
A job shaping strategy to accomodate workload traces under
varying resource management policies

João Pedro M. N. dos Santos, Antônio Tadeu A. Gomes

1Laboratório Nacional de Computação Cientıı́fica (LNCC)
Petrópolis – RJ – Brasil

macleure@posgrad.lncc.br, atagomes@lncc.br

Abstract. Supercomputers play a pivotal role in advancing research and devel-
opment across diverse scientific and engineering domains. However, configur-
ing resource management in these systems to ensure maximum productivity and
cost-effectiveness is a challenge. Workload simulation emerges as a crucial tool
in this context, offering a mechanism to explore resource management configu-
rations in the presence of expected user behaviors. This paper focuses on a spe-
cific requirement for simulation-based optimization applied to tuning resource
management configurations: the need for simulators that are both precise and
efficient. This paper introduces a job shaping strategy to accommodate real
workload traces under varying resource management policies in discrete-event
RMS simulations. Our findings from evaluating the proposed strategy on a real-
world case study suggest that job shaping allows effectively capturing changes
in system behavior, regardless of whether some of the real workload traces used
as input to the simulation are incompatible with the simulated policies.

1. Introduction
High-Performance Computing (HPC) systems have become indispensable tools in a myr-
iad of scientific and engineering disciplines. They enable researchers to conduct detailed
numerical simulations and analyze vast amounts of data. As the demands for more so-
phisticated analyses and simulations grow, the efficient utilization of HPC systems be-
comes critical. Tuning the configuration of HPC systems aiming at optimal utilization
is a challenging task. The focus of this paper is on the configuration of a key compo-
nent in shared HPC systems: the resource management subsystem (RMS). Configuring
an RMS includes the definition of policies for queue management, job prioritization, and
exploration of backfill strategies.

One possible approach to tuning the configuration of an RMS is through
simulation-based optimization, in which an objective function (e.g. minimize queue wait-
ing time or maximize system utilization) is searched via simulations in which variations
in policy are stochastic [Fu 2014]. A key point in the optimization via simulation is that
the simulator invoked in each step of the optimization process be both precise and fast. In
the case of tuning the configuration of an RMS, the simulators must be both: (i) faithful to
the parameterization of the policy configuration; and (ii) fast enough to allow the solution
to the optimization problem to be achievable in a time that is not prohibitive.

Many pieces of work have developed RMS simulators with various lev-
els of support for queuing, prioritization and constraining, allowing different lev-
els of trustworthiness in the modeling of policy configurations [Dutot et al. 2017,



Rodrigo et al. 2018, Jokanovic et al. 2018, Galleguillos et al. 2020, Klusáček et al. 2020,
Simakov et al. 2022]. Fidelity in representing user behavior in RMS simulators should
be as important as representing system behavior though. Using real workload traces poses
difficulties in this context because variations in policy during an optimization process may
lead to valid jobs in the workload traces being incompatible with the newly generated pol-
icy. Disregarding these jobs is not an option as it changes the actual workload imposed
on the HPC system.

In this paper, we present a simple strategy for accommodating real workload traces
to incompatible resource management policies in discrete-event RMS simulations. The
strategy—so-called job shaping—is inspired by the traffic management technique of the
same name used in computer networks to bring their packet flows into compliance with
desired traffic profiles. In our case of RMS simulations, the shaping of a job occurs by
means of a transformation of its geometry, i.e. the product of the requested CPU cores and
the time limit (corresponding to the estimated wall-clock time) for the job. The idea is to
keep the actual value of this product—and therefore the actual computational demand of
the job in terms of CPU hours—unchanged, while changing the ratio of its factors.

To evaluate the job shaping strategy, we developed an RMS simulator and used as
a case study the Santos Dumont supercomputer at LNCC in Brazil,1 analyzing its work-
load traces from mid-2017 to mid-2019, in the midst of which (mid-2018) a policy change
was carried out with the aim of reducing the long waiting times the users experienced then.
Our main findings with this case study are that:

1. job shaping allows our RMS simulations to capture the change in the system be-
havior even when using workload traces recorded in the period before the actual
policy change;

2. job shaping works even when exploring limited changes in the ratio of the geom-
etry factors of the affected jobs; and

3. the queue where the shaped job is targeted at matters, even if the queues that are
potential targets share a same resource pool, because of the geometry constraints
each queue imposes.

We organized the remainder of this paper in the following way: Section 2 presents
some related work; Section 3 describes the job shaping strategy; Section 4 shows the
experimental methodology used for evaluating the proposed strategy; Section 5 presents
the results of the proposed strategy applied to real data injected in simulated resource
management policies; Section 6 presents some concluding remarks and a few topics for
future work.

2. Related work
Many pieces of work have developed RMS simulators, including: (i) discrete-
event simulators, either built from scratch [Galleguillos et al. 2020] or based on
simulation frameworks such as GridSim2, SimGrid [Casanova et al. 2014] and Bat-
sim [Dutot et al. 2017], and (ii) time-accelerated simulators, which extend existing
RMSs such as Slurm3 [Rodrigo et al. 2018, Jokanovic et al. 2018, Simakov et al. 2022].

1http://sdumont.lncc.br
2http://www.gridbus.org/gridsim
3https://slurm.schedmd.com



Discrete-event RMS simulators are bound to be less reliable because their behavior is a
necessary simplification of a real RMS, but are also generally less computationally ex-
pensive and therefore more likely to be plugged into an optimization process.

Recent developments in discrete-event RMS simulators support multiple queues
with varying priorities and constraints, allowing complex policy configurations to be mod-
eled more faithfully [Klusáček et al. 2020]. This fidelity in representing system behavior
is an important part in an optimization process, but not the only one; capturing user behav-
ior is also crucial. All the RMS simulators we identified in the literature allow the spec-
ification of workloads—either synthetic ones or real ones, the latter usually described as
workload traces in the Standard Workload Format (SWF) [Chapin et al. 1999]. The prob-
lem with using real workload traces is that variations in policy during an optimization
process may lead to valid jobs in the workload traces being incompatible with the newly
generated policy. As far as we could explore the literature, there is no other piece of work
that proposes an approach as ours to accommodate these “uncompliant” jobs.

Job shaping closely resembles the concept of moldable jobs
[Cirne and Berman 2001]. There is an extensive body of research on moldable
jobs focusing on novel scheduling algorithms [Sabin et al. 2007, Gupta et al. 2014,
Prabhakaran et al. 2015, Posner et al. 2024]. Our concept of job shaping explores
moldability only to jobs in a workload trace that do not fit within new policies, to
accurately evaluate the system’s behavior under different configurations while preserving
the overall workload structure.

3. Job shaping
Job shaping is a strategy for bringing jobs from real workload traces into compliance with
policies being tested as part of an optimization of an RMS configuration.

Consider the two different scenarios of Figure 1. Figure 1(a) shows an RMS
configured with two different queues:

• cpu, which allows jobs allocating from 1 to 1, 200 CPU cores with a maximum
time limit of 48 hours; and

• cpu long, which allows jobs allocating from 1 to 240 CPU cores with a maxi-
mum time limit of 744 hours (31 days).

Figure 1(b) shows the result of a change in the policy adopted in Figure 1(a) with a
modification of the minimum amount of allocatable CPU cores for the queue cpu to 480,
as well as the creation of a third queue designed for jobs with small geometries:

• cpu small, which allows jobs allocating from 1 to 480 CPU cores with a maxi-
mum time limit of 2 hours.

This change—which actually happened in a real-world case, as described in Section 4.1—
resulted in a region of possible geometries unreachable by jobs. Therefore, those jobs in
the workload traces that covered the unreachable region could not be used to evaluate the
change in policy illustrated in Figure 1(b).

The shaping of a job occurs by means of a change in the ratio of its geometry
factors, while keeping the actual value of the geometry unchanged. Figure 2 illustrates
the idea, using the configuration depicted in Figure 1(b).



(a) Queues before change (b) Queues after change

Figure 1. Example of a geometry area uncovered by a change in policy.

Mind that different shaping alternatives may be available, including the possibility
of different target queues for the shaped jobs. Taking Figure 2 as an example, a job
(represented by a black thin line) originally requested 360 cores and had an estimate of 48
hours for its wall-clock time. This was a possible configuration for a job in the previous
cpu queue configuration (Figure 1(a)), but not in its new configuration (Figure 1(b)). The
shaping of this job can produce different alternatives on either the (reconfigured) cpu
queue or the (original) cpu long queue. In an optimization process these alternatives
should be taken into account, e.g. as part of a stochastic variation in the simulation inputs.

Presently, the change in this ratio considers that all jobs have linear speed-up, i.e.
if we multiply the amount of available cores for a job by a factor of X , the estimated
wall-clock time for this job is divided by X . The simulation results presented in Section 5
demonstrate that this is a fairly reasonable assumption in the average.

4. Experimental Methodology

4.1. About the Santos Dumont supercomputer

The Santos Dumont supercomputer comprises two HPC clusters, both of them with hybrid
configurations including thin nodes, fat nodes, and nodes with GPUs. All of these nodes
are managed by a single RMS (Slurm). The 1st HPC cluster started operating in 2015
and its thin nodes (total of 504) and nodes with GPUs (total of 198) have the following
configuration: 2× CPU Intel Xeon Ivy Bridge (12 cores each CPU) and 64GB RAM. The
2nd HPC cluster started operation in 2019 and its thin nodes (total of 246) and nodes with
GPUs (total of 94) have the following configuration: 2× CPU Intel Xeon Cascade Lake
Gold (24 cores each CPU) and 384GB RAM. In this paper we focus on the usage of the
thin nodes of the 1st HPC cluster between 2017 and 2019. The main reason for this choice
is that during this time frame there was only a single change in the resource management
policy, in 28th May 2018, which gives us a much larger sample of workload traces than
in any other time frame throughout the operation of the Santos Dumont supercomputer.



Figure 2. Examples of job shaping.

4.2. Data collection

The data used for this study were collected from the workload traces of the Santos Dumont
supercomputer in the period between mid-2017 and mid-2019. Knowing that there was
a change in the resource management policy on 28th May 2018, the data was divided
into two periods of equivalent length, considering submissions prior to the policy change,
in the period between 15th June 2017 and 15th May 2018—called the “before-change”
(BC) period—, and after the policy change, in the period between 15th June 2018 and
15th May 2019—called the “after-change” (AC) period. The jobs submitted between 16th
May 2018 and 14th June 2018 were disregarded to avoid the eventual effect of transient
behavior just before and after the change in the policy.

Only job submissions to queues with thin nodes (cpu, cpu long, cpu scal,
and cpu small, this last one created in the AC period) were considered, disregarding
the queues used for user training and development and system testing. Considering the
whole period, a total of 68, 845 job records were initially considered in this study. In the
BC period, there are 30, 586 (44%) job records, and in the AC period, 38, 259 jobs records
(56%). Each period is composed by an interval of 334 days.

4.3. Simulation tool

We used SimPy4 as our discrete event simulation engine. SimPy provides a framework for
modeling complex processes and interactions. It is particularly well-suited for simulating
scenarios such as resource allocation, queuing systems, and scheduling policies.

Our RMS simulator was designed based on entities that we have implemented
over SimPy to compose a typical HPC system:5 Supercomputer, Partition, Account,
User and Job. Figure 3 shows a domain model of our RMS simulator.

4https://simpy.readthedocs.io/
5The code is available at https://gitlab.com/itdf/hpc_sim



The Supercomputer entity represents the source of resources that users need, i.e.
nodes for job processing. Those nodes can be organized in different partitions—the equiv-
alent of a queue—, each one with specific rules for resource requesting, and can be part of
the same or of different resource pools. In the version used for this work we only consider
thin nodes and disregard heterogeneity in resource capabilities.

The User entity represents the source of jobs. Each user in the simulator is asso-
ciated with a job generator, which can be based on: (i) known probability distributions
(Poisson, Exponential, etc.); (ii) real workload data, as is the case of our data described
in Section 4.2; and (iii) histogram sampling, so that any unknown probability distribution
may be approximated provided that we have sufficient data sampled from it. Users can
also be organized into accounts, allowing priority levels based on projects, for example.

The Simulation entity organizes the interactions between the user job generation
process and the supercomputer job execution process, in addition to capturing system
measurements. The configurable parameters for job priority calculation were inspired by
the Slurm Multifactor Priority Plugin,6 and in the version used for this paper included the
job age, job size, partition priority and quality of service (QoS) factors.

Figure 3. UML domain model of the simulator.

4.4. Analysis of real and simulated data

To evaluate the quality of our simulations, statistics regarding queue waiting time (QWT),
requested nodes, requested time limit, elapsed time and inter-arrival time were compared
between simulated results and real data.

We first compared the expected results of a theoretical model and the values ob-
tained through simulation for a configuration equivalent to the compared model. Then,
we observed the behavior of the system from real data and compared to the behavior of
the simulation with a configuration equivalent to the real system.

Once the simulation is compatible with the expected behavior, the “what-if” sce-
narios explored in an optimization process can be simulated. When performing this type

6https://slurm.schedmd.com/priority_multifactor.html



of scenario, one must evaluate whether the processed workload is compatible with the
simulated resource management policy. In other words, if the simulation configuration
is restrictive, there will be jobs in the workload that will not be processed, impacting the
result observed in the simulation. As an alternative to dealing with jobs that do not fit into
simulated scenarios, jobs are shaped, as described in Section 3.

The relationship between statistics from the BC period compared to the AC period
was also observed, evaluating whether the behavior of the real data was captured by the
simulator. As presented in [Gomes 2018], the policy change in the middle of the observed
period resulted in a reduction of the 95-percentile of the QWT from ≈ 54 hours to ≈ 18
hours. However, when evaluating the ECDFs of the QWT we observed that the policy
change affected jobs with short and long waiting times differently. More specifically, in
the second quartile (Q2) the ECDFs of the BC (ECDF1st) and AC (ECDF2nd) periods
crossed at point 2, 920, indicating that jobs with QWT up to that point had an increase
in QWT, whereas the jobs with QWT longer than 2, 920 secs benefited from a decreased
QWT after this change, as shown in Figure 4.

Figure 4. Q2 of the QWT in the BC (ECDF1st) and AC (ECDF2nd) periods.

5. Results

5.1. Theoretical validation

Queuing theory models play a crucial role in validating simulation results. By providing
a mathematical framework to analyze and predict system behavior, queuing theory offers
a benchmark against which simulation outcomes can be measured. These models help
ensure that simulations accurately reflect real-world dynamics, such as waiting times,
resource utilization, and system throughput.

Based on M/M/c queue models, we defined six different simulations varying inter-
arrival rate (λ), service time (µ) and number of servers (c). The simulation was configured
with a single supercomputer and partition with equivalent number of servers. For priority
calculation only the job age parameter was set, thus rendering a classical First-Come-
First-Served queue discipline. The user was configured with a job generator associated
with a Poisson process for inter-arrival time, with an Exponential process for the requested
runtime, and with 1 as a constant number for requested nodes. For comparing results, as
the simulation was based on a random generator, we executed it 30 times, calculating a
confidence interval (95%) for the obtained QWT average. Results are shown on Table 1
for each M/M/c variation.



Table 1. M/M/c validations on expected average QWT.

λ=0.5 / µ=1 λ=0.7 / µ=1 λ=0.9 / µ=1
Expected Observed Expected Observed Expected Observed

M/M/1 1.00 0.96 – 1.02 2.33 2.25 – 2.44 9.00 8.20 – 9.80
M/M/2 0.06 0.07 – 0.07 0.14 0.13 – 0.14 0.25 0.25 – 0.27

5.2. Real workload processing validation

Comparing real data analysis with simulated results is a critical step in validating the
accuracy and reliability of computational models. That said, we carried out a simulation
configured with approximated parameters for job priority calculation in the BC and AC
periods with their respective workloads. As observed in Tables 2 and 3, the statistics about
inputs show that it had no changes, as expected. Both workload periods were simulated
in ≈ 10 minutes in a single-core python kernel.

Table 2. BC period descriptive statistics comparison.

Req. nodes Req. timelimit Elapsed time Inter-arrival time
real simulated real simulated real simulated real simulated

Avg. 10 10 108,705 108,702 38,118 38,116 942 942
Std. dev. 16 16 79,539 79,539 115,033 115,029 4,447 4,446

Min 1 1 60 60 0 0 0 0
1Q 1 1 14,400 14,400 92 92 1 1
2Q 4 4 172,800 172,800 2,566 2,566 59 59
3Q 10 10 172,800 172,800 31,583 31,580 420 420

Max 128 128 1,314,000 1,314,000 2,678,429 2,678,429 434,656 434,656

Table 3. AC period descriptive statistics comparison.

Req. nodes Req. timelimit Elapsed time Inter-arrival time
real simulated real simulated real simulated real simulated

Avg. 10 10 36,301 36,300 24,378 24,377 754 754
Std. dev. 12 12 62,573 62,572 141,547 141,543 4,259 4,259

Min 1 1 60 60 0 0 0 0
1Q 1 1 5,400 5,400 58 58 0 0
2Q 4 4 7,200 7,200 884 884 32 32
3Q 16 16 32,400 32,400 6,000 6,000 461 461

Max 240 240 756,000 756,000 2,678,422 2,678,422 516,197 516,197

We then compare the ECDFs of the QWT obtained through real data and through
the simulation, as depicted in Figure 5. We observe a fairly similar behavior, particularly
in quartiles Q2, Q3 and Q4. We can even observe the simulation mimicking the differ-
ent effect of the change in policy in jobs with shorter and longer QWT, as described in
Section 4.4, albeit with a different crossing point.

5.3. BC workload into AC configuration

Assuming that the simulation approximately reflected the behavior of the system, we
observed the processing of the BC period workload with the resource management policy
of the AC period, thus imitating an iteration in an optimization process. We identified that
the system behavior, measured by QWT, was not captured from the BC period workload
simulation with the AC period configuration, as shown in Table 4, considering an average
variation of 75% in the compared statistics. This was because some of the jobs did not fit
the new policy. Therefore, it would be necessary to reshape the jobs and evaluate how the
system would behave if the jobs had fit into the new policy.



(a) Q1 – real (b) Q1 – simulated

(c) Q2 – real (d) Q2 – simulated

(e) Q3 – real (f) Q3 – simulated

(g) Q4 – real (h) Q4 – simulated

Figure 5. Comparison between the ECDF of real and simulated data.



Table 4. BC workload into AC configuration descriptive statistics comparison.

QWT Req. nodes Req. timelimit Elapsed time Inter-arrival time
real simulated real simulated real simulated real simulated real simulated

Avg. 94,259 33,157 10 9 108,705 104,548 38,118 36,483 942 910
Std. dev. 179,002 87,525 16 16 79,539 80,564 115,033 117,996 4,447 4,427

Min 0 0 1 1 60 60 0 0 0 0
1Q 31 12 1 1 14,400 14,400 92 68 1 1
2Q 13,197 25 4 4 172,800 172,800 2,566 2,197 59 55
3Q 102,076 16,537 10 8 172,800 172,800 31,583 27,309 420 397

Max 2,236,740 782,296 128 128 1,314,000 1,314,000 2,678,429 2,678,429 434,656 434,656

5.4. Workload processing with job shaping

We identified a set of jobs from the BC period that were not processed with the AC period
configuration due to queue configurations that limited the geometry of the jobs to a certain
interval. We then assessed two scenarios of shaping these unprocessed jobs considering
new resource management policies:

1. Doubling the requested amount of cores and halving the time limit for the cpu
queue;

2. Halving the requested amount of cores and doubling the time limit for the
cpu long queue.

This shaping ensured that in each scenario, jobs not processed in the workload injec-
tion were processed by the simulation in an alternative queue, maintaining the requested
geometry. Tables 5 and 6 present the results of each scenario. As observed, when per-
forming job shaping it was possible to better approximate the system behavior compared
to workload injection without job shaping.

Nevertheless, when comparing scenarios 1 and 2, we observe that the choice of
the target queue for job shaping impacts the simulation result, with an average variation in
QWT statistics of 18% for the cpu queue and 16% for the cpu long queue. Therefore,
the importance of assessing different destination queues in the simulation of workload
processing scenarios stands out.

Table 5. BC workload with job shaping to cpu queue into AC configuration de-
scriptive statistics comparison.

QWT Req. nodes Req. timelimit Elapsed time Inter-arrival time
BC simulated simulated BC simulated simulated BC simulated simulated BC simulated simulated BC simulated simulated

Avg. 88,096 90,910 10 10 108,702 102,521 38,116 35,868 942 942
Std. dev. 189,948 199,150 16 17 79,539 77,876 115,029 113,696 4,446 4,447

Min 0 0 0 1 60 60 0 0 0 0
1Q 27 28 1 1 14,400 14,400 92 88 1 1
2Q 15,247 16,133 4 4 172,800 111,600 2,566 2,407 59 59
3Q 99,558 98,922 10 10 172,800 172,800 31,580 29,820 420 420

Max 1,704,118 1,904,918 128 128 1,314,000 1,314,000 2,678,429 2,678,429 434,656 434,656

6. Conclusion
In this paper, we presented a job shaping strategy that accommodates real workload traces
to incompatible policies that may arise in optimization procedures based on discrete-event
RMS simulations. Our main finding with a case study involving the Santos Dumont su-
percomputer at LNCC in Brazil was that job shaping allows capturing changes in system
behavior simply and effectively, regardless of eventual incompatibilities between the real
workload traces and the simulated policies. In this way, parameterizing the job shaping



Table 6. BC workload with job shaping to cpu long queue into AC configuration
descriptive statistics comparison.

QWT Req. nodes Req. timelimit Elapsed time Inter-arrival time
BC simulated simulated BC simulated simulated BC simulated simulated BC simulated simulated BC simulated simulated

Avg. 88,096 88,580 10 9 108,702 121,073 38,116 42,617 942 942
Std. dev. 189,948 189,171 16 15 79,539 98,771 115,029 121,473 4,446 4,447

Min 0 0 0 1 60 60 0 0 0 0
1Q 27 27 1 1 14,400 18,000 92 95 1 1
2Q 15,247 15,206 4 4 172,800 172,800 2,566 2,751 59 59
3Q 99,558 98,473 10 8 172,800 172,800 31,580 34,221 420 420

Max 1,704,118 1,453,906 128 128 1,314,000 1,314,000 2,678,429 2,678,429 434,656 434,656

strategy allows for an in-depth evaluation of optimization opportunities, offering insights
into how configurations impact overall system performance.

It is important to highlight that the job shaping method used is simple and con-
siders that all shaped jobs have linear speed-up behavior. The study was also limited to
evaluating the application of only one job shaping method per scenario. As future work,
there is a need to evaluate other system behavior metrics in addition to QWT, e.g. sys-
tem utilization. It is also important to evolve the job shaping technique, allowing the
evaluation of more complex scenarios, e.g. involving workflows.

References
Casanova, H., Giersch, A., Legrand, A., Quinson, M., and Suter, F. (2014). Versatile,

scalable, and accurate simulation of distributed applications and platforms. Journal of
Parallel and Distributed Computing, 74(10):2899–2917.

Chapin, S. J., Cirne, W., Feitelson, D. G., Jones, J. P., Leutenegger, S. T., Schwiegelshohn,
U., Smith, W., and Talby, D. (1999). Benchmarks and standards for the evaluation of
parallel job schedulers. In Feitelson, D. G. and Rudolph, L., editors, Job Scheduling
Strategies for Parallel Processing, pages 67–90, Berlin, Heidelberg. Springer.

Cirne, W. and Berman, F. (2001). A model for moldable supercomputer jobs. In Proceed-
ings 15th International Parallel and Distributed Processing Symposium. IPDPS 2001,
pages 8 pp.–.

Dutot, P.-F., Mercier, M., Poquet, M., and Richard, O. (2017). Batsim: A realistic
language-independent resources and jobs management systems simulator. In Desai,
N. and Cirne, W., editors, Job Scheduling Strategies for Parallel Processing, pages
178–197, Cham. Springer International Publishing.

Fu, M. C. (2014). Handbook of Simulation Optimization. Springer Publishing Company,
Incorporated.

Galleguillos, C., Kiziltan, Z., Netti, A., and Soto, R. (2020). AccaSim: a customizable
workload management simulator for job dispatching research in HPC systems. Cluster
Computing, 23(1):107–122.

Gomes, A. T. A. (2018). Assessing the behavior of HPC users and systems: The case
of the Santos Dumont supercomputer. Lecture of the XIX Brazilian Symposium on
High-Performance Computing Systems (WSCAD), São Paulo, Brazil.

Gupta, A., Acun, B., Sarood, O., and Kalé, L. V. (2014). Towards realizing the poten-
tial of malleable jobs. In 2014 21st International Conference on High Performance
Computing (HiPC), pages 1–10.



Jokanovic, A., D’Amico, M., and Corbalan, J. (2018). Evaluating SLURM simulator
with real-machine SLURM and vice versa. In 2018 IEEE/ACM Performance Modeling,
Benchmarking and Simulation of High Performance Computer Systems (PMBS), pages
72–82. IEEE.

Klusáček, D., Soysal, M., and Suter, F. (2020). Alea – complex job scheduling simulator.
In Wyrzykowski, R., Deelman, E., Dongarra, J., and Karczewski, K., editors, Parallel
Processing and Applied Mathematics, pages 217–229, Cham. Springer International
Publishing.

Posner, J., Hupfeld, F., and Finnerty, P. (2024). Enhancing supercomputer performance
with malleable job scheduling strategies. In Zeinalipour, D., Blanco Heras, D., Pal-
lis, G., Herodotou, H., Trihinas, D., Balouek, D., Diehl, P., Cojean, T., Fürlinger, K.,
Kirkeby, M. H., Nardelli, M., and Di Sanzo, P., editors, Euro-Par 2023: Parallel Pro-
cessing Workshops, pages 180–192, Cham. Springer Nature Switzerland.

Prabhakaran, S., Neumann, M., Rinke, S., Wolf, F., Gupta, A., and Kale, L. V. (2015).
A batch system with efficient adaptive scheduling for malleable and evolving appli-
cations. In 2015 IEEE International Parallel and Distributed Processing Symposium,
pages 429–438.

Rodrigo, G. P., Elmroth, E., Östberg, P.-O., and Ramakrishnan, L. (2018). ScSF: A
scheduling simulation framework. In Klusáček, D., Cirne, W., and Desai, N., editors,
Job Scheduling Strategies for Parallel Processing, pages 152–173, Cham. Springer
International Publishing.

Sabin, G., Lang, M., and Sadayappan, P. (2007). Moldable parallel job scheduling us-
ing job efficiency: An iterative approach. In Frachtenberg, E. and Schwiegelshohn,
U., editors, Job Scheduling Strategies for Parallel Processing, pages 94–114, Berlin,
Heidelberg. Springer.

Simakov, N. A., Deleon, R. L., Lin, Y., Hoffmann, P. S., and Mathias, W. R. (2022).
Developing accurate Slurm simulator. In Practice and Experience in Advanced Re-
search Computing 2022: Revolutionary: Computing, Connections, You. Association
for Computing Machinery.


