
An Empirical Study of OpenMP Directive Usage in
Open-Source Projects on GitHub*

Cristian Carvalho Quevedo1, Simone André da Costa Cavalheiro1

Marcos Antonio de Oliveira Jr.2, André Rauber Du Bois1
Gerson Geraldo H. Cavalheiro1

1PPGC - Universidade Federal de Pelotas
Pelotas – RS – Brazil

{ccquevedo,scosta,ardubois,gersonc}@inf.ufpel.edu.br

2Instituto Federal de Educação, Ciência e Tecnologia Farroupilha
Santa Maria – RS – Brazil

marcos.oliveira@iffarroupilha.edu.br

Abstract. This paper presents a mapping of OpenMP API usage in open-source
C/C++ projects on GitHub. The study investigates the frequency and patterns of
OpenMP directive utilization through a data mining process on relevant repos-
itories. The analysis reveals a predominant focus on loop parallelization and
identifies opportunities for optimization in scheduling strategies and critical sec-
tion handling. The study also uncovers underutilization of vectorization capabil-
ities and potential for code restructuring to enhance parallel performance. The
findings offer valuable insights into the practical application of OpenMP, con-
tributing to the development of improved programming practices, educational
resources, and tools that support efficient parallel programming with OpenMP.
All software artifacts developed for this study are available to foster repro-
ducibility and further research.

1. Introduction
Mining software repositories is crucial for improving review processes in open-source
projects by extracting detailed data on people, processes, and products. This data enables
the analysis and enhancement of quality and efficiency in software development. An
exciting area of research involves using mined data to develop techniques and tools related
to code review [Yang et al. 2016]. GitHub1 is a leading platform for version control and
collaborative development, utilizing the Git system.

In this context, mining repositories helps us understand projects employing spe-
cific technologies, such as concurrent programming with OpenMP.2 OpenMP is an API
that supports parallel programming in C, C++, and Fortran, enabling developers to utilize
multiple processors efficiently. Although reference documents provide guidance on us-
ing OpenMP directives to parallelize program execution, these directives are not always
applied correctly or efficiently.

*This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior,
Brasil (CAPES), Finance Code 001.

1GitHub [https://github.com/]
2OpenMP [https://www.openmp.org/]



Analyzing the usage of OpenMP directives helps to understand how programmers
use this tool and how its effectiveness can be improved. Repository mining offers valu-
able insights into project dynamics, especially in open-source environments. By examin-
ing mined data, it is possible to identify collaboration patterns, process effectiveness, and
project quality, leading to targeted improvements. This practice not only provides insights
into social aspects, such as team collaboration and information flow, but also reveals tech-
nical issues like file organization and common challenges faced by the community. Thus,
repository mining is essential for a thorough understanding of concurrent programming
projects and for advancing and optimizing these practices.

This paper presents a mapping of OpenMP usage in open-source projects on
GitHub. A case study was conducted to extract data about OpenMP directive usage, aim-
ing to map the state of the art and aspects of concurrent programming, such as resource
sharing. The main contributions of this research are the following:

• Quantifies the use of different OpenMP directives in public repositories on GitHub;
• Case study of the use of critical sections;
• Case study of loop parallelism exploitation;
• Software artifacts produced for mining and analysis of case studies.

This paper is structured in sections as follows. Section 2 outlines related works.
Section 3 presents the methodology and artifacts developed for mining public repositories.
Section 4 discusses the results obtained, detailing the mining analyses. Finally, Section 5
concludes the paper and presents future research directions.

2. Related Works
Mining Software Repositories (MSR) is a complex task with many challenges and can
be conducted for different purposes [Luzgin and Kholod 2020]. Some works focus on
analyzing existing source codes to facilitate the development of new codes, while others
seek to extract and organize data from repositories [de F. Farias et al. 2016]. Some papers
directly related to the proposed approach are listed in this section.

[Romano et al. 2021] addresses some challenges of using the GitHub REST API
for MSR studies, specifically API limitations, language misclassification, and the inclu-
sion of non-software artifacts. The authors developed G-Repo, a tool that aids researchers
in creating and cleaning datasets. G-Repo provides functionality for querying GitHub,
cloning repositories, checking programming languages, and detecting the spoken lan-
guage of repositories. The authors show that G-Repo effectively helps researchers over-
come common hurdles in gathering and preparing data, being a valuable tool for general
MSR work.

Also, in tool format, in [Gote et al. 2019], the authors present git2net, a Python
tool for extracting fine-grained and time-stamped co-editing networks from large Git
repositories. Unlike traditional approaches focusing on co-authorship at the file level,
git2net analyzes the detailed history of textual modifications within files, identifying spe-
cific lines or code regions edited by different developers. The paper demonstrates the
tool’s capabilities through case studies on Open Source and commercial software projects.
It showcases its ability to reveal insights into collaboration patterns, knowledge flow, and
developer effort allocation that are not captured by coarser-grained methods. This tool is
also powerful for analyzing collaboration patterns in general terms without specializing.



In [Biswas et al. 2019], the authors introduce a new Boa dataset specifically cu-
rated for Data Science software developed using Python. The authors collected 1,558
mature GitHub projects using Python libraries for machine learning and data analysis
tasks. The authors demonstrate the dataset’s potential through two applications: ana-
lyzing the distribution of projects between organizations and individual users and iden-
tifying frequent API call sequences in neural network projects. The dataset provides a
valuable resource for MSR research focused on understanding the development practices
and challenges in data-intensive Python software without addressing specific aspects of
programming, such as concurrency.

[Munaiah et al. 2017] addresses the challenge of separating “signal” (actual soft-
ware projects) from “noise” (non-software artifacts) in massive repositories like GitHub.
The authors propose an evaluation framework based on seven dimensions representative
of software engineering practices, such as documentation, testing, and community par-
ticipation. They implemented this framework as a tool called reaper to automatically
evaluate repositories and predict whether they contain engineered software projects. The
results show that their classifiers achieve higher recall, identifying a more comprehensive
range of engineered projects than the stargazer-based method, offering a valuable tool for
researchers to curate relevant datasets. This paper tackles the broader issue of identifying
general engineered software projects rather than investigating the use of a specific tool.

While the importance of papers that discuss the MSR and their achievements is
noted, there is also a gap in specialized research focused on specific aspects, such as con-
current programming and the use of tools such as OpenMP. Therefore, this work comes
in this research direction to push the state of the art, presenting a set of analyses on public
GitHub repositories that use OpenMP directives to produce and organize this knowledge.

3. Mining OpenMP Public Repositories
The process of identifying and retrieving OpenMP-utilizing repositories on GitHub is
detailed in this section. The developed artifacts for mining and the parameters used to
determine the repositories of interest are presented. The section includes a tabulation of
the quantitative data from the mining process.

3.1. Role of Source Code Repository Platforms in Software Development
Currently, there are several source code repository platforms, such as the widely known
GitHub, which play a fundamental role in collaboration and software development. These
platforms provide developers with a robust infrastructure for storing, sharing, and collab-
orating on open and private source projects. They also enable version control by offer-
ing features such as issue tracking, pull requests, and continuous integration, facilitating
coordination between distributed teams and improving code quality. Furthermore, a key
feature of source code hosting platforms is the public availability of information, meaning
that, when the owner allows it, projects can be easily accessed and examined by anyone
interested, promoting transparency and the dissemination of knowledge.

This public accessibility encourages collaborative learning and development and
promotes trust in the software community by allowing others to build on existing work,
identify and fix problems, and contribute improvements. This openness democratizes the
software development process, making it more inclusive and receptive to contributions
from various participants.



Table 1. Frequency of metrics by range of values.

Metric 0 (1-10] (10-100] (100-1,000] > 1,000

Stars 653 515 111 31 2
Forks 906 339 56 10 1
Files 0 851 460 1 0
Collaborators 42 1,241 26 3 0

3.2. Data extraction

The data extraction was conducted in May 2023. The repositories considered were those
tagged with the topic “openmp,” developed in C and C++ languages. A total of 1,312
repositories were collected, of which 592 were in C and 720 in C++. The repositories
were cloned locally, and only files containing OpenMP directives were retained, orga-
nized by directory identification. Thus, the database consisted of 13,343 files. During the
extraction process, the number of stars, forks, files, and collaborators for each repository
was recorded, and this data is summarized in Table 1.

Once the mining stage was completed and a local copy of the files manipulat-
ing OpenMP was made, a file preparation stage for processing was conducted. The file
preparation was done first using the dos2unix utility to ensure all files conformed to
the standard Unix format and then using the stream editor sed. With sed, all double-
spacing characters were removed from the lines containing the sequence “#pragma omp”
to facilitate pattern identification.

3.3. Discussion

According to Table 1, most repositories have a low number of stars and forks. It is also
observed that most repositories, in addition to their owner, have up to 10 collaborators.
Two repositories have more than 1,000 Stars: one is developed in C, with 7,761 Stars and
1,878 Forks, and another in C++, with 3,159 Stars and 883 Forks. Several have at most
10 Stars and Forks.

This better rating in terms of number of stars appears to be accompanied by the
number of forks, as also identified by [Borges et al. 2016, Borges and Tulio Valente 2018].
The Pearson’s r test to verify the correlation between the metrics was applied, indicating
that there is a significant large positive relationship between the number of stars and forks
attributed to the repositories (r(1310) = 0.9872, p ≤ 0.001). By removing the two repos-
itories that were outliers in the sample in terms of the number of Stars, the correlation
remained very strong (r(1308) = 0.8484, p ≤ 0.001). For no other combination of metrics
was a correlation coefficient implying causality found. In conclusion, it is accepted that
there is a correlation between the number of Stars and Forks assigned to the repositories,
but no other relationship between the metrics was identified.

The file preparation stage also allowed for the identification of repositories that
were not completed projects but rather small experiments and trials. Since a methodology
for repository acceptance was not foreseen, these projects were not discarded.



4. Analysis of Mining Results

This section presents the tools and methods used to analyze the use of OpenMP directives
in the codes of the mined repositories. Two subsections present the raw data obtained
from the mining process. Following this, two of several aspects of using OpenMP are
discussed below: data sharing and parallel loops. The section ends by characterizing the
limits of the work performed.

4.1. Tools, methods, and reprodutibility

The main tools used to extract information about the code were the sed utility for prepar-
ing the files for processing and awk for identifying the use cases of the directives. Only
files with the following extensions were considered: .c, .h, .C, .H, .cpp, .hpp,
.cxx, .hxx, and .inl.

The repository files were first manipulated to simplify the process of identifying
patterns in the use of the directives. All leading whitespace and tabs were removed from
the beginning of lines, causing the OpenMP sentinels #pragma omp to occur at the
beginning of a line. All lines starting with an OpenMP sentinel and ending with an escape
character (“\”) were concatenated with the following line, removing the escape character.
Finally, it was ensured that all lines containing #pragma omp used one, and only one,
whitespace to separate the words.

The next step was to identify patterns in the use of OpenMP directives. Scripts
were developed for each case considered in the study. These scripts do not implement
a complete grammar for the OpenMP directives or the C and C++ languages. However,
these scripts are sufficient to identify code snippets of interest for the desired analyses.

The set of artifacts developed in this work and the data used for analyses are avail-
able in a public repository for reproducibility and verification of results.3 The software
artifacts available in this repository include the Python script for mining and the awk
scripts used for pattern searching. The repository also contains instructions on how to use
the developed scripts and the command lines using grep and sed that were employed.

4.2. OpenMP and C++

The collected data revealed that the number of project repositories using OpenMP devel-
oped with C++ as the primary language is higher than those with C. This superiority is
about 20%. By observing the numbers of Stars and Forks, one can also see that there is a
superiority in terms of reputation.

OpenMP was first developed for the C language,4 and it has always been possible
to use it with the C++ language, provided it was limited to features inherited from C,
not the new functionalities of C++. Starting from OpenMP 3.0 features specific to C++,
such as container manipulation and iterators, were incorporated. In the current version,
OpenMP 5.2, this support has been expanded to modern C++ features, such as lambda
expressions and std::array references, facilitating the integration of OpenMP with
more idiomatic and expressive C++ code [Board 2021]. The complexity in handling

3https://github.com/GersonCavalheiro/OpenMPSnapshot.
4And Fortran, but in this paper, the focus is on the use of OpenMP with the C and C++ languages.



class instances can be exemplified by considering the complexity of object construc-
tion, copying, and destruction operations when passed as parameters to the private,
first/lastprivate, or even reduction clauses. The expressiveness can be ex-
emplified by the use of iterators in parallel loops and support for exception handling.

Due to the particularities of using C++ with OpenMP, an investigation was con-
ducted to see how these features were being utilized in C++ repositories. The analysis
was done manually, examining the code of 10 repositories, with 5 of these repositories
having between 300 and 900 stars and the other five between 90 and 150 stars. Reposi-
tories within this range were randomly selected with the aim of eliminating extremes of
projects with very high or low reputation5. The aspects investigated were the use of excep-
tion handling mechanisms, utilization of class instances as parameters for the private,
first/lastprivate, and reduction clauses, and the use of parallel loops con-
trolled by iterators over containers.

The investigation revealed that, out of the ten manually analyzed repositories, only
one made use of all the investigated aspects. This repository, among those selected, had
the highest number of stars. Regarding the other elements, only one other repository,
which had the second-highest number of stars, used object instances in the clauses. In
terms of the use of exception handling mechanisms, 4 out of the ten repositories utilized
this feature.

4.3. Frequency of directives
Table 2 presents the quantitative usage of OpenMP directives in the analyzed reposito-
ries. The data tally occurrences identified in repositories where the primary languages
are C and C++. The table also includes the OpenMP version in which the directive was
introduced and a classification devised by the authors of this paper to identify the nature
of the directive. Table 3 shows the proportion of directives in each category. A notable
observation is the extensive use of directives for parallelism exploration in loops.

Table 2. Frequency of directives, quantitative.

Directive Version Total Category Directive Version Total Category

parallel 1.0 16766 Parallel Control taskyield 3.4 16 Synchronization; Task
parallel for 1.0 10446 Parallel Control; Loop simd 4.0 1772 Parallel Control; Loop; SIMD
for 1.0 6177 Parallel Control; Loop target 4.0 3428 Teams and Distribution
barrier 1.0 2781 Synchronization teams 4.5 277 Teams and Distribution
single 1.0 1718 Parallel Control; Implicit Task parallel for simd 4.5 198 Parallel Control; Loop; SIMD
critical 1.0 1414 Synchronization distribute 4.5 142 Parallel Control
section 1.0 1012 Parallel Control; Implicit Task for simd 4.5 44 Parallel Control; Loop; SIMD
master 1.0 931 Parallel Control; Implicit Task taskloop simd 4.5 31 Parallel Control; Loop; Task; SIMD
sections 1.0 219 Parallel Control; Implicit Task requires 4.5 22 Metaprog. and Requirements
parallel sections 1.0 183 Parallel Control; Implicit Task declare 5.0 774 Metaprog. and Requirements
atomic 2.0 2485 Synchronization loop 5.0 47 Parallel Control; Loop
ordered 2.0 364 Synchronization metadirective 5.0 8 Metaprog. and Requirements
flush 2.0 238 Synchronization depobj 5.0 7 Mem. Alloc. and Management
threadprivate 2.0 152 Data Privacy and Sharing allocate 5.0 4 Mem. Alloc. and Management
task 3.0 3553 Parallel Control; Task assume 5.1 7 Metaprog. and Requirements
taskwait 3.1 834 Synchronization; Task error 5.1 5 Execution Control and Debugg
taskloop 3.2 329 Parallel Control; Loop; Task tile 5.1 2 Parallel Control; Loop
taskgroup 3.3 96 Synchronization; Task mask 5.1 2 Execution Control and Debug

56488

While concurrency exposure clauses come with directives to parameterize task
construction, indicating how each task should share the address space with others, there
is also notable usage of the critical and atomic directives.

5The repository identifiers are (first group) 81815495, 94275048, 6987353, 38410417, 40821917, (sec-
ond group) 73826981, 84174010, 58775556, 69450880, and 322989201.



Table 3. Usage Breakdown for Parallelism Control

Category Usage

Parallelism Controla
Loop 66.12%

59.16%Task 13.48%
Implicit Task 13.37%
SIMD 7.04%

Synchronization 19.44%
Teams and Distribution 8.75%
Metaprogramming and Requirements 1.91%
Data Privacy and Sharing 0.36%
Execution Control and Debugging 0.03%

aNot considering parallel directive alone.

4.4. Dealing with shared data

Critical sections are used to ensure consistency in accessing shared data. OpenMP offers
mechanisms based on performing atomic operations or blocks. The available directives
are atomic and critical.

4.4.1. Usage of the atomic Directive

The atomic directive allows operating atomically on data whose size is a word, such
as an integer or pointer, in an optimized manner, as it does not require synchronization
mechanisms like locks. It is implemented directly in hardware with support from in-
structions such as fetch-and-add, compare-and-swap, or atomic exchange. This directive
can receive clauses that determine its behavior and was used 2,485 times in the analyzed
repositories. Table 4 details the number of times each valid clause for this directive was
used. The most used clause was update, assumed as default in 1193 cases. A manual
inspection of using the atomic directive with its various clauses was conducted.

Table 4. Frequency of clauses applied to atomic.

update write read compare capture hint

1561 307 278 5 334 0

The most used clause, update, allows for atomic read and write access, as in
++x; or x=x+1;. Atomicity is ensured by reading the variable x and writing the result
back into x. The manual inspection identified that the use of this clause maintained the
expected pattern associated with cumulative operations. Using the write and read
clauses also adhered to the expected pattern. The write clause performs atomic write
access, as in x=y;, where atomicity lies in writing the result of evaluating expr into
the variable x. On the other hand, the read clause performs atomic read access, as in
y=x;, where atomicity lies in reading the value of x. However, in the use of these three
clauses, some constructs involved complex mechanisms for accessing variable addresses,
such as x[foo(z)] -= y; or even involving a large number of identifiers, where



atomic access is not guaranteed in operation, such as x[i] += a * y[j++]; and
x[i][j-2][k-1];.

The capture clause allows a variable’s value to be read in an expression and
then modified atomically, as in y=x++; and y=x; x=z;, where the read and write
accesses to variable x are performed atomically. An important aspect to consider is that
the read-write sequence at the address is not atomic. This clause was introduced in version
5.1 of OpenMP and was identified in only two repositories.

The compare and hint clauses were introduced in the latest version, 5.2, of
OpenMP. Both clauses were used in only one repository. Although this paper does not
conduct a qualitative study of the repositories, in this specific case, it was noted that their
use was for testing the functionality of the features rather than their practical application
as part of solving a problem. The fact that it is a new feature in OpenMP may explain its
low representation in the samples.

4.4.2. Usage of the critical Directive

The critical directive was used 1,414 times, where 293 with a label associated with
the critical section. Table 5 presents additional data regarding code snippets related to the
use of the critical directive. One dataset identifies the potential for the associated
block to be implemented with the atomic directive, and another identifies long critical
sections. Except for the data related to collections, which were identified by manual
inspection, all other data was extracted automatically using an Awk script.

Table 5. Characteristics of critical sections with the critical directive.

Usage of critical candidates for atomic Usage of critical in long critical sections

Read/Write Compound Assignment Increment Loops if then [else] Collectionsa

508 161 61 53 35 204

aCases were identified by manual inspection.

According to the data in Table 5, there are 730 cases where the atomic direc-
tive could be employed directly, 508 using the read or write clauses, 222 using the
update. Observing the remaining code snippets, 53 of them contained at least one se-
quential loop (for, while, or do while commands). In 35 of them, there was at least
one ifthen [else] command. During the inspection, a manual intervention identi-
fied that 204 critical sections were used for manipulating collections (vector, list,
deque, etc.).

4.4.3. Findings

The code snippets associated with critical sections were inspected for their compliance
with the employed directives. Generally, it was identified that the application of the atomic
directive was adequate regardless of the clause. This is expected, as compilers in their
recent versions verify if the expressions used correspond to the clauses applied, presenting



compilation errors if they do not. However, it was observed that in many cases, the
expressions are complex regarding the memory locations accessed. In these instances,
there is no integrity guarantee for memory areas not handled by atomic operations.

On the other hand, the use of the critical directive showed that there is room for
improvement in several aspects. This directive impacts program performance by limiting
the exploitation of hardware parallelism. The first point observed was the low number
of occurrences where this directive is used without being bound to a label. The no use
of a label extends the synchronization granularity to the program, increasing the risk of
operation serialization. It was also identified that, in many cases, the atomic directive
could suffice since the critical section is limited to performing operations suitable for
this directive, thus reducing contention. Finally, several critical sections containing loops
were identified, which may indicate long stretches of serialized code, leading to a loss of
parallelization potential. Additional observations include the use of critical sections in the
manipulation of data collections and in accessing MPI library services.

4.5. Parallel loops

The OpenMP directives for, loop, simd, taskloop, and distributed expose
loop concurrency in programs. Considering the data from Table 3, this is the most ex-
ploited form of parallelism in the analyzed repositories. The analysis focuses on loops
constructed with the directives for, and its variant parallel for, and simd.

4.5.1. Scheduling

The parallel for and for directives divide the iteration space into chunks (subse-
quences), assigning each chunk to a task. With the schedule clause, the programmer
can control how tasks are distributed among threads and set the chunk granularity. Three
scheduling options are available: static, the default where iterations are considered
equal in cost and tasks are mapped directly to threads; dynamic, where the computa-
tional cost varies and tasks are drawn from a shared list; and guided, where chunk sizes
decrease progressively, with tasks also in a shared list. The chunk size can be specified,
defaulting to 1. Auto and runtime options let the environment choose from the three
strategies or use the default configuration.

Out of 16,468 uses of parallel loops with parallel for and for, almost half
of them, precisely 8,306 cases, utilize the schedule clause. The breakdown is detailed
in Table 6, which shows the number of times each clause was applied to each loop con-
struct and how many of these occurrences defined a chunk size. The Undefined column
refers to cases where the scheduling strategy is a compile-time defined macro. It can
be observed that static and dynamic schedulings are the most commonly used, and
there is significant exploration of the option to determine the chunk size. It is also evident
that the number of cases where loop parallelization was done using the parallel for
construct is significantly higher than those using the for construct.

The cases where the set of iterations associated with a parallel loop includes at
least one if statement were also quantified: we found 101 cases associated with the use
of static or default scheduling, 230 with dynamic scheduling, 21 with guided, and
47 with auto and runtime scheduling. This scenario indicates that, proportionally



Table 6. Strategy Selection for Scheduling with/without Chunk Size.

Directive None static dynamic guided auto runtime Undef.

parallel for 8230 440/286 190/433 73/89 150/0 186/0 364
for 4624 558/171 94/185 37/139 14/0 167/0 186

to the total number of loops submitted to each type of scheduling, loops scheduled with
the dynamic and guided strategies have the highest rates. However, the static
strategy, being the default in the absence of the schedule clause, still accounts for a
significant number of loops containing code structures that may lead to an imbalance in
computational costs between tasks.

4.5.2. Close and nested parallel regions

The parallel for directive combines the functionalities of the parallel and for
directives, allowing the creation of a parallel region that manages the execution and
scheduling of tasks, in addition to generating the tasks to be executed. The search for
occurrences of two or more parallel for directives, nested or not, within the same
block of commands identified 444 code snippets. Although functionally correct, the pat-
tern of two or more parallel for directives in the same block of commands can be
rethought regarding code organization.

Manual inspection of these codes verified that in 19.27% of the cases, it is im-
possible, without changing the algorithm of the inspected snippet, to make a single par-
allel region encompassing two parallel loops. In 40.82% of the inspected cases, the code
snippet could be directly reimplemented, although in 38.33% of these cases, the need to
include a single task between them was verified.

Regarding the nesting of parallel loops, we identified during the manual inspection
that in 1,074 (6.46%) of the parallel loops, parallel for and for, the collapse
clause was used. On the other hand, in code blocks containing two or more parallell
for directives, 39.91% of cases of nesting of these directives were identified (1.06% of
the total loops).

4.5.3. Vector Parallelism

Current architectures allow exploiting loop parallelism through vector instructions or
SIMD (Single Instruction, Multiple Data) flow. In this type of parallelism, multiple vec-
tor positions can be operated on simultaneously, significantly increasing loop processing
speed by manipulating vectors. In OpenMP, the intention to exploit vector parallelism can
be indicated by the simd directive, either independently or in conjunction with other loop
directives (parallel for, for, and taskloop), starting from version 4.0. According
to the collected data (Table 2), the simd directive was used 1.772 times independently and
242 times in combination with parallel for and for directives. Compared to other
directives introduced in the same version, there is an indication that only the target
directive was more frequently used.



The simd being a relatively new directive, cases were investigated where its use
could have been explored in repositories, but the implementation was limited to exploit-
ing loop parallelism. Code segments were identified that corresponded to a loop pattern
(parallel for or for), followed or not by a block, containing at least one command
where an array position appears on the left side of an assignment operation. A total of
1,558 cases were identified, representing 9.4% of the total loops where this optimization
could be considered.

4.5.4. Findings

Loop structures are popular, showing the interest of parallel software designers in OpenMP.
Even the newer simd directive is widely used. However, there is room for improvement in
program implementation. Many do not effectively specify scheduling strategies or chunk
sizes. Frequent use of the parallel for directive multiple times in the same command
block suggests potential for performance enhancement. While vector/SIMD parallelism
is broadly adopted, its usage could be optimized further.

Additionally, about 50% of cases lack scheduling strategies, though when used,
chunk size definition is common. There is a notable prevalence of static scheduling in
loops with selection commands, indicating possible iteration imbalances.

4.6. Limitations and Threats to Validity

In this work, we presented data on the use of different OpenMP directives in public repos-
itories. While we analyzed the examined codes to understand OpenMP usage, we did not
explore code quality or performance aspects in depth. Our goal was to present the sce-
nario of OpenMP usage on GitHub. One limitation is that our characterization is based
on a snapshot of repositories from a specific date, but this can be mitigated by the repro-
ducibility of our methodology. Another limitation is the reliance on repository owners la-
beling their projects with the “openmp” tag, which may not always happen, thus excluding
some repositories from analysis. Additionally, we did not differentiate between mature
projects and those primarily containing tests or academic work, referred to as “noise” in
[Munaiah et al. 2017]. Our pattern identification for code snippets was also limited, iden-
tifying recurring patterns rather than implementing a complete grammar. Despite these
limitations, manual sampling inspections indicated the adequacy of our method, although
they are subject to interpretation and potential errors.

To address these limitations, we have provided all developed artifacts and the
data used in our study, offering readers the opportunity to evaluate these constraints for
themselves. This transparency allows for further examination and even the identification
of methods to overcome these limitations.

5. Conclusion
This paper provides a snapshot of OpenMP usage in C and C++ projects on GitHub,
analyzing data from 1,312 repositories. The study reveals trends in the application of
OpenMP directives, with a focus on for-loop parallelization and data sharing. It identifies
opportunities for optimization, such as improving scheduling strategies and reducing the
reliance on critical sections.



The research provides valuable insights into how the OpenMP community uses
this tool in practical scenarios, contributing to the development of best programming
practices, educational resources, and tools. Despite the challenges of mining software
repositories, the methodology and artifacts from this study form a strong foundation for
future research. The publicly accessible resources support reproducibility and further in-
vestigation, aiding in the advancement of parallel programming practices and education.

References
Biswas, S., Islam, M. J., Huang, Y., and Rajan, H. (2019). Boa meets python: A boa

dataset of data science software in python language. In Proc. of the 16th Inter. Conf.
on Mining Software Repositories, pages 577–581.

Board, O. A. R. (2021). OpenMP Application Programming Interface Specification 5.2.

Borges, H. and Tulio Valente, M. (2018). What’s in a github star? understanding repos-
itory starring practices in a social coding platform. Journal of Systems and Software,
146:112–129.

Borges, H. S., Hora, A. C., and Valente, M. T. (2016). Understanding the factors that
impact the popularity of github repositories. 2016 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages 334–344.

de F. Farias, M. A., Novais, R., Colaço Jr, M., Carvalho, L. P. S., Mendonça, M., and
Spı́nola, R. O. (2016). A systematic mapping study on mining software repositories.
In Proc. of the 31st ACM Symp. on Applied Computing, pages 1472–1479, New York.

Gote, C., Scholtes, I., and Schweitzer, F. (2019). git2net - mining time-stamped co-
editing networks from large git repositories. In 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR), pages 433–444.

Luzgin, V. A. and Kholod, I. I. (2020). Overview of mining software repositories. In
2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic En-
gineering (EIConRus), pages 400–404.

Munaiah, N., Kroh, S., Cabrey, C., and Nagappan, M. (2017). Curating GitHub for
engineered software projects. Empirical Software Engineering, 22.

Romano, S., Caulo, M., Buompastore, M., Guerra, L., Mounsif, A., Telesca, M., Bal-
dassarre, M. T., and Scanniello, G. (2021). G-repo: a tool to support msr studies on
github. In 2021 IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER), pages 551–555.

Yang, X., Kula, R. G., Yoshida, N., and Iida, H. (2016). Mining the modern code review
repositories: a dataset of people, process and product. In Proc. of the 13th Inter. Conf.
on Mining Software Repositories, pages 460–463, New York.


