dynamic (execu-
tion time). This paper addresses the latter, in which the code can move between different
platforms without static recompilation, achieving the code portability of high-level ap-
proaches without performance portability issues since the code is architecture-specific.



Figure 1. Platform types

Ad hoc platform-aware programming may become rather complex in the cross-
platform development of software that must run efficiently at an increasingly heteroge-
neous set of processors and accelerators. Furthermore, platform-aware coding decisions
must be shared among programmers in a team because they may affect the overall design
and implementation decisions. There are reasons to support research initiatives on new
abstractions to improve platform-aware programming, as many performance engineering
developers will continue to use architecture-specific programming interfaces.

4. Structured platform-aware programming
This paper proposes a structured approach to replace ad hoc platform-aware programming
practice, based on tree concepts: platform typing; multiple dispatch; and feature detection.

As a proof-of-concept, structured platform-aware programming has been imple-
mented in the Julia programming language [Bezanson et al. 2017], for the following rea-
sons. First, it supports multiple dispatch combined with a rich type system that, together
with its metaprogramming features, makes it possible its rapid prototyping without mod-
ifying either the compiler or Julia’s runtime system. Second, despite it being focused on
productivity, like Python, it was originally designed to meet HPC requirements. Third,
Julia offers a number of heterogeneous programming packages in the JuliaParallel, Ju-
liaSIMD, and JuliaGPU Github organizations. Finally, Julia separates the concerns of de-
velopers and users of packages. While developers are concerned with HPC requirements
of packages, users are concerned with using them to solve problems.

4.1. Platform typing
In programming languages, types specify the shape of data and the functions that can
be applied to them [Pierce 1991]. The benefits of types for programming are safety, as
they protect data from invalid operations, and performance, as they enable compilers to
optimize functions according to how the data to which they are applied is represented.

To improve platform-aware programming, this paper proposes a platform abstrac-
tion along with data and function abstractions in type systems. Figure 1 depicts such an
extension. A platform defines the environment where a function finds resources to pro-
cess data efficiently. Not only hardware but also software resources, like the operating
system, subroutine libraries, etc. Like a function that may be tuned according to assump-
tions about the type of data to which it will be applied, a function may be tuned according
to the features of the platform that hosts its execution to accelerate execution. In fact,
performance engineering programmers do this in ad hoc platform-aware programming.

Just as data types enable the implementation of different mechanisms for data ab-
straction, execution safety, compilation level optimization, etc., platform types serve dif-

https://julialang.org
https://github.com/JuliaParallel
https://github.com/JuliaSIMD
https://github.com/JuliaSIMD
https://github.com/JuliaGPU


Figure 2. Feature types and assumption types

ferent purposes. This paper applies platform types to structured platform-aware program-
ming, as a modular way to write different versions of functions with HPC requirements
according to assumptions about the features of the target execution platforms.

A feature is a characteristic of the execution platform that may be exploited to
accelerate the execution of a function. An assumption is a statement about a feature.
Figure 2 shows a fragment of a hierarchy of platform types, with feature types at the
top (SIMDExtensions and Microarchitecture). The other types are assumption types. For
example, AVX512 is an assumption type to assert whether the processor supports the
AVX512 extension for the feature related to the support of SIMD and vector instructions
in CPUs (SIMDExtensions). Backward compatibility is a subtyping relation. So, Figure
2 asserts that processors with the AVX512 extension also support AVX2 and AVX.

For implementing platform typing, multiple dispatch [Muschevici et al. 2008]
over platform types augmented with a subtyping relation is proposed. This is supported
by Julia [Nardelli et al. 2018]. In a function prototype, in addition to regular parame-
ters, there are platform parameters typed by feature types representing assumptions for
the function implementation. Programmers may define function versions for different as-
sumptions, by associating to each platform parameter an assumption type that is a proper
subtype of the feature type of the parameter. During execution, the function version that
best fits the actual features of the execution platform is selected through multiple dispatch
over platform parameters. For that, the actual features of the execution platform must be
automatically passed, as platform types, to platform parameters. These so-called platform
arguments are determined by a feature detection mechanism, discussed in Section 4.6.

Listing 2. The FFT kernel function (fft) using PlatformAware.jl� �
module MyFFT

import CUDA; const cu = CUDA; const cufft = cu.CUFFT
import FFTW; const fftw = FFTW
import OpenCL; const cl = OpenCL
import CLFFT; const clfft = CLFFT
using PlatformAware

@platform default fft(X) = fftw.fft(X)
@platform aware fft({accelerator_brand::NVIDIA, accelerator_api::(@api CUDA)},X) = cufft.fft(X)
@platform aware function fft({accelerator_api::(@api OpenCL)}, X)

_, ctx, queue = cl.create_compute_context()
bufX = cl.Buffer(Complex64, ctx, :copy, hostbuf=X)
p = clfft.Plan(Complex64, ctx, size(X))
clfft.set_layout!(p, :interleaved, :interleaved)
clfft.set_result!(p, :inplace)
clfft.bake!(p, queue)
clfft.enqueue_transform(p, :forward, [queue], bufX, nothing)
result = cl.read(queue, bufX)

end

export fft

end� �



4.2. Basic concepts and overview

A kernel function is a function with multiple versions, called kernel methods, for differ-
ent assumptions about features of the execution platform, each represented as a platform
parameter typed by an assumption type.

Listing 2 presents a structured version of the code in Listing 1. It uses the @plat-
form macro to declare kernel methods with platform parameters enclosed in braces, just
before regular parameters. The default modifier just after @platform distinguishes the
default kernel, which does not declare platform parameters, acting as a fallback kernel.

The @platform macro derives kernel selection code through multiple dispatch
based on feature detection, eliminating selectKernel. Feature detection is discussed in
Section 4.6. Also, to apply platform types as platform arguments, @platform rewrites the
type of each platform parameter from T to the power type of T , i.e., Type{<:T }.

The code in Listing 3 uses MyFFT to implement fftconv, an FFT-based convolution
function. Note that the use of PlatformAware.jl does not affect the code that uses MyFFT.

Listing 3. The fftconv function� �
using MyFFT

function fftconv(img,krn)
padkrn = zeros(size(img))
copyto!(padkrn,CartesianIndices(krn),krn,CartesianIndices(krn))
fft(img) .* conj.(fft(padkrn))

end� �
Platform types form a hierarchy with PlatformType at the root and QualifierFeature

and QuantifierFeature as direct subtypes (quantifier and qualifier types).

4.3. Quantifier types (<: QuantifierFeature)

Platform types that specify numerically valued assumptions are called quantifier types, or
simply quantifiers. For example, the choice of better scalable parallel algorithms depends
on the number of processing resources (nodes, processors, accelerators, etc.), available
memory, interconnection latency, bandwidth, etc. PlatformAware.jl supports powers of
two quantifiers, which are common in the design of parallel algorithms and description of
platform features. Thus, two finite sets of abstract types named AtLeastN and AtMostN
are defined, where N is a label 0, for representing zero; Inf, a value that is greater than
anyone, or 2i for i ∈ {−30,−29,−28, . . . , 69}. The label of a 2i value is a concatenation
of two labels: multiplier and magnitude. The multipliers are 1, 2, 4, 8, 16, 32, 64, 128, 256,
512 and the magnitude labels are n (2−30), u (2−20), m (2−10), K (210), M (220), G (230),
T (240), P (250), and E (260). For example, AtLeast128G represents AtLeast{237} (i.e.,
128 × 230), AtLeast8 represents AtLeast{23}, and AtMost16K represents AtLeast{214}.
AtLeastInf and AtMost0 are the bottom at-least and at-most quantifiers, while AtLeast0
and AtMostInf are the top ones, respectively, in subtyping.

Quantifier parameters are typed as Type{<: Tuple{AtLeastM,AtMostN}}. So,
programmers work with interval assumptions, with values between M and N . As syntac-
tic sugar, the macros presented in Table 1 may be used by programmers.



@atleast N Q? Tuple{AtLeastM,AtMostInf,Q} where Q
@atmost N Q? Tuple{AtLeast0,AtMostN,Q} where Q
@between M N Q? Tuple{AtLeastM,AtMostN,Q} where Q
@just N Tuple{AtLeastN,AtMostN,Q} where Q
•M,N = 0 | Inf | XG? , where X is the multiplier and G is the magnitude (see text)

• Q is an optional user-defined variable for receiving the actual feature value.

Table 1. Quantifier type macros

name default type

node_count @atleast 1
node_virtual No
node_dedicated No
node_maintainer Maintainer
node_locale Locale
node_machinefamily MachineFamily
node_machinetype MachineType
node_vcpus_count @atleast 1
node_coworkers_count WorkerCount
node_memory_size @atleast 0
node_memory_latency @atmost ∞
node_memory_bandwidth @atleast 0
node_memory_type MemoryType
processor_count @atleast 1
processor_brand Manufacturer
processor_microarchitecture ProcessorMicroarchitecture
processor_isa ProcessorISA
processor_simd ProcessorSIMD
processor_powerefficiency @unrestricted
processor_core_clock @atleast 0
processor_core_count @atleast 1
processor_core_threads_count @atleast 1
processor Processor

name default type

accelerator_count @atleast 0
accelerator_interconnect AcceleratorInterconnect
accelerator_type AcceleratorType
accelerator_brand Manufacturer
accelerator_api AcceleratorBackend
accelerator_architecture AcceleratorArchitecture
accelerator_memorysize @atleast 1
accelerator_powerefficiency @unrestricted
accelerator AcceleratorModel
interconnection_startup @unrestricted
interconnection_latency @unrestricted
interconnection_bandwidth @atleast 0
interconnection_topology InterconnectionTopology
interconnection_RDMA Query
interconnection Interconnection
storage_size @atleast 0
storage_latency @atmost ∞
storage_bandwidth @atleast 0
storage_networkbandwidth @atleast 0
storage_type StorageType
storage_interface StorageInterface

Table 2. platform parameters and their feature types in PlatformAware.jl (v0.5.1)

Listing 4. Qualifier types for CUDA versions less than or equal to 2.0� �
abstract type AcceleratorBackend <: QualifierFeature end
abstract type CUDA_API <: AcceleratorBackend end
abstract type CUDA_1_0 <: CUDA_API end; const CUDA1 = CUDA_1_0
abstract type CUDA_1_3 <: CUDA_1_0 end
abstract type CUDA_2_0 <: CUDA_1_3 end; const CUDA2 = CUDA_2_0� �

4.4. Qualifier types (<: QualifierFeature)
Platform types that are not quantifiers are qualifier types, or qualifiers. They have been
exemplified in Figure 2. Listing 4 shows a fragment of qualifiers of PlatformAware.jl
for typing the accelerator_api parameter with assumption types representing CUDA ver-
sions. Programmers may use the macro @api api version, where api is the name of the
API, and version is the API version. It was used in the example in Section 4.2.

4.5. Platform parameters
Table 2 presents the names and default types of the platform parameters currently sup-
ported by PlatformAware.jl, version 0.5.1. Default types are implicitly applied to platform
parameters not referred to in the signature of kernel methods.

The @platform macro includes all the platform parameters by default for
any kernel method. However, the programmer may explicitly select a list of
parameters through @platform parameter declarations. For that, he/she may
firstly clear the list using @platform parameter clear. Then, write a sequence of
@platform parameter ⟨parameter name⟩ declarations to include the required ones.

4.6. Feature detection
Platform arguments are read from a feature description file called Platform.toml, automat-
ically generated when PlatformAware.jl is installed by a call to PlatformAware.setup(). It



can also be called through Julia’s REPL. The setup function uses a set of system tools to
detect features of the execution platform to determine platform arguments.

The user may edit Platform.toml manually to add, refine, and remove features.
Cloud providers and HPC/supercomputing centers may provide Platform.toml files that
accurately describe the features of their platforms. In fact, accurate automatic feature
detection is challenging, still requiring a variety of tools, mostly outside the language
environment, and often non-portable across operating systems. For this reason, Platfor-
mAware.jl has a feature database of processors and accelerators from Intel, AMD, and
NVIDIA, currently stored in the source code repository using CSV format.

5. Case studies and Performance Evaluation
Two case studies on the use of PlatformAware.jl are presented. In Section 5.1,
it accelerates the imfilter kernel function of ImageQuilting.jl, a package for 3D im-
age quilting simulation of a framework for high-performance geostatistics called
GeoStats.jl [Hoffimann et al. 2017]. In Section 5.2, it packages a set of implementations
of a combinatorial search algorithm that solves the N-Queens problem for distinct parallel
computing platforms, originally coded in C and Chapel [Carneiro et al. 2021].

5.1. ImageQuilting.jl
The case study with ImageQuilting.jl shows a basic dispatch scenario targeting CUDA
and OpenCL accelerators, with three methods of the kernel function imfilter. They are
presented in Listing 5: kernel 1, a fallback CPU implementation, as a default kernel;
kernel 2, that employs CUDA.jl code if an NVIDIA GPU is available; kernel 3, employing
OpenCL.jl and CLFFT.jl for accelerators from other vendors.

Listing 5. Methods of the imfilter kernel function for ImageQuilting.lj� �
# kernel 1: fallback
@platform default imfilter(img, kern) = imfilter(img, centered(krn), Inner(), Algorithm.FFT())

# kernel 2: CUDA for NVIDIA GPUs
@platform aware function imfilter({accelerator_count::(@atleast 1 A), accelerator_brand::NVIDIA},img,kern) where A

imfilter_cuda(img, krn, A) # A is the number of accelerator GPUs
end

# kernel 3: OpenCL for GPUs of other vendors
@platform aware function imfilter({accelerator_count::(@atleast 1 A)},img,kern) where A
imfilter_opencl(img, krn, A) # A is the number of accelerator GPUs

end� �
Kernels 2 and 3 are selected if at least one accelerator is available, due to the

accelerator_count assumption. Since CUDA is compatible only with NVIDIA devices,
accelerator_brand is typed with the NVIDIA qualifier to guide the selection of the CUDA
kernel. Anyone can introduce new imfilter kernels to exploit the features of other vendor-
specific GPU programming APIs supported by Julia, such as AMDGPU.jl, oneAPI.jl,
Metal.jl, and XLA.jl. More specialized imfilter kernels may also exist for specific API
versions through accelerator_api, as well as GPU architectures (e.g., Kepler, Turing, Am-
pere, Hopper) through accelerator_architecture.

5.2. Combinatorial Search (NQueens)
This case study addresses the dispatch of parallel and accelerator-based methods of a
kernel function implementing a backtracking algorithm that enumerates all complete and
valid solutions to the N-Queens problem [Carneiro et al. 2021].

https://github.com/JuliaEarth/ImageQuilting.jl
https://github.com/JuliaEarth/GeoStats.jl
https://github.com/JuliaEarth/ImageQuilting.jl
https://github.com/JuliaGPU/CUDA.jl
https://github.com/JuliaGPU/OpenCL.jl
https://github.com/JuliaGPU/OpenCL.jl
https://github.com/JuliaGPU/AMDGPU.jl
https://github.com/JuliaGPU/oneAPI.jl
https://github.com/JuliaGPU/Metal.jl
https://github.com/JuliaGPU/XLA.jl


The Julia versions were encapsulated in the following functions: nqueens_serial
(single core), nqueens_mcore (multicore), nqueens_sgpu (single GPU with CUDA
support), nqueens_mgpu (multiple GPUs with CUDA support), nqueens_mgpu_mcore
(multicore and multiple GPUs with CUDA support), and nqueens_distributed (cluster
computing with multicore nodes). These functions are encapsulated in the methods of a
kernel function called nqueens in a package called PlatformAwareQueens.jl. The code
in Listing 6 shows the different platform assumptions of the nqueens kernels. Parameter
size is the size N of an N ×N chess table.

Listing 6. Queens kernel methods� �
@platform parameter clear
@platform parameter node_count, processor_count, processor_core_count, accelerator_count, accelerator_api

@platform default nqueens(size) = nqueens_serial(size)

# SINGLE GPU
@platform aware function nqueens({node_count::@just(1), accelerator_count::(@just 1),

accelerator_api::(@api CUDA)}, size)
nqueens_sgpu(size) # FALLBACK (single core)

end

@platform aware function nqueens({node_count::@just(1), accelerator_count::(@atleast 2),
accelerator_api::(@api CUDA)}, size)

nqueens_mgpu(size) # MULTI-GPUs
end

@platform aware function nqueens({node_count::@just(1), processor_count::(@atleast 2),
accelerator_count::@just(0)}, size)

nqueens_mcore(size) # MULTICORE (multiple processors)
end

@platform aware function nqueens({node_count::@just(1), processor_count::(@just 1),
processor_core_count::(@atleast 2), accelerator_count::@just(0)}, size)

nqueens_mcore(size) # MULTICORE (single processor with multiple cores)
end

@platform aware function nqueens({node_count::@just(1), processor_count::(@atleast 2),
processor_core_count::(@atleast 2),
accelerator_count::(@atleast 2), accelerator_api::(@api CUDA)}, size)

nqueens_mgpu_mcore(size) # MULTICORE/MULTI-GPUs (multiple processors)
end

@platform aware function nqueens({node_count::@just(1), processor_count::(@just 1),
accelerator_count::(@atleast 2), accelerator_api::(@api CUDA)}, size)

nqueens_mgpu_mcore(size) # MULTICORE/MULTI-GPUs (single processor with multiple cores)
end

@platform aware function nqueens({node_count::(@atleast 2)}, size)
nqueens_distributed(size) # CLUSTER COMPUTING

end� �
5.3. Evaluation objective

PlatformAware.jl is evaluated regarding performance to evidence that structured platform-
aware programming does not lead to significant overheads compared to ad hoc platform-
aware programming. For that, two versions of ImageQuilting.jl and PlatformAware-
Queens.jl have been built: the structured versions, using PlatformAware.jl; and the ad
hoc versions, where platform-aware programming is done through ad hoc means.

5.4. Results and Discussion

Table 4 shows the average execution times of 30 executions of each method of kernels
imfilter and nqueens, for their structured and the ad hoc versions, across 3 workloads
(small, medium, and large) defined in Table 3.To evaluate the JIT compilation overhead,
the first run was separated from the next ones. The test-t checks the statistical significance
of the conclusions. Julia 1.8.5 was used. Table 3 also describes the testbed platforms.

https://github.com/JuliaEarth/ImageQuilting.jl


case small medium large platform
queens queens(15) queens(16) queens(17) (1), (2)

imfilter
img = rand(64, 64, 64) img = rand(128, 128, 128) img = rand(256, 256, 256)

(3)krn = rand(10, 10, 10) krn = rand(10, 10, 10) krn = rand(10, 10, 10)

imfilter_kernel(img, krn) imfilter_kernel(img, krn) imfilter_kernel(img, krn)

iqsim
using GeoStats, GeoStatsImage using GeoStats, GeoStatsImage using GeoStats, GeoStatsImage

(3)TIs = geostatsimage("WalkerLake") TIm = geostatsimage("StanfordV") TIi = geostatsimage("Fluvsim")

iqsim(asarray(TIs, :Z), (30, 30)) iqsim(asarray(TIm, :K), (30, 30, 30)) iqsim(asarray(TIi, :facies), (30, 30, 30))

(1) Two 16-core AMD EPYC 7351 CPUs sharing 128GiB RAM and four Nvidia Tesla T4 15GiB GPUs.
(2) A cluster with four nodes, each comprising two 20-core Intel Xeon Gold 5218R CPUs sharing 96GiB RAM, interconnected

through a 25Gb Ethernet network.
(3) Two 6-core Xeon E5-2650v4 CPUs sharing 128GiB RAM and two Nvidia GTX 1080 Ti 11GiB GPUs.

Table 3. Testbed (computation workloads and execution platforms)

Using the same protocol, Table 5 presents the average execution time for iqsim,
the main function of ImageQuilting.jl, which calls imfilter iteratively. In this experiment,
the structured and the ad hoc versions of ImageQuilting.jl runs on a platform equipped
with an NVIDIA GTX 1080 Ti GPU, leading to the selection of the CUDA kernel.

The results in tables 4 and 5 evidence that the use of PlatformAware.jl for struc-
tured platform-aware programming does not cause significant execution or compilation
overhead, as the vast majority of the test-t values are greater than α, where α = 0.05.

Table 6 shows the time spent in the first load of the ad hoc and structured ver-
sions of ImageQuilting.jl and PlatformAwareQueens.jl in the computer platform, when
pre-compilation is performed. The additional costs of the structured versions are multiple
dispatch over platform parameters and feature detection by reading the Platform.toml file.
The overhead is 3.6s in PlatformAwareQueens.jl and 7.8s (8.5%) in ImageQuilting.jl.

package small medium large
direct structured Test-t⋆ direct structured Test-t⋆ direct structured Test-t⋆

FIRST RUN (with JIT compilation overhead)

ImageQuilting.jl CPU 15.42 15.38 .612 227.2 230.4 .176 1987. 1978. .087
CUDA 20852 20758 .005 20912 20829 .058 20936 20873 .126

(in milliseconds) OpenCL 629.4 632.3 .685 670.9 677.3 .156 1143. 1137. .182

Queens.jl

1-CPU 32.34 32.79 .111 212.80 215.59 .214 1562.99 1522.27 .007
M-CPU 3.15 3.17 .199 10.46 10.36 .225 60.31 63.91 .000
1-GPU 25.37 25.13 .006 50.33 50.11 .012 262.91 262.68 .235

(in seconds) N-GPU 24.38 24.26 .241 31.82 31.74 .550 92.12 92.04 .627
N-CPU/GPU 23.90 23.82 .401 26.32 26.37 .640 68.44 68.17 .777

distributed 2.20 2.22 .120 4.67 4.69 .282 19.94 19.86 .679

NEXT RUN (without compilation overhead)

ImageQuilting.jl CPU 14.96 14.99 .551 126.1 125.0 .016 1668. 1680. .095
CUDA 1.001 0.999 .683 6.323 6.241 .425 169.2 168.6 .976

(in milliseconds) OpenCL 13.25 13.40 .106 50.21 49.67 .077 838.7 828.5 .013

Queens.jl

1-CPU 30.79 31.24 .114 211.16 214.03 .202 1564.61 1519.55 .002
M-CPU 1.40 1.35 .001 8.69 8.60 .304 58.71 62.34 .000
1-GPU 4.43 4.44 .259 27.84 27.90 .130 237.54 237.91 .008

(in seconds) N-GPU 1.05 1.05 .101 8.73 8.73 .936 70.12 70.02 .614
N-CPU/GPU 0.75 0.77 .021 4.95 4.92 .330 48.46 48.27 .353

distributed .657 .658 .818 3.08 3.12 .102 15.75 15.75 .911

⋆ The Test-t values less than 0.05 (≤ α) are in red/bold face, denoting a statistically significant difference with 95% confidence.

Table 4. Kernel execution time

https://github.com/JuliaEarth/ImageQuilting.jl


kernel
small medium large

512 kernel calls 96 kernel calls 800 kernel calls

ad hoc structured ad hoc structured ad hoc structured

time (CUDA) 0.86 0.85 19.05 18.92 82.16 83.03
Test-t 0.46 0.53 0.46

Table 5. Application execution time (ImageQuilting.jl)

package ad hoc structured
ImageQuilting.jl 84.7s 92.5s

PlatformAwareQueens.jl 8.1s 11.7s

Table 6. Package load time

5.5. Productivity
Platform-aware programming impacts both the readability and maintainability of code.
Regarding readability, the ad hoc approach makes it necessary to interpret the code of se-
lection/kernel functions to understand platform assumptions, which becomes even more
difficult as the number and complexity of kernels and assumptions increase than just
reading platform parameters, as in the structured approach. Regarding maintainability,
consider the problem of adding a new method to the kernel function. In the ad hoc ap-
proach, a new function is created and the kernel selection function is modified to test the
new assumptions. In turn, in the structured approach, only a new kernel method is cre-
ated based on the assumptions of the platform parameters. No existing code is modified.
This is analogous to removing kernels and changing their assumptions, requiring only
local adjustments in kernel methods. In collaborative development environments, bet-
ter maintainability increases programming safety when multiple collaborators are adding,
removing, and modifying kernels independently, an inherently error-prone task.

6. Conclusions
This work proposes a structured approach to platform-aware programming based on plat-
form typing, multiple dispatch, and feature detection. It has been prototyped in Julia, as
a package called PlatformAware.jl. The evaluation shows that structured platform-aware
programming does not cause significant performance overhead compared with ad hoc ap-
proaches. Therefore, productivity and maintainability increase due to better modularity.

It is worth saying that platform-aware programming is not a replacement for high-
level heterogeneous programming approaches, which may attend to the needs of most
programmers to which performance portability issues are not critical. In fact, it comple-
ments them, by attending to critical needs in performance engineering tasks.

The following initiatives are proposed to continue this work. First, to maintain and
evolve PlatformAware.jl to disseminate the use of structured platform-aware programming
in the Julia community and stimulate the implementation of large case studies. Second,
to implement structured platform-aware programming extensions for other programming
languages, as well as to investigate alternative approaches. For example, by generalizing
the target features of Rust and function multi-versioning of C++. Third, to investigate
how Julia’s JIT compiler may benefit from platform awareness in code generation, taking
into account platform assumptions, and possibly applying the results to other dynamic
compilation languages. Fourth, to address the limitations of programming languages to
implement dynamic feature detection.
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