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Claudio Schepke1, Adriano Vogel2,3

1 Laboratory of Advanced Studies in Computation
Federal University of Pampa (UNIPAMPA), Alegrete - RS, Brazil.

2JKU/Dynatrace Co-Innovation Lab, LIT CPS Lab,
Johannes Kepler University Linz, Austria
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Abstract. High-performance computing exploits the hardware resources avail-
able to accelerate the applications’ executions, whereas achieving such an ex-
ploitation of hardware resources demands software programming. Hence, several
parallel programming interfaces (PPIs) are used for sequential programs to call
thread resources and parallelism routines. There are explicit PPIs (e.g., Pthreads
and TBB) or implicit (e.g., OpenMP and OpenACC). Another approach is paral-
lel programming languages like the Fortran 2008 specification, which natively
provides the DO CONCURRENT resource. However, DO CONCURRENT’s
evaluation is still limited. In this paper, we explore and compare the native paral-
lelism of FORTRAN with the directives provided by the OpenMP and OpenACC
PPIs in the NAS-PB CG benchmark and a porous media application. The results
show that the DO CONCURRENT provides parallel CPU code with numerical
compatibility for scientific applications. Moreover, DO CONCURRENT achieves
in multi-cores a performance comparable to and even slightly better than other
PPIs, such as OpenMP. Our work also contributes with a method to use DO
CONCURRENT.

1. Introduction
Usually, the concurrent execution of instructions is through a parallel programming in-
terface (PPI). A PPI can be a programming language extension, library, framework, or
domain-specific language that offers resources for thread creation and instantiation. There
are still other alternatives if we include distributed execution, such as Application Program-
ming Interface (API), Communicating Sequential Processes (CSP), and Partitioned Global
Address Space (PGAS). Parallel programming tools benefit different kinds of applications
by allowing the generation of concurrent code through processes, threads, accelerators, or
vector instructions [Vetter 2013, Kirk and Wen-Mei 2016].

On the other hand, the idea of having a specific language for concurrent program-
ming for any class of applications was unsuccessful [Ozen 2018]. For example, the tentative
decision to define High-Performance Fortran extension (HPF [Koelbel et al. 1993]) as



a parallel programming language standard ended up. Most programmers preferred to
move towards an OpenMP-oriented programming approach instead of using HPF as a
parallel programming language [Kennedy et al. 2007]. Moreover, there are FORTRAN
specifications that incorporate some of HPF’s ideas.

Considering the Fortran 2008 standard and the increase of locality specifiers in 2018
[Reid 2018], it is possible to create concurrency over loops using the DO CONCURRENT
language reserved words. DO CONCURRENT differs from the parallelism provided by
precompiled directives. Approaches such as OpenMP and OpenACC rely on directives
(pragmas) embedded in the source code to introduce thread routines during compilation. In
contrast, DO CONCURRENT enables loop parallelism without requiring any modifications
to the source code.

In this context, this article examines the impact of the DO CONCURRENT
clause in Fortran on parallelism, comparing it to the parallelism achieved through
compilation directives in PPIs. The study uses the NAS Parallel Benchmark [Löff
et al. 2021] and a porous media application [da Silva et al. 2022] as workloads.. We
evaluate the performance of DO CONCURRENT, OpenMP parallel do, and OpenACC
parallel loop for Multi-core and GPU architectures, including the need to change the source
code and the impact on runtime. The main goal is to measure whether the abstractions
provided by DO CONCURRENT are a suitable alternative to replace directives and also
maintain the same performance [Vogel et al. 2021]. The contributions of this paper are:
(i) An assessment of native Fortran parallelism and parallel directives approaches. (ii)
A characterization of the necessary steps and the modifications in the code to accelerate
necessary for the different approaches covered.

The remainder of the paper’s organization is as follows. Section 2 presents the
related work. Section 3 describes the DO CONCURRENT command. The description of
the methodology of the experiments is in Section 4. The development of the paralleliza-
tion is in Section 5. Section 6 shows the performance results for the different parallel
implementation approaches. Finally, Section 7 presents the conclusion and future work.

2. Related Work
The DO CONCURRENT feature appeared in the 2008 Fortran specification, which was
expanded in the 2018 specification. However, there appears to be little discussion in the
literature on the performance impact of using such a feature. The reason may also be
associated with the fact that compiler providers do not implement the entire specification
of a language immediately [Ozen and Lopez 2020].

For example, in Stulajter et al. 2022, an evaluation using the most recent available
versions of the Pgfortran, Ifort, and Gfortran compilers shows that only the first could
generate CPU and GPU binaries using the DO CONCURRENT and its specific compiler
flags. The experiments use DIFFUSE as a mini-app of flux-evolution code to generate
observation-based model boundary conditions tests. DIFFUSE integrates the spherical sur-
face heat equation considering a logically rectangular non-uniform grid, the discretization
of the operator with a second-order central finite-difference scheme, and time integration
with second-order Legendre polynomial extended stability Runge-Kutta scheme. The
parallelization of the original application uses OpenACC and OpenMP for GPU and CPU,
respectively. The performance of the DO CONCURRENT is comparable to the original



parallel code for both CPUs and GPUs, replacing directives without losing performance.
The work demonstrated that the DO CONCURRENT allows cleaner-looking code and
adds robustness. It contains nontrivial features for standard Fortran parallelism to handle
reductions, atomics, CUDA-aware MPI, and local stack arrays.

Hammond et al. 2022 evaluates the Fortran DO CONCURRENT for CPU and
GPU using the BabelStream benchmark. BabelStream is a rewrite of the traditional C++
standard memory bandwidth STREAM benchmark [McCalpin 2007] to modern Fortran
code. The authors compare this implementation using the DO CONCURRENT command
against CUDA and variants of OpenACC and OpenMP. They also consider loop- and
array-based reference and evaluate the code on AArch64 and x86 64 CPUs and AMD,
Intel, and NVIDIA GPU platforms.

We conduct our experiments based on Hammond et al. 2022 because it also
intends to evaluate the DO CONCURRENT against traditional PPIs based on directives.
However, the STREAM benchmark has only four small kernels (COPY, SCALE, SUM, and
TRIAD), where operations are done directly in vector operations. In our work, we select a
classical benchmark and a representative numerical program, a porous media application, to
evaluate the impact of the DO CONCURRENT operations. The NAS Parallel Benchmarks
(NPB) are a small set of programs designed to help evaluate the performance of parallel
supercomputers. A porous media application is a kind of Computational Fluid Dynamics
(CFD) problem, one of the scenarios that mostly demands HPC [Versteeg and Malalasekera
2007]. Our approach is more connected with Stulajter et al. 2022 related work but also
considers nontrivial features for standard Fortran parallelism to handle, such as reductions,
local private variables, and stack arrays.

3. Parallel Programming: DO CONCURRENT
The addition of parallelism features in a standard language allows for accelerating GPU
and CPU parallel programming. When the compiler is tasked with generating concurrency,
the initial implementations of a specification may be incomplete. This is often because
new features require thorough evaluation and refinement. The full support of this resource
probably will stay in the future, increasing the portability of the code in terms of vendor
support and duration of support. ISO-standard languages, like Fortran 2018, have a proven
track record for stability and portability. The code will also look cleaner by excluding the
lines where parallel directives appear.

DO CONCURRENT is an initial way to add concurrency support to code de-
velopment. In this case, it is unnecessary to learn about directives. On the other hand,
programmers need to think about parallelism when implementing the loop. It enables the
parallel execution of loops in programs, making the usage of accelerated GPU and CPU
parallel programming possible. One of the main advantages of DO CONCURRENT is
its syntax, which is similar to the traditional loop syntax making parallelism exploitation
easier. Furthermore, this structured integration into the language’s syntax makes parallel
code more readable and enhances its simplicity concerning external resources such as
OpenMP and OpenACC.

The Fortran 2018 standard implemented locality specifiers to the DO CONCUR-
RENT construct [ISO Central Secretary 2018]. The locality of a variable that appears in a
DO CONCURRENT construct is LOCAL, LOCAL INIT, SHARED, or unspecified. A



construct or statement entity of a construct or statement within the DO CONCURRENT
construct has a SHARED locality if it has the SAVE attribute. If it does not have the SAVE
attribute, it is a different entity in each iteration, similar to the LOCAL locality.

A variable that has LOCAL or LOCAL INIT locality is a construct entity with the
same type, type parameters, and rank as the variable with the same name in the innermost
executable construct or scoping unit that includes the DO CONCURRENT construct. The
outside variable is inaccessible by that name within the construct. The construct entity has
the ASYNCHRONOUS, CONTIGUOUS, POINTER, TARGET, or VOLATILE attribute
if, and only if, the outside variable has that attribute. It does not have the BIND, INTENT,
PROTECTED, SAVE, or VALUE attributes, even if the variable outside has that attribute.

An entity has the same bounds as the outside variable if it is not a pointer. At the
beginning of the execution of each iteration, if a variable has unspecified locality and if
in an iteration it is referenced, it shall either be previously defined during that iteration
or shall not be defined or become undefined during any other iteration. If it is defined or
comes undefined by more than one iteration, it becomes when the loop terminates.

The programmer is responsible for ensuring the safe parallelization of loops, as the
pgf90 (Nvfortran) may parallelize the loop even if there are data dependencies [Ozen and
Lopez 2020]. For instance, incorrect results can be caused by addresses of inappropriate
data dependencies.

4. Methodology

The methodology consists of the parallel implementation of the Conjugate Gradient of
NAS-PB and a Porous Media model. That includes developing PARALLEL DO, OpenMP
and OpenACC code versions. Moreover, we evaluate the execution performance of the
implementations. We run 30 times for each implemented version to collect the average
execution time.

The computational environment used in this work for running the tests is a work-
station composed of two Intel Xeon CPU E5-2420 six-core processors ( 1.90GHz). The
operating system is Ubuntu 22.04.1 with GNU/Linux kernel version 5.19.0-1025-oracle.

As pointed out in [Stulajter et al. 2022], currently, only Pgfortran (also currently
known as Nvfortran) allows generating CPU and GPU parallelism for the DO CONCUR-
RENT. Hence, we could use only this compiler for the experiments. We compile the code
with pgf90 (nvfortran), using the hpc sdk 23.5 NVidia toolkit, with the additional flag
-O3, Minfo=all, and -stdpar. We add the tag -fopenmp for OpenMP and the flag
-acc for OpenACC. We also consider -mp=multi-core -stdpar=multi-core
for CPU and -mp=gpu -stdpar=gpu for GPUs.

We run the Conjugate Gradient with the NAS-PB class C, that is the number of
rows of the matrix is 150,000 and 75 iterations. The algorithm was executed 100 times to
determine the average execution time.

We run the fluid flow simulation for the tests discretizing the spatial domain into
100 × 124 mesh elements, that is 100 nodes in the x direction and 124 nodes in the y
direction. We define a simulation time of 0.04. The discrete time step (∆t) was 0.01. The
maximum number of iterations used for convergence in each discrete time was 20,000.



4.1. Conjugate Gradient - NAS-PB

The Conjugate Gradient algorithm is an iterative method used to solve large systems of lin-
ear equations, particularly those arising from discretized partial differential equations [Saad
2003]. It is especially effective for sparse, symmetric, and positive-definite matrices. The
algorithm iteratively refines an estimate of the solution, making it suitable for problems
where direct methods would be overly computationally expensive [Shewchuk 1994]. By
utilizing gradients and conjugate directions, it converges faster than simpler methods like
the gradient descent. Algorithm 1 describes the steps of the algorithm.

4.2. Porous Media Application

The coupled open-porous medium problem application is a discrete numerical simulation
algorithm to grain drying. Algorithm 2 shows the called routines in the main iterative step,
where external loops are time-dependent. Namely, a step depends on the previous step
and can not be parallel, which is a characteristic of this domain of applications. Hence,
the exploitation of parallelism occurred in invoked routines. In a previous experiment,
considering sequential execution, solve U() and solve V() each one represents
around 40% of the execution time of the application.

Figure 1-A shows the original sequence of subroutine calls for the application in the
iterative step. Figure 1-B presents the new code structure for the analyzed part of the code.
We rewrite the code to simplify the operations and to easily express the loop parallelism,
maintaining the same numerical results. In this new structure, the Solve U and Solve V
routines call three times ResU or ResV, UpwindU() or UpwindV(), and its respective
boundary condition subroutine (bcUV()). UpwindU() and UpwindV() treat distinct
operations of the four border side elements. Solve P incorporates the ResP() oper-
ations and only calls the boundary conditions bcP(). Solve Z incorporates all short
subroutines ResZ() and boundary conditions BcZ().

After the program modification, we identify 32 parallel loops are the main iterative
step. We apply 10 parallel loop operations on solve U, 10 for solve V, 6 for solve P,
and 6 for solve Z. We parallelize the loops using OpenMP, OpenACC, and the DO
CONCURRENT approaches. We only do not parallelize the boundary operation loops due
to the simplicity of the computations, that is, only attribution operations.

Algorithm 1 Steps of the Conjugate Gradient algorithm



Algorithm 2 The main iterative step of the porous media problem

1 DO WHILE (time .LT. final_time)
2 time = time + dt
3 DO WHILE(itc.LT.itc_max)
4 CALL solve_U()
5 CALL solve_V()
6 CALL solve_P()
7 CALL solve_Z()
8 CALL convergence()
9 ... !data updates

10 ENDDO
11 ... !data updates
12 ENDDO

Figure 1. Code optimizations



Algorithm 3 A code region using !$omp parallel do directive

1 ...
2 !$omp parallel do private(i,j)
3 DO i=2,imax-1
4 DO j=2,jmax-1
5 res_p(i,j) = dtau * RP(i,j) * c2
6 pn(i,j) = 1.0d0 / 3.0d0 * p(i,j) +
7 2.0d0 / 3.0d0 * (pi(i,j) + res_p(i,j))
8 ENDDO
9 ENDDO

10 !$omp end parallel do
11 ...

5. Implementation

5.1. OpenMP Implementation

OpenMP is a parallel programming API for C/C++ and Fortran languages, widely used
for shared memory parallelism, and it has its components, such as libraries, environment
variables, and directives [OpenMP 2023]. Although it is necessary to indicate parallelism
through directives, the popularity of OpenMP lies in the fact that the creation of concurrent
executions is implicit [Chapman et al. 1998]. The programmer can even define the number
of threads and how the distribution of data computation will be among the tasks. But
usually, the vast majority adopts only loop parallelism without worrying much about the
instantiated number of threads or the choice of parameters for processing distribution.

In our work, we first create parallel threads using the !$omp parallel directive,
associated with do to split the computation. We set private variables for restricted data at
each thread. It was also possible to generate binary code to CPU and GPU by setting flags
to the compiler.

For the “OpenMP parallel do” approach, it was necessary to identify the inner loops
of the application and include the appropriate pragma. Algorithm 3 shows an example
of a parallel loop applied in an update of the pressure variable p for the porous media
application.

5.2. OpenACC Implementation

OpenACC is an API based on directives for developing parallel applications on heteroge-
neous architectures, available for C/C++ and FORTRAN [Chandrasekaran and Juckeland
2017]. Those directives specify loops and code blocks that offload from the CPU to an
attached accelerator [OpenACC 2023].

In our application, data is copied to the GPU from the CPU before the beginning of
the iterative step using !$acc enter data copy in (VARIABLES). Held data
is in the GPU during the execution of the routines. The copy of the results to the CPU
is for post-processing at the end of the iterative step using !$acc exit data copy
out (VARIABLES). The use of !$acc data present(VARIABLES) directive
for each paralleled routine indicates the variables to be used and previously copied.



Algorithm 4 A code region using !$acc parallel do directive

1 !$acc data present (res_p, pn, p, pi c2)
2 ...
3 !$acc parallel do collapse(2) private(i,j)
4 DO i=2,imax-1
5 DO j=2,jmax-1
6 res_p(i,j) = dtau * RP(i,j) * c2
7 pn(i,j) = 1.0d0 / 3.0d0 * p(i,j) + 2.0d0 / 3.0d0 * (pi(i,

j) + res_p(i,j))
8 ENDDO
9 ENDDO

10 !$acc end parallel
11 ...
12 !$acc end data

Algorithm 5 A code region using DO CONCURRENT

1 ...
2 DO CONCURRENT(j=2:jmax-1)
3 DO i=2,imax-1
4 res\_p(i,j) = dtau * RP(i,j) * c2
5 pn(i,j) = 1.0d0 / 3.0d0 * p(i,j) + 2.0d0 / 3.0d0 * (

pi(i,j) + res\_p(i,j))
6 ENDDO
7 ENDDO
8 ...

The directive !$acc parallel defines the parallel execution. The composition
of most routines is nested loops. So, we adopt the directive !$acc do collapse(2)
because the mesh is bi-dimensional for the porous media application. Figure 4 shows a
code snPPIet of our OpenACC implementation for the pressure update.

For the OpenACC implementations, it was necessary to indicate the routines that
go run on GPU. For that, it is necessary to indicate !$acc routine (name) in the
caller routine, where the name is the called routine.

5.3. DO CONCURRENT Implementation

In the DO CONCURRENT implementation, we change each one of the external DO
command to the concurrent instruction. So, we trust that the compiler assigns all local
variables correctly. Algorithm 5 shows a code snPPIet using DO CONCURRENT.

6. Experimental Results

6.1. Conjugate Gradient Results

Table 1 shows the execution time results. Surprisingly, the results indicated no significant
difference between the two parallelization approaches. Both implementations exhibited
similar numerical results, which demonstrates precise and equivalent calculations. Despite



Table 1. Conjugate Gradient Results

Implementation Standard Deviation Average Execution Time(s)

OpenMP 1.471 36.144
Do Concurrent 1.404 36.096

Table 2. Porous Media Application

Implementation Standard Deviation Average Execution Time(s)

OpenMP 7,77 116,203
Do Concurrent 3,53 105,798
OpenACC 6,56 111,301

minor variations in execution time, the overall outcomes were consistent across iterations.
The standard deviations of execution times were 1.404 and 1.471 seconds, respectively.
The lower standard deviation of Do Concurrent indicates slightly more consistent execution
times.

6.2. Porous Media Application

Table 2 presents the average execution time in seconds of all versions for the mesh size
configuration 100 × 124. The figure show the versions: OpenMP parallel do, DO
CONCURRENT, and OpenACC parallel loop. We also calculate the standard
deviation for these average times. We evaluate and guarantee numerical compatibility.
That is, all codes need to produce identical values of results. In some cases, the values
have a little difference of 10−10 concerning the sequential version.

The parallel OpenMP and DO CONCURRENT implementation running on the
CPU provides execution time reduction. The sequential execution has a execution time of
605, 66s. All experiments could use the maximum cores available(24). Both approaches
obtain similar results, but DO CONCURRENT is slightly better. The speedup was respec-
tively 5.21 and 5.51 for OpenMP and DO CONCURRENT. These results are compatible
with the values found in related works ( [Silva et al. 2022]).

The OpenACC result shows an execution time reduction compared to the CPU
Sequential execution. The time is similar to the previous 24 CPU cores OpenMP and DO
CONCURRENT execution.

7. Conclusion and Future Works

DO CONCURRENT is a language command provided in FORTRAN ISO 2018 standard,
which is an alternative to facilitate the parallelism of an HPC application. DO CONCUR-
RENT is also implemented in Pgfortran (Nvfortran) compiler [Hammond et al. 2022]. DO
CONCURRENT provides cleaner code because there is no necessity to put pre-compilation
directives.

In our evaluation of DO CONCURRENT, we use a more compound application,
with the objective of not changing the source code, except for code writing optimizations.
We point steps and code changes to usage the DO CONCURRENT in large applications.
We provide parallel approach implementations: parallel OpenMP do, parallel OpenACC



do, and DO CONCURRENT for the CPU of NAS-PB Conjugate Gradient and for an
open-porous-medium problem. The results show similar or even better results for the DO
CONCURRENT than the OpenMP parallel do directive in CPU. These results demon-
strate the potential of DO CONCURRENT to enable coding abstractions for introducing
parallelism and also maintain high performance when running the applications.

We intend to provide a better OpenMP target implementation for GPUs in the
future. The target approach allows the selection of the parallel environment at compilation
time. Another experience includes combining the DO CONCURRENT Fortran language
command with OpenACC to provide better speedup.
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