
A Thorough Analysis of Page Fault Handling in Persistent
Memory Systems

André Libório1, Alexandro Baldassin1, Daniel Castro2, Paolo Romano2, João Barreto2

1Universidade Paulista Júlio de Mesquita Filho (UNESP) - Brazil

2INESC-ID & Instituto Superior Técnico - Portugal

{andre.lb.ferraz, alexandro.baldassin}@unesp.br

{daniel.castro, paolo.romano, joao.barreto}@tecnico.ulisboa.pt

Abstract. The new technologies for building persistent devices have reached a
point where these devices can be added to the processor bus and accessed via
regular load/store instructions. Commonly know as Persistent Memory (PM),
these devices have renewed the research interest in systems used to program
them. One important implementation technique used by a class of these systems
is the use of DRAM as shadow memory, which allows the use of contemporary
hardware transactions. However, these systems have an important drawback:
if DRAM is considerably smaller than PM, the performance can be degraded
due to excessive paging. Despite this, few previous works have looked into that
issue. We provide in this paper, for the first time, a thorough analysis of the per-
formance of PM systems when the amount of DRAM is smaller than that of PM.
We also present a user-level page handling mechanism that can be integrated in
any current PM system. Whereas previous works have considered only synthetic
workloads, our study uses a realistic benchmark. The experimental evaluation
shows that the final performance under paging is heavily influenced by how
often the transactions enters the Single Global Lock (SGL) mode, that is, the
amount of conflicts caused by the paging mechanism.

1. Introduction

Persistent Memory (PM) stands as a byte-addressable memory technology characterized
by its non-volatile nature. Similar to SSDs and HDDs, PM can preserve the data when
powered off, all while having performance comparable to DRAM but at lower power
consumption [Patil et al. 2019]. PM has recently stood out due to Intel Optane DC PM
(DCPMM), first released in 2019 in a partnership with Micron [Tyson 2019]. It achieved
good performance while presenting much denser DIMMs compared to traditional DRAM
available in the server market [Peng et al. 2019, Yang et al. 2020, Xiang et al. 2022]. Al-
though Intel has recently discontinued the Optane DC devices, the industry has embraced
the new Compute Express Link (CXL) standard [Jung 2022], which also has support for
byte-addressable persistent memory.

Programming these new persistent devices is not straightforward due to numerous
software challenges [Baldassin et al. 2021]. Most of the issues comes from the fact that
cache memories are volatile and, therefore, when data is written it might still linger in
the volatile realm before reaching the PM device. Hence, if some crash happens (such as



a power failure) before the data is made durable, the system state might become incon-
sistent. Specific instructions must be used to force the data out of the cache (so called
flush/fence instructions). Even then, crashes can still cause inconsistencies. Consider, for
example, the insertion of an element to a persistent linked-list data structure. After the
new node is allocated, it is necessary to: (i) make the previous node point to the new one;
(ii) make the new node point to the next. If a crash happens after (i) but before (ii) is
completed, the linked-list will become corrupted.

Transactions have been employed as one of the key components for programming
with PM. Indeed, a number of systems have been recently proposed in the literature for
that purpose [Liu et al. 2017, Genç et al. 2020, Castro et al. 2021]. Most of these systems
rely on two key features to increase efficiency: (1) they rely on hardware transactions;
(2) they use DRAM as shadow memory for execution and update PM via redo logs. In
particular, using DRAM as shadow memory assumes that DRAM is as large as PM, which
is not reasonable in the majority of the systems today. When DRAM is smaller than
PM, a paging mechanism is required to swap shadow and persistent pages. However,
with the exception of DudeTM [Liu et al. 2017], none of the current systems handle page
swapping adequately. Even DudeTM limited itself to analyze the paging overhead due to
shadow memory to very specific and artificial scenarios.

In this paper we aim to provide a thorough analysis of the overhead and behav-
ior of the paging mechanism in current state-of-the-art PM systems. To achieve that,
we implemented a flexible user-level page handling mechanism and integrated it into
a state-of-the-art PM system, known as SPHT (Scalable Persistent Hardware Transac-
tions) [Castro et al. 2021]. Although we use SPHT as a use case, our proposed page
handling strategy could equally be adapted and employed by other PM systems. Further-
more, our characterization makes use of a realistic benchmark, Stanford Transactional
Applications for Multi-Processing (STAMP) [Minh et al. 2008]. In particular, we make
the following contributions:

• We describe a flexible user-level paging mechanism that can be used by current
PM systems (existent ones either relies on specific hardware support or specific
kernel versions) (Section 3);

• We provide, for the first time, a deep analysis of the performance of the pag-
ing overhead in PM systems that use shadow memory and hardware transactions
(Section 4) using the SPHT system and the STAMP benchmark. Our experimental
results show that the final performance under paging is heavily influenced by how
often the transactions enters the SGL mode.

This paper is organized as follows. Section 2 presents the background and related
work. Section 3 presents our user-level paging mechanism and how it is integrated into
SPHT, a state-of-the-art PM system. The experimental evaluation is presented in Section 4
and we conclude the paper in Section 5.

2. Background and Related Work
Most of the systems in the literature use transactions as the basic PM programming con-
struct [Baldassin et al. 2021]. The ACID properties (Atomicity, Consistency, Isolation,
and Durability) of a transaction [Rahmatian 2002] fit perfectly with the PM programming
model, allowing all changes to be rolled back in case of crashes and making sure the data



Persistent Memory

Volatile Memory

Threads

Persistent
Heap

Working
Copy

redo log

Thread 1 Thread N

Replayer redo log 1

Helper thread

redo log N

CoW

load / store

append

perform

read

read

reproduce

1

2

3

4

...

persist

...

Figure 1: General scheme of PM systems with shadow memory: Copy-on-Write
(CoW) is used to create a working copy of the persistent heap in DRAM –
updates are first appended to redo logs and then persisted and reproduced
in the persistent heap by background threads.

is durable once a transaction is committed. Initially, most PM systems were built upon
the research on Software Transactional Memory (STM) [Shavit and Touitou 1995], which
implemented transactions purely in software by providing data versioning and conflict de-
tection. Mnemosyne [Volos et al. 2011] and NV-Heaps [Coburn et al. 2011] are examples
of systems in this category.

With the introduction of hardware support for transactions in the 2010’s by Intel
and IBM [Intel 2020, Le et al. 2015], some new PM systems were proposed that benefited
from this hardware acceleration [Liu et al. 2017, Castro et al. 2019, Giles et al. 2017,
Castro et al. 2021]. One problem, though, is that hardware transactions do not provide
durability and, as such, a software mechanism has to be implemented to make sure the
changes are persisted. Another key mechanism that these systems employed is to map
the persistent pages to DRAM (shadow memory) and execute transactions on them. Each
transaction builds a persistent redo log which is later on applied to PM. Figure 1 shows
the general architecture of a PM system that uses DRAM as shadow memory.

Firstly, a working copy of the persistent data is created usually via a copy-on-
write mechanism provided by the OS 1⃝. Then the execution of the system split into three
fully asynchronous steps as initially proposed by DudeTM [Liu et al. 2017]. In the first
step, called perform 2⃝, the modifications are performed directly in the working copy. A
volatile redo log is also kept locally by the transactions that run in the context of a thread.
The working copy prevents the changes made by transactions from immediately affecting
the persistent state. Only when a transaction commits successfully the volatile redo logs
are persisted 3⃝, usually in the background by a helper thread. This persist stage consists
of permanently writing the redo logs in a separate memory region kept in PM. Notice that
after this step the modifications are durable and will be replayed after recovery in case a
failure occurs. Finally, in the third step, the redo logs are replayed in the persistent heap
4⃝ by one or more replayer threads.

One key aspect of the shadow memory mechanism is that it requires the amount of



DRAM memory to be equivalent to PM, which is not expected to be the case since PM is
much denser than DRAM. When much more PM pages exist than DRAM ones, a paging
mechanism is required to handle the page faults. In theory, one could use the operating
system (OS) paging mechanisms to deal with this, but constantly moving pages to and
from the swap area might cause a performance degradation. All systems in the literature,
except DudeTM [Liu et al. 2017], actually do not deal with this issue at all. DudeTM
does provide some basic mechanism to handle the page faults, by ignoring pages that are
removed (page-out) and appropriately replaying the corresponding redo logs when a page
is brought from PM (page-in). Notice that ignoring a page-out event is safe because the
changes are already persistent in the redo log; therefore one only needs to make sure the
changes made to a specific page were already applied before mapping it back to DRAM.

Dealing with shadow paging requires intercepting and changing the OS memory
management routines. DudeTM implementation provides two different ways to handle
this: (i) by using the Dune library [Belay et al. 2012], an approach that uses Intel’s VT-
X virtualization technique to enable user-space code to manage their own page tables;
(ii) by implementing its own software-based paging. The first solution is specific to In-
tel processors and requires changes to specific Linux kernels. The second solution is
specific to DudeTM and is not flexible enough to be applied to other PM systems. An-
other option to deal with page faults in Linux kernels (starting from version 4.3) is to
use the userfaultfd library [kernel development community 2024]. It allows user
space code to be notified of page faults in designated virtual address ranges. There is
no way, however, to evict a specific page using userfaultfd. There was an attempt to
extend userfaultfd with that feature [Caldwell et al. 2017], but it is not part of the
open source distribution and therefore it does not support all kernel versions. Our solu-
tion (described in Section 3.2) relies on Linux signals to catch the page faults and the
memory-map system calls to map and unmap the pages.

3. Implementing Paging Handling in SPHT

In order to characterize the overhead of page swapping in PM systems and show the flex-
ibility of our page handling scheme, we adopted SPHT [Castro et al. 2021] as a use case
since it is a state-of-the-art implementation of a system that follows the shadow memory
with Hardware Transaction Memory (HTM) transactions, as depicted by Figure 1. In
this section, we start by showing the basic workings of SPHT, followed by our user-level
paging mechanism and its integration to SPHT.

3.1. SPHT

SPHT is one of the more recent PM systems published. It follows the shadow mem-
ory approach with hardware transactions as discussed previously. Recall that with the
shadow memory technique, the data is first written to volatile working memory. A copy
of this data is also saved temporarily in a volatile redo log. Since SPHT uses transac-
tions, the modifications are automatically rolled back in case of a failure or conflicts with
other transactions in the system. In case of high contention scenarios, the system grabs
a Single Global Lock (SGL) and all transactions are serialized. Hardware transactions
do not provide durability and, therefore, the commit protocol implemented by SPHT is
more elaborated, being divided into two main stages: (i) logical commit – the hardware



transaction is committed but the data is not yet written back do PM; (ii) durable com-
mit – the system checks whether the written data is safe to be persisted (i.e., there is
no older transaction that has not yet flushed its data to PM) and finally writes the redo
logs to PM. One important novelty of SPHT is that the commit protocol is designed in
such a way that it allows grouping concurrent commits (for more details, please check the
paper [Castro et al. 2021]).

The most important aspect of SPHT with regard to page handling is how the redo
logs are stored and the replayer thread. Each thread has its own private persistent redo
log area. The replayer is a background thread that periodically scans through this log area
and applies the changes to PM. As we mentioned earlier, SPHT does not handle persistent
page faults, meaning it relies on the OS’ default page handling when the DRAM space is
full. As discussed before, current OS paging implementation is oblivious of PM systems
and therefore unnecessary overhead is added. In order to improve that, we need to know
which changes were made to each evicted page, so that the corresponding redo logs can
be replayed before the page is brought back in. We discuss how we implemented this
behavior after introducing our page handling mechanism in the next subsection.

3.2. User-level Page Handling

After trying several options for handling page faults we decided to implement our own
mechanism. Recall that available options either required specific hardware (such as
Dune [Belay et al. 2012]) or relied on specific Linux kernel versions. As such, we de-
vised a solution that relies only on Linux signals and the memory map system calls. More
concretely, we defined a custom SIGSEGV handler and leveraged the mmap/munmap
functions. To verify whether a given page is mapped or not, we keep a one-level page
table in DRAM as a bitmap. When the page handling module is initialized, it is necessary
to inform the total size of the persistent heap and the working copy. These values do not
need to match the real values present in the machine and therefore we are able to simulate
scenarios where DRAM is much more scarce than PM.

Our solution does not perform any address translation at all (unlike DudeTM’s
approach). Instead, we register a callback function with the Linux kernel that signals our
library when a not present page is accessed. This will happen when a transaction accesses
a memory address whose page was not yet mapped into the working copy memory. After
receiving a page fault signal, our library first checks whether we still have space in the
working copy memory. If that is not the case, then it is necessary first to evict a page
to make room for the new one. We use a simple eviction algorithm based on a random
number to decide which page to evict, but more elaborated ones (such as LRU) can be
easily added. This page is then unmapped and the faulted one is mapped. The user-level
page table is then updated accordingly.

All that is required to use our library is to call an initialization routine with the
desired configuration (size of working copy memory and persistent heap, as well as the
page size). The signal handler is then registered with the kernel and paging tasks are
performed automatically. Adding other behaviors to the basic one explained above is also
very easy, as all that is required is to extend the page-in and page-out actions. We show
how that can be done with SPHT in the next subsection.



3.3. Integration with SPHT

Recall that, when the working copy is much smaller than the persistent heap, the system
must handle paging. Although the OS could theoretically manage this scenario, the over-
head of moving the evicted pages to and from the swap space (usually stored in HD/SSD)
could significantly hurt performance. Therefore, we added the page handling ability to
SPHT by using our previously described user-level paging mechanism.

We follow the technique first described by DudeTM for page handling of shadow
memory: on a page-out, nothing is done (i.e., the page contents are not written back to
PM). This approach is correct because the persistent redo logs already keep the newest
state. On a page-in, however, we need to make sure that all the updates relative to the
page being swapped into the shadow memory are already applied.

In order to implement this feature, we use an extra data structure, a hashmap,
that stores the timestamp of the last transaction that made changes to a given page.
This timestamp is collected (usually via the rdtsc instruction) right before a trans-
action’s logical commit. The redo log is then scanned and, for each written address,
the <page-number,timestamp> tuple is inserted into the hashmap. Since the redo
logs in SPHT also contain the timestamp of the transaction that generated it, the replayer
thread can keep the timestamp of the most recent replayed redo log. In that case, all that
is required to implement the shadow paging scheme is to extend the page-in action to:
(i) retrieve the timestamp of the page that is being swapped to shadow memory via the
hashmap; (ii) compare the page’s timestamp to that of the replayer thread; and (iii) if
the page’s timestamp is lower, it means that the replayer already applied the changes to
PM and it is safe to continue; otherwise (i.e., replayer’s timestamp is lower), we need to
wait for the replayer to advance until the replayer’s timestamp is greater than the page’s
timestamp.

Although this waiting phase during the page-in event could potentially hamper
performance, our experimental results show that in the majority of the scenarios the re-
player thread is fast enough. Moreover, we noticed that waiting for the whole working
copy memory to be full to start ejecting pages could potentially stall the system (all trans-
actions will be waiting for the page-in events to complete). Therefore, we added another
background thread that wakes up when the paging system detects that the working copy
memory is becoming full. This thread then starts to remove pages until the shadow mem-
ory occupation reaches a watermark.

4. Experimental Evaluation

In this section we first present the configuration of the experiments followed by the per-
formance analysis.

4.1. Setup

In order to measure and compare the performance of the paging mechanism implemented
on top of SPHT, we make use of the STAMP benchmark suite [Minh et al. 2008] with
the largest suggested configuration for each benchmark. Contrary to previous studies
that considered only synthetic workloads, using STAMP allows us to analyze workloads
that present a high diversity and focus on real use cases. Table 1 shows the STAMP



Table 1: STAMP benchmark suite.

Application Domain Arguments
Genome bioinformatics -g16384 -s64 -n16777216
Intruder security -a10 -l128 -n262144 -s1

Kmeans Low data mining -m1000 -n1000 -t0.00001 -i random-n65536-d32-c16
Kmeans VLow data mining -m40 -n40 -t0.00001 -i random-n65536-d32-c16

Labyrinth engineering -i random-x48-y48-z3-n64
SSCA2 scientific -s20 -i1.0 -u1.0 -l3 -p3

Vacation Low transaction processing -n2 -q90 -u98 -r1048576 -t4194304
Yada Delaunay triangulation -a15 -i ttimeu1000000.2

Table 2: Working copy size for each application used in scenario PEN

Application Genome Intruder KLow KVlow Lab. SSCA2 Vacation Yada
Size (KB) 1472884 713032 1363 819 131 3094090 614466 2680507

applications and configurations used in our experiments. The only application left out of
the tests was Bayes due to its characteristic instability [Dragojevic and Guerraoui 2010].

All the results presented here were collected using a system equipped with a dual-
socket Intel(R) Xeon(R) Gold 5317 CPU (total of 24 physical cores and 48 threads),
with a total of 256GB DRAM, and 512GB of Intel Optane PM DC (200 Series). In the
experiments we do not use the second socket in order to exclude the non-uniform memory
access (NUMA) impact, and pin each software thread (max of 24), with physical cores as
a priority. The Linux operating system with kernel 5.4.0 was used. The applications were
compiled using GCC 9.4.0 with the -O2 flag. The reported results represent the average
of 10 runs; a 95% confidence interval bar is also shown for the throughput plots.

In order to better understand the impact of the paging mechanism, the experiments
consider three scenarios:

• No paging (NP) – The working copy size is large enough and therefore no page
faults happen during execution. This configuration does not present any overhead
due to the paging mechanism;

• No paging but the hashmap is enabled (NPHASH) – The working copy size is large
enough and no page faults are generated, but the hashmap structure is used to track
the updated pages. This configuration aims to measure the overhead of tracking
the updated pages only;

• Paging mechanism enabled (PEN) – The working copy size is smaller than what is
necessary to execute the application, so that page faults are forced to happen. The
memory size used, as shown in Table 2, was based on the memory sizes presented
in a previous work [Baldassin et al. 2015] that analyzed the allocation behavior of
the STAMP applications. Table 3 shows the number of page-outs generated by
each application for a given number of threads.

4.2. Results

Figure 2 shows the throughput of the STAMP applications for each of the scenarios. As
expected, the scenario with no paging (NP) always displays the best performance.



Table 3: Number of page-outs generated for each application

Application 1T 2T 4T 8T 12T 16T 20T 24T
Genome 5102 5103 5105 5106 5107 5109 5112 5115
Intruder 18405 24805 26843 43461 56808 70072 84154 96175

KmeansLow 11 11 11 11 11 11 11 11
KmeansVLow 760 760 760 744 728 720 719 717

Labyrinth 526 1743 2374 2607 2885 3140 3375 3377
SSCA2 1852 1852 1853 1856 1858 1859 1862 1865

VacationLow 5912 5906 5910 5916 5935 5943 5931 5939
Yada 4266 5924 7746 9049 9714 9994 10256 10558

Figure 2: STAMP throughput (x1000) results for each evaluated scenario.

(a) Genome (b) Intruder (c) Kmeans-Low

(d) Kmeans-VLow (e) Labyrinth (f) SSCA2

(g) Vacation-Low (h) Yada

Recall that in the NPHASH scenario, it is necessary to scan the transaction redo log
and insert the respective <page-number,timestamp> tuple in the hashmap. Since
this needs to be done before the hardware transaction is committed, there are two new
situations that can degrade performance. Firstly, the transaction duration is longer, in-
creasing the chance of conflicts against other concurrent transactions. Secondly, since all
transactions must update the hashmap structure, there is another source of conflict that
did not exist in the NP scenario.

As for the PEN scheme, further overhead may be caused because system calls to



memory map and unmap the new and old pages, respectively, are required. These calls
will further abort the hardware transactions and force the concurrent transactions to enter
the SGL path, serializing the execution. Moreover, when a new page is brought to the
working copy, we need to wait for the replayer to apply the changes made to this page. In
our experiments we noticed that this waiting time is almost always zero, indicating that
the replayer thread is fast enough.

We also use the abort rate illustrated in Figure 3 to complement the explanation.
Hardware transactions can abort due to: i) a conflict with other transactions; ii) capacity
limitations (cache size was not sufficient to hold the transaction state); and iii) other rea-
sons, like unsupported instruction such as the syscall. This figure shows the abort rate
for each scenario evaluated in Figure 2.

With the considerations above, we can more clearly understand the performance
behavior of the different scenarios. Firstly notice that, in general, the abort rate increases
with the addition of the hashmap (NPHASH) but stays mostly the same when paging is
added (PEN), as can be observed in Figure 3. This difference is less significant for Intruder
(Figure 3b) and Yada (Figure 3h), as their abort rate with NP is already relatively high.
Labyrinth is an exception and will be explained later. This increase in the abort rate is
explained by the fact that, with the hashmap, transactions are more likely to conflict with
each other, as we have pointed out earlier.

The increased abort rate has different implications for the applications throughput
as seen in Figure 2. With the exception of Labyrinth (more on that later), the performance
of NPHASH and PEN are very similar. This indicates that the extra overhead of using the
memory map syscalls for paging is minimal. Genome and SSCA2 presented the best over-
all results, with both NPHASH and PEN following the same trends of NP. With Intruder
and Kmeans-VLow, we can notice that there was some performance drop for NPHASH
and PEN, but their scalability still resembles NP. For these applications, our results show
that the induced conflicts caused by the hashmap did not severely increased the number
of transactions that entered the SGL mode and, therefore, the final performance was not
critically affect as the remaining applications.

The NPHASH and PEN schemes did not produce good results for Kmeans-Low
(Figure 2c) and Vacation-Low (Figure 2g). We noticed that for these applications, the
number of transactions that committed with SGL increased a lot: around 52x in the worst
case for Kmeans-Low (from 109,000 to 5,600,000 transactions) and 17x for Vacation-
Low (from 248,000 to 4,100,000 transactions). Recall that the system enters in SGL mode
when a transaction aborts repeatedly. When paging is enabled, this scenario is more likely
to happen. With SGL, only one transaction is running and therefore the execution is se-
rialized, explained the flat scalability lines for these applications with paging. Something
similar happened with Yada (Figure 2h), but this application did not show any scalability
even without paging (NP).

Labyrinth (Figure 2e) is characterized by very long transactions that usually ex-
ceeds the hardware buffering limits, causing a lot of capacity aborts (Figure 3e). As such,
even the NP scheme does not scale and the overhead added by the hashmap (NPHASH)
is almost negligible. However, we noticed that when page faults start to happen, 85% of
all the transactions enters the SGL (compared to 50% without the page faults) that, added



Figure 3: STAMP abort rate (%) for each of the evaluated scenarios

(a) Genome (b) Intruder

(c) Kmeans-Low (d) Kmeans-VLow

(e) Labyrinth (f) SSCA2

(g) Vacation-Low (h) Yada

with extra cost of the memory map system calls, causes a slow-down with PEN.

5. Conclusion
Transactions have been used as the main abstraction for programming the new Persistent
Memory (PM) systems. One important implementation feature of these systems is the use
of DRAM as shadow memory, allowing the efficient use of current hardware transactions.
However, these systems have an important drawback: if DRAM is considerably smaller
than PM, the performance can be degraded due to excessive paging. Nonetheless, few
previous works have looked into that issue. In this paper, we provided the first thorough



analysis of the performance of PM systems under the paging condition using a realistic
benchmark (STAMP). We also introduced a flexible user-level paging mechanism and
integrated it into SPHT, a state-of-the-art PM system.

The experimental evaluation revealed that the final performance under paging is
heavily influenced by how often the transactions enters the SGL mode. Since the paging
mechanism requires annotating which pages have been updated inside transactions, the
likelihood of that happening is increased. For the eight workloads studied under paging,
two displayed very low overhead, two low overhead (the workload still scaled), three did
not scaled at all, and one workload even presented a slow-down. Our results point to the
need of improving the execution of transactions under SGL, maybe using a combination
of hardware and software transactions.

Acknowledgments. The authors would like to thank the São Paulo Research Foundation
(FAPESP), processes nº 2018/15519-5, 2023/12624-0 for supporting this work.

References
Baldassin, A., Barreto, J., Castro, D., and Romano, P. (2021). Persistent memory: A sur-

vey of programming support and implementations. ACM Computing Surveys (CSUR),
54(7):1–37.

Baldassin, A., Borin, E., and Araujo, G. (2015). Performance implications of dynamic
memory allocators on transactional memory systems. In Proceedings of the 20th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, page
87–96.

Belay, A., Bittau, A., Mashtizadeh, A., Terei, D., Mazières, D., and Kozyrakis, C.
(2012). Dune: safe user-level access to privileged cpu features. In Proceedings of
the 10th USENIX Conference on Operating Systems Design and Implementation, page
335–348. USENIX Association.

Caldwell, B., Im, Y., Ha, S., Han, R., and Keller, E. (2017). Fluidmem: Memory as a
service for the datacenter.

Castro, D., Baldassin, A., Barreto, J., and Romano, P. (2021). SPHT: Scalable Persistent
Hardware transactions. In FAST’21, pages 155–169.

Castro, D., Romano, P., and Barreto, J. (2019). Hardware transactional memory meets
memory persistency. Journal of Parallel and Distributed Computing, 130:63–79.

Coburn, J., Caulfield, A. M., Akel, A., Grupp, L. M., Gupta, R. K., Jhala, R., and
Swanson, S. (2011). NV-Heaps: Making Persistent Objects Fast and Safe with Next-
Generation, Non-Volatile Memories. In ASPLOS’11, pages 105–118.

Dragojevic, A. and Guerraoui, R. (2010). Predicting the scalability of an STM: A prag-
matic approach. In 5th ACM SIGPLAN Workshop on Transactional Computing.

Genç, K., Bond, M. D., and Xu, G. H. (2020). Crafty: Efficient, htm-compatible persistent
transactions. In Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 59–74.

Giles, E., Doshi, K., and Varman, P. (2017). Continuous Checkpointing of HTM Trans-
actions in NVM. In ISMM’17, pages 70–81.



Intel (2020). Intel® Architecture Instruction Set Extensions Programming Reference.

Jung, M. (2022). Hello bytes, bye blocks: Pcie storage meets compute express link for
memory expansion (cxl-ssd). In Proceedings of the 14th ACM Workshop on Hot Topics
in Storage and File Systems, HotStorage ’22, page 45–51.

kernel development community, T. (2024). Userfaultfd. [Online; Access
in July, 10 2024]. Available in: https://www.kernel.org/doc/html/latest/admin-
guide/mm/userfaultfd.html .

Le, H., Guthrie, G., Williams, D., Michael, M., Frey, B., Starke, W., May, C., Odaira, R.,
and Nakaike, T. (2015). Transactional memory support in the IBM POWER8 proces-
sor. IBM Journal of Research and Development, 59(1):8–1.

Liu, M., Zhang, M., Chen, K., Qian, X., Wu, Y., Zheng, W., and Ren, J. (2017). DudeTM:
Building Durable Transactions with Decoupling for Persistent Memory. In ASPLOS
17, pages 329–343.

Minh, C. C., Chung, J., Kozyrakis, C., and Olukotun, K. (2008). Stamp: Stanford trans-
actional applications for multi-processing. In 2008 IEEE International Symposium on
Workload Characterization, pages 35–46. IEEE.

Patil, O., Ionkov, L., Lee, J., Mueller, F., and Lang, M. (2019). Performance charac-
terization of a dram-nvm hybrid memory architecture for hpc applications using intel
optane dc persistent memory modules. In Proceedings of the International Symposium
on Memory Systems, MEMSYS ’19, page 288–303, New York, NY, USA. Association
for Computing Machinery. Available in: ¡https://doi.org/10.1145/3357526.3357541¿.

Peng, I. B., Gokhale, M. B., and Green, E. W. (2019). System Evaluation of the Intel
Optane Byte-Addressable NVM. In MEMSYS’19, pages 304–315.

Rahmatian, S. (2002). Transaction processing systems. Encyclopedia of Information
Systems, 4:479.

Shavit, N. and Touitou, D. (1995). Software transactional memory. In Proceedings of
the fourteenth annual ACM symposium on Principles of distributed computing, pages
204–213.

Tyson, M. (2019). Intel Optane DC Persistent Memory launched. Retrieved
from https://hexus.net/tech/news/storage/129143-intel-optane-dc-persistent-memory-
launched/.

Volos, H., Tack, A. J., and Swift, M. M. (2011). Mnemosyne: Lightweight persistent
memory. ACM SIGARCH Computer Architecture News, 39(1):91–104.

Xiang, L., Zhao, X., Rao, J., Jiang, S., and Jiang, H. (2022). Characterizing the per-
formance of intel optane persistent memory: a close look at its on-dimm buffering.
In Proceedings of the Seventeenth European Conference on Computer Systems, page
488–505, New York, NY, USA.

Yang, J., Kim, J., Hoseinzadeh, M., Izraelevitz, J., and Swanson, S. (2020). An Empirical
Guide to the Behavior and Use of Scalable Persistent Memory. In FAST’20, pages
169–182.


