
Improving performance visualization of
OpenMP task-based applications

Vinícius Garcia Pinto, Christian Einhardt Sousa Filho

1 Federal University of Rio Grande – FURG
Rio Grande, Brazil

vinicius.pinto@furg.br

Abstract. OpenMP is becoming a more powerful environment for exploiting
task-based parallelism. Recent specification versions add support for new task
clauses, while the OMPT interface provides a standard API for performance
monitoring. In this paper, we present a workflow to improve the performance
visualization of OpenMP task-based applications. We rely on open-source solu-
tions such as the Tikki OMPT tracing tool and the StarVZ performance analysis
framework to create enriched space-time views. We demonstrate this workflow
with three applications: Strassen matrix multiply, SparseLU factorization, and
a dense Cholesky factorization. For two of them, our strategy enables a better
understating of the performance impact of the OpenMP task depend, task
wait, and priority constructions.

1. Introduction
Task-based has emerged as a powerful programming model that efficiently exploits multi
and many-core platforms [Dongarra et al. 2017]. Several parallel programming libraries
[Duran et al. 2011, Augonnet et al. 2011, Gautier et al. 2013, Bosilca et al. 2013] support
it with a wide scope of hardware configurations. While such libraries keep pace with the
state of the art, their particular APIs are unfriendly or unknown to general users. On the
other side, the OpenMP specification remains the first approach to parallelize applications
on shared-memory platforms.

Best known for its widely used parallel for constructions, recent specifi-
cations of the OpenMP standard have progressively improved the support for task-based
applications. Since such task features are less known, programmers can underestimate
the influence of some of them on the overall performance.

Previous work [Garcia Pinto et al. 2018, Pinto et al. 2021] has demonstrated how
task-oriented performance visualizations can be useful to better understand and improve
the performance of task-based applications running on top of the StarPU runtime system.
At the same time, the OpenMP specification introduced OMPT, a new native API for
monitoring the execution of OpenMP programs. This new interface made the emergence
of new tracing tools possible, such as Tikki [Daoudi et al. 2020].

With the popularization of the task-based model, classical parallel applications
such as Computational Fluid Dynamics (CFD), dense and sparse linear algebra, sorting,
and bioinformatics algorithms were ported into task-based implementations. Benchmark
suites such as BOTS, Kastors, and omp-tdb provide implementations of some common

applications that illustrate the flexibility of the task-based model. BOTS [Duran et al. 2009]
applications exploit the initial features of the OpenMP tasking model, such as task cre-
ation, tiedness, and cut-off mechanisms. Kastors [Virouleau et al. 2014] benchmarks
focus on the data dependency support introduced at OpenMP 4. The omp-tdb suite
[Schuchart et al. 2017] provides a sort of microbenchmark to assess the overhead associ-
ated with task creation and data dependency management.

In this paper, we present a performance analysis of three OpenMP task-based ap-
plications obtained from public sources. Our goal is to illustrate how performance visual-
ization can be useful in understanding the performance gaps between similar codes. We
selected two cases from the Kastors suite to compare the performance of codes using the
task depend clause against the taskwait variation. We also employ a tiled dense
Cholesky factorization to assess the performance influence of the priority clause.

Our main contributions are a visual performance analysis to help explain the per-
formance gains when using task depend and priority clauses; an analysis of the
overhead introduced by Tikki tracing; a workflow to enable the use of traces from the
Tikki tracing tool into the StarVZ framework and Spack [Gamblin et al. 2015] packages
to make the installation of Tikki and Kastors easier on user-space environments.

The paper is structured as follows. Section 2 presents the background, providing
an overview of the OpenMP tasking model, the OMPT interface, and the performance
analysis of Task-based applications. Section 3 presents our workflow for integrating the
StarVZ visualization and Tikki tracing tools. Section 4 demonstrates how our workflow
helps to explain the performance variations when employing different OpenMP task-
ing features. Section 5 discusses Related Work. Finally, Section 6 concludes with the
main results and details our future work. A publicly available companion at https:
//gitlab.com/viniciusvgp/sscad2024.git includes the experiments data,
Spack packages, and the source code to integrate Tikki and StarVZ.

2. Background

2.1. OpenMP tasking model

OpenMP [OpenMP 2021] is a standard for multithread parallel programming implemented
by several compilers such as GCC and LLVM/CLANG. It is a widely used tool to enable
the parallelization of C, C++, or Fortran programs. It started as a set of compiler di-
rectives to distribute loop iterations among threads. Aside from the loop directives, it
includes additional features to make variables private or shared among threads and to
define synchronization points and mutual exclusion regions.

In OpenMP programs, the omp task directive defines the next structured-block
as a task. In addition to the code statements in the block, the task also includes a data envi-
ronment with the (private) variables declared inside the block, shared variables inherited
from a wider scope or task local copies of variables declared elsewhere.

The task execution can start immediately when an omp task directive is reached
or can be delayed for later execution. In recursive codes, the additional clauses if and
final are useful to limit the spawn of new tasks. All created tasks are independent and
may be executed in any order by any thread. When some tasks should be completed before
others can start, the programmer should define task barriers at proper places with the omp

https://gitlab.com/viniciusvgp/sscad2024.git
https://gitlab.com/viniciusvgp/sscad2024.git

taskwait directive in a fork-join design inspired by Cilk [Blumofe et al. 1996]. From
OpenMP version 4.0, the depend clause enables the definition of dependent tasks by
specifying the access mode of a task parameter. This way, the programmer can define
that a given task cannot start before another has produced a piece of data. The idea is to
replace most “global” synchronizations using taskwait with fine-grained ones inferred
from data access mode.

Recent OpenMP versions include other task features, such as clauses priority
(v4.5) and affinity (v5.0). The first one is a way to provide scheduling hints to the
runtime library. Tasks tagged with a higher priority value may be executed first. While this
cannot be used to force an execution order, it is useful to try to release critical application
tasks earlier. The affinity clause is also a scheduling hint. It can be beneficial to
consider data location when placing tasks (e.g., on NUMA architectures). Both GCC and
LLVM/CLANG claim to fully support OpenMP version 4.5, while version 5.0 features
are only partially supported.

2.2. OpenMP Tools Interface (OMPT)

OMPT is an interface introduced at OpenMP 5 to enable monitoring and performance
analysis of OpenMP programs. It consists of a set of callbacks to track the beginning and
the end of threads, parallel regions, tasks, and synchronization regions. OMPT runs within
the runtime library and can be loaded when launching previously compiled binaries.

Tracking the behavior of an OpenMP program with OMPT boils down to pro-
viding some code that will be executed each time the corresponding callback is acti-
vated. In C, this code can be as straightforward as a set of printf calls to register a
timestamp and some information about the event caught, e.g., event type and thread ID
[Miletto and Schnorr 2019, Nesi et al. 2021]. More sophisticated approaches rely on in-
tegrating OMPT facilities into existing tracing tools, as Extrae [Llort et al. 2016], Score-P
[Feld et al. 2019], libKOMP/Tikki [Daoudi et al. 2020], and others [Agrawal et al. 2018,
Daumen et al. 2019, Pinho et al. 2020].

An important limitation is that the OMPT interface is not supported by the GNU
Offloading and Multi-Processing library (libgomp), which is the default OpenMP run-
time library for GCC-compiled programs. Currently, the use of OMPT is essentially
restricted to CLANG-compiled programs using the LLVM runtime library libomp.

2.3. Performance analysis of Task-based applications

Current task-based frameworks support dataflow scheduling, providing fine-grained syn-
chronizations that reduce resource idleness and improve performance. Classical global
synchronization instructions (e.g., barriers), placed by programmers to ensure all
previous operations completed at all resources are replaced by task’ parameters access-
mode annotations. At runtime, the library can dynamically analyze the parameters’ access
mode, considering the sequential creation of tasks. A task is delayed only if at least one
of its input parameters is not ready.

Several parallel computing research tools proved the effectiveness and the flex-
ibility of this model on multicore, heterogeneous CPU+GPU and multi-node platforms
[Duran et al. 2011, Augonnet et al. 2011, Gautier et al. 2013, Bosilca et al. 2013]. Start-
ing from version 4.0, the OpenMP standard [OpenMP 2021] also supports such depen-

dency structures by adding the depend in|out|inout clause to constrain the schedul-
ing of the tasks specified with the omp task clause introduced in version 3.0.

The lack of global synchronizations favors the performance but also makes the
application behavior more irregular. Most traditional performance analysis tools focus
on the regular duration of the application phases delimited by two global synchroniza-
tions. Since task-based applications do not necessarily present such phases, performance
analysis should focus on different aspects, such as outlier tasks, resource idleness, and
analysis of the dependency chain of delayed tasks. Previous works [Pinto et al. 2016,
Garcia Pinto et al. 2018, Pinto et al. 2021] presented a set of performance analysis strate-
gies designed for task-based parallel programs that run on top of the StarPU runtime
system [Augonnet et al. 2011]. Such strategies are now available at StarVZ tool that is
distributed as an R package at CRAN1.

3. Integrating Tikki and StarVZ
The Tikki tracing tool encompasses the library implementing a set of OMPT callbacks and
a set of utility commands to process the generated traces. Following the OMPT design, the
library is coupled to the previously built binary of an OpenMP program through dynamic
library loading (e.g., with LD_LIBRARY_PATH). When executing the application, Tikki
generates a series of event files to be analyzed post-mortem. Such files can be converted
to different formats (e.g., dot, csv, rec, paje) to represent different execution details
using the ukilli command.

The StarVZ performance analysis tool was designed to analyze traces produced
by the StarPU runtime system. By itself, it does not include any trace collection facili-
ties, relying on the StarPU tracing support. This way, StarVZ is not able to analyze pure
OpenMP applications directly. To enable the analysis of OpenMP programs on StarVZ,
we rewrote some preliminary steps originally used to convert StarPU traces in the FxT
format into StarVZ internal tables. We work on replacing some of these steps to integrate
Tikki’s collected data into StarVZ’s expected tables. Most collected data are equivalent,
but some of them need conversion, renaming, and joining. We perform these steps in
bash code using standard UNIX tools such as grep, sed, gzip, recutils and pack-
ages readr, dplyr, tidyr, and tibble from R. The remaining integration steps are
done with commands from the StarVZ tool itself, which is also available as an R package.
After that, the analyst can rerun the analysis many times, recycling previously generated
tables.

Figure 1 depicts our workflow with eight steps, starting from the OpenMP ap-
plication (label 1) until the final space-time visual representation (8). The application is
launched loading the Tikki library (2) to instrument the binary and produce a set of evt
files (3). Ukilli tool (4) converts them to a set of text files (5). We designed scripts (6) in
shell and R to convert such files into StarVZ expected ones. The final plot (8) is generated
using native StarVZ commands (7).

4. Case Studies
We select three applications using different features of the OpenMP tasking model. To
assess the impact of such features on the application performance, we first report the

1https://cran.r-project.org/package=starvz

https://cran.r-project.org/package=starvz

Figure 1. Workflow of Tikki and StarVZ integration.

makespans and then check if our performance visualization strategy helps explain the
performance gaps.

4.1. Experimental Methodology

We selected three applications to demonstrate our strategy to provide support for per-
formance analysis of OpenMP task-based applications on top of the StarVZ framework.
Two applications (Strassen and SparseLU) came from the KaStORS benchmark suite
[Virouleau et al. 2014], which is publicly available2. KaStORS provides two parallel ver-
sions for each application, one using independent tasks with simple omp task and omp
taskwait directives and another with dependent tasks specified with depend clauses.
The last application implements a dense Cholesky factorization using a blocked algorithm
inspired by [Buttari et al. 2009]. This application is publicly available3 and provides two
variations, one with dependent tasks specified with depend clauses and another where
such tasks include the priority clause. We repeat the execution of each application
variation 15 times. As we intend to analyze the impact of different OpenMP tasking
features on parallel executions, all our executions are multithreaded. For serial perfor-
mance or scalability aspects, please refer to the original works [Virouleau et al. 2014,
Nesi et al. 2021] from which we retrieve the benchmarks.

4.2. SW/HW Configuration

The experiments were executed on multi-core machines equipped with two Intel Xeon
E5-2640 v3 processors, comprising 16 physical cores and 32 hardware threads. Each
node has 64 GB of DDR4 RAM memory and runs Linux CentOS 7.3. Applications were
built with clang 18.1.7, libomp 18.1.7 and Netlib Lapack 3.9.0. Tikki OMPT tool was
compiled from master branch (9721397c), Kastors benchmark suite from develop
branch (aba7a004) and Cholesky benchmark from master branch (f256cf25).

4.3. Tikki overhead

In this case, we compare the performance running with Tikki tracing enabled and without
tracing. The last one is referred to as original and the other as tikki. To enable
Tikki tracing, one must load a dynamic library when launching the application execu-
tion. However, here, we also changed the application code to include human-friendly task
names by using the non-standard ompt_set_task_name extension provided by Tikki.

2https://gitlab.inria.fr/openmp/kastors
3https://gitlab.com/lnesi/companion-minicurso-openmp-tasks/

https://gitlab.inria.fr/openmp/kastors
https://gitlab.com/lnesi/companion-minicurso-openmp-tasks/

Table 1 summarizes the overhead introduced by the tracing for the three applica-
tions. For Cholesky and Strassen cases, the overhead is less than 1%. In some cases,
the median of trace-enabled executions was even smaller than the pure one. We believe
that the natural variation in the executions can explain this. A different situation was ob-
served with the SparseLU application, where tracing the task version adds ≈ 3.9% to
the median makespan.

Table 1. Performance overhead of Tracing with Tikki. Median of 15 executions
using 16 threads. For the Original case, the Interquartile Range (IQR) is
shown in parentheses. For the IQR of Tikki cases, see Tables 2 and 3.

Application original (s) with tikki (s) difference (%)
Cholesky (prio none) 2.19676 (0.00596) 2.20876 0.546167
Cholesky (prio correct) 2.06697 (0.02906) 2.07414 0.347078
Cholesky (prio wrong) 2.2554 (0.03221) 2.24098 -0.639221
Strassen (task) 5.51985 (0.23744) 5.46932 -0.915406
Strassen (taskdep) 5.06152 (0.09609) 5.04346 -0.356691
SparseLU (task) 2.66188 (0.00343) 2.76444 3.852990
SparseLU (taskdep) 2.72660 (0.00413) 2.72992 0.121543

4.4. Influence of taskdepend clause
The taskdepend clause allows fine-grained synchronizations by replacing most of the
taskwait barriers with strict dependencies inferred from the parameters access mode.
We used the two applications from the Kastors Benchmark suite. Each one has two ver-
sions; the first uses simple omp task and omp taskwait directives in the OpenMP
3 style, while the second adds the taskdepend clause from OpenMP 4.

Table 2 summarizes results for the Strassen matrix multiplication using matrices
of 8192×8192 with a Cutoff value of 64 and for the SparseLU factorization using matrices
of 128 × 128 with sub-matrices of 64 × 64. For the Strassen application, the taskdep
version reduces the median makespan by ≈ 7.8%. The interquartile range (IQR) shows
that both cases present similar variability in the observed values.

To go deeper into the analysis, we used our workflow to convert Tikki traces
into StarVZ-compatible format and then build StarVZ space-time visualizations. StarVZ
space-time plots are similar to traditional Gantt charts commonly used in performance
analysis. In such plots, the vertical dimension presents the list of computing resources
(CPU cores or threads), while the application tasks appear horizontally over time in dif-
ferent colors for each type. StarVZ offers enriched space-time views with a series of
improvements such as idleness quantification, highlight of important task dependencies,
computation of theoretical bounds for the makespan, outlier highlighting, and task-aware
temporal aggregation. The two space-time views of Figure 2 highlight the difference be-
tween both cases. During the most part of the execution time, the two versions perform
similarly. However, in the beginning (see zoom area), the fine-grained synchronizations
of the taskdepend version increase resource usage. The idleness quantification labels
on the left show that the overall idleness ratio drops by half. However, the taskdep version
does not bring significant performance gains for the SparseLU application. Moreover, as
shown in Table 1, Tikki tracing adds a considerable overhead on the performance of the
task version but not on the taskdep one, which prevents a fair analysis.

Table 2. Performance influence of taskdepend clause. Median of 15 executions
using 16 threads with Tikki tracing enabled.

Application task clause Median (s) IQR (s)
Strassen task 5.46932 0.109190
Strassen taskdepend 5.04346 0.111966
SparseLU task 2.76444 0.124555
SparseLU taskdepend 2.72992 0.033195

4.5. Influence of priority clause
The priority clause allows developers to provide scheduling hints on which tasks
should be executed sooner. This feature is fully supported on the runtime libraries of
both GNU/GCC and LLVM/CLANG. As a hint, the runtime libraries are not obligated to
strictly respect such values and even totally ignore them, which is valid from the OpenMP
specification.

In this case study, we select a dense Cholesky factorization following the PLASMA
design of tiled algorithms. This implementation is available in the companion material of
[Nesi et al. 2021] and includes two versions, one without priorities and a second one with
priority values inspired by the Chameleon linear algebra library. The Chameleon library
gives higher values to tasks releasing a higher number of dependencies, i.e., tasks with
more direct or indirect children in the DAG, e.g., potrf ones. Additionally, we prepare
a third version with inverted priorities. That is, the potrf tasks received a lower prior-
ity than any other task. Hereafter, we refer to these three versions as none, correct,
wrong. The goal here is to check how much such a clause influences the application’s
performance. Table 3 summarizes the performance of these three versions running the
factorization over matrices of size 5000 × 5000 elements with tiles of 500 × 500. The
median of 15 executions shows that wrong version presents the worst performance.

We consider none version, i.e., without any priority clause, as the baseline since,
at an initial approach, one would probably start parallelizing the application using just a
basic omp task directive. Introducing the priority clause with the correct values
reduces the median by ≈ 6.09% over the none case. On the other hand, a hypothetical
mistake by assigning inverted values (wrong version) to the priority clause would
slow down the performance, increasing the median time by ≈ 1.45%. Moreover, provid-
ing the correct priority values not only reduces the median but also significantly reduces
the variation in the observed makespan. This reduction in the variation can be confirmed
by checking the interquartile range (IQR), which is 5× smaller in the correct version.

Table 3. Performance influence of priority clause using the Cholesky factoriza-
tion. Median of 15 executions using 16 threads with Tikki tracing enabled.

Priority clause Median (s) IQR (s)
wrong 2.24098 0.0583625
none 2.20876 0.0532135
correct 2.07414 0.0106255

Such summarized statistical values give us a notion of how the scheduling hints
provided by the programmer can harm or improve the application’s performance. To help

Figure 2. StarVZ space-time view for the Strassen application. The horizontal
axes are synchronized. Zoom over the first 600ms on the right.

understand where such performance differences came from, we employed our visualiza-
tion workflow to generate StarVZ space-time visualizations.

Figure 3 shows three space-time plots obtained from the execution where the
makespan corresponds to the median of each case. The vertical gray bar around 1360ms
represents the ABE value, a theoretical lower-bound estimation for the makespan with-
out considering any dependency among tasks. The ABE value is quite equal for the three
cases, which is expected since the three executions have the same load. The little variation
on it (1357 vs 1364 vs 1359) can be explained by the minimal variation in the duration
of each task. One can also observe that some tasks were drawn with darker colors (e.g.,
gemm ones). Such tasks were identified as outlier tasks by StarVZ. They appear mostly at
the beginning of the three executions and do not seem to explain the performance differ-
ences. StarVZ is also able to recursively track the last dependency releasing a task. Here,
we enabled the highlight of the critical path of the last task tagged with ID 219 in the
three cases. We can observe that the dependency edges are mostly vertical, meaning such
tasks were executed as soon as possible, at least at the end of the executions. Finally, we
can focus on the resource idleness represented by white areas along the plot and resumed
by the idleness quantification label on the left side. It is clear that the wrong execution
presents much more idle periods and that they start earlier (≈400ms). This can be ex-
plained by the bad hints that favor the execution of numerous gemm tasks over the critical
potrf ones. This decision delays the DAG unrolling, meaning that at some moments,

the number of ready tasks is insufficient to fill all the resources. Executions none and
correct progress quite well until ≈900ms when the none has several resources in idle.
The lack of scheduling hints caused a bad decision on the OpenMP runtime when start-
ing the fourth potrf task. On the correct execution, this fourth potrf task started
around 600ms on CPU11; on the none case, it started only around 900ms on CPU6.
After this point, both executions progress in similar ways. The ratio between remaining
tasks to execute and available resources made it possible to none case to complete only
slightly after the priority one.

Figure 3. StarVZ space-time visualization for the three versions of the Cholesky
factorization. The horizontal axis of the three plots is synchronized. The
dashed gray line indicates the makespan of the best case.

5. Related Work

There are several works reporting performance analysis of task-based applications. Most
of them rely on state-of-the-art runtime systems to explore heterogeneous multi-CPU and
multi-GPU platforms. [Augonnet et al. 2010] and [Lima et al. 2015] propose and ana-
lyze new scheduling algorithms that consider data movements and heterogeneity using
the StarPU and XKaapi, respectively. [Haugen et al. 2015] presents time-line visualiza-
tions with task dependencies for PaRSEC applications. Other works explore the OpenMP
tasking model on multicore platforms. [Virouleau et al. 2014] explores the OpenMP
depend clause reporting code changes and speed-up gains from several existing algo-
rithms. [Miletto and Schnorr 2019] compares StarPU and OpenMP using a QR Factor-
ization. [YarKhan et al. 2016] reports the PLASMA linear algebra library porting from
the QUARK runtime system to OpenMP. This paper presents some visualization plots
comparing executions using data dependencies with barrier ones. [Lima et al. 2019] re-
ports the performance gains of the Lattice-Boltzmann Method when using task-based
versions on top of OmpSs, StarPU, and XKaapi versus the traditional OpenMP paral-
lel loop approach. [Agrawal et al. 2018] present improvements on the Intel Advisor to
visualize DAG details of OpenMP task-based applications using the OMPT interface.
[Daumen et al. 2019] presents an OMPT-based solution to analyze scalability problems
on traditional loop-based OpenMP codes. [Pinho et al. 2020] relies on OMPT to profile
OpenMP task-based codes, focusing on the OpenMP internal states as regions and barri-
ers.

Most of these works rely on something other than trace visualization to reaffirm
the observed results. Those offering such features rely on custom in-house or specific
tool solutions. Others do not specify or use non-public tools. In this work, we present an
alternative workflow entirely based on open-source tools such as Tikki and StarVZ.

6. Conclusion

In this paper, we presented a workflow for integrating the Tikki OMPT-based tracing
tool into the StarVZ framework for performance analysis of task-based applications. We
demonstrated our strategy by analyzing the performance of three task-based applications.
Results show that our strategy successfully explained the performance gaps in two of
them. For the third one, the overhead introduced by Tikki prevents a fair analysis.

In future work, we aim to extend the integration of Tikki and StarVZ on two
axes. First, we plan to extend the data collected by Tikki to enable the existing StarVZ
additional plots that show runtime library states, metrics on submitted and ready tasks, and
data-handles management. The second point is to propose new StarVZ panels to depict
information that is already available in Tikki traces as NUMA aspects and recursive tasks.
Other future work includes broader analysis taking into account new OpenMP resources
such as the task affinity clause and the support for GPUs.

Acknowledgements. This study was partially financed by the Brazilian funding agencies
FAPERGS (ARD/ARC 23/2551-0000861-0) and CNPq (PIBIC). We are also thankful to
the authors of [Virouleau et al. 2014, Daoudi et al. 2020, Nesi et al. 2021] for making the
source code of the benchmark applications and the Tikki tool available.

References
Agrawal, V., Voss, M. J., Reble, P., Tovinkere, V., Hammond, J., and Klemm, M. (2018).

Visualization of OpenMP* task dependencies using Intel® Advisor – flow graph an-
alyzer. In Lecture Notes in Computer Science, International Workshop on OpenMP,
IWOMP 2018, page 175–188. Springer International Publishing, Barcelona, Spain.

Augonnet, C., Clet-Ortega, J., Thibault, S., and Namyst, R. (2010). Data-aware task
scheduling on multi-accelerator based platforms. In 2010 IEEE 16th International
Conference on Parallel and Distributed Systems. IEEE.

Augonnet, C., Thibault, S., Namyst, R., and Wacrenier, P.-A. (2011). StarPU: a unified
platform for task scheduling on heterogeneous multicore architectures. Concurrency
and Computation: Practice and Experience, 23(2):187–198.

Blumofe, R. D., Joerg, C. F., Kuszmaul, B. C., Leiserson, C. E., Randall, K. H., and Zhou,
Y. (1996). Cilk: An efficient multithreaded runtime system. Journal of parallel and
distributed computing, 37(1):55–69.

Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Herault, T., and Dongarra, J. J.
(2013). Parsec: Exploiting heterogeneity to enhance scalability. Computing in Science
and Engineering, 15(6):36–45.

Buttari, A., Langou, J., Kurzak, J., and Dongarra, J. (2009). A class of parallel tiled linear
algebra algorithms for multicore architectures. Parallel Computing, 35(1):38–53.

Daoudi, I., Virouleau, P., Gautier, T., Thibault, S., and Aumage, O. (2020). sOMP: Simu-
lating OpenMP Task-Based Applications with NUMA Effects, page 197–211. Springer.

Daumen, A., Carribault, P., Trahay, F., and Thomas, G. (2019). ScalOMP: Analyzing the
Scalability of OpenMP Applications, page 36–49. Springer, Auckland, New Zealand.

Dongarra, J., Tomov, S., Luszczek, P., Kurzak, J., Gates, M., Yamazaki, I., Anzt, H.,
Haidar, A., and Abdelfattah, A. (2017). With extreme computing, the rules have
changed. Computing in Science and Engineering, 19(3):52–62.

Duran, A., Ayguadé, E., Badia, R. M., Labarta, J., Martinell, L., Martorell, X., and Planas,
J. (2011). Ompss: A proposal for programming heterogeneous multi-core architec-
tures. Parallel Processing Letters, 21(02):173–193.

Duran, A., Teruel, X., Ferrer, R., Martorell, X., and Ayguade, E. (2009). Barcelona
openmp tasks suite: A set of benchmarks targeting the exploitation of task parallelism
in openmp. In 2009 International Conference on Parallel Processing. IEEE.

Feld, C., Convent, S., Hermanns, M.-A., Protze, J., Geimer, M., and Mohr, B. (2019).
Score-P and OMPT: Navigating the perils of callback-driven parallel runtime intro-
spection. In Lecture Notes in Computer Science, International Workshop on OpenMP,
IWOMP 2019, page 21–35. Springer, Auckland, New Zealand.

Gamblin, T., LeGendre, M., Collette, M. R., Lee, G. L., Moody, A., De Supinski, B. R.,
and Futral, S. (2015). The Spack package manager: bringing order to HPC software
chaos. In Proceedings of the International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, pages 1–12.

Garcia Pinto, V., Mello Schnorr, L., Stanisic, L., Legrand, A., Thibault, S., and Dan-
jean, V. (2018). A visual performance analysis framework for task-based parallel ap-

plications running on hybrid clusters. Concurrency and Computation: Practice and
Experience, 30(18).

Gautier, T., Lima, J. V., Maillard, N., and Raffin, B. (2013). Xkaapi: A runtime system
for data-flow task programming on heterogeneous architectures. In 2013 IEEE 27th
International Symposium on Parallel and Distributed Processing. IEEE.

Haugen, B., Richmond, S., Kurzak, J., Steed, C. A., and Dongarra, J. (2015). Visualizing
execution traces with task dependencies. In Proceedings of the 2nd Workshop on Visual
Performance Analysis, SC15. ACM.

Lima, J. V., Gautier, T., Danjean, V., Raffin, B., and Maillard, N. (2015). Design and
analysis of scheduling strategies for multi-cpu and multi-gpu architectures. Parallel
Computing, 44:37–52.

Lima, J. V. F., Freytag, G., Pinto, V. G., Schepke, C., and Navaux, P. O. A. (2019). A dy-
namic task-based d3q19 lattice-boltzmann method for heterogeneous architectures. In
27th Int. Conf. on Parallel, Distributed and Network-Based Processing (PDP). IEEE.

Llort, G., Filgueras, A., Jiménez-González, D., Servat, H., Teruel, X., Mercadal, E., Ál-
varez, C., Giménez, J., Martorell, X., Ayguadé, E., and Labarta, J. (2016). The secrets
of the accelerators unveiled: Tracing heterogeneous executions through OMPT. In
LNCS, Int. Workshop on OpenMP (IWOMP), page 217–236. Springer, Nara, Japan.

Miletto, M. C. and Schnorr, L. (2019). Openmp and starpu abreast: the impact of runtime
in task-based block qr factorization performance. In Anais do XX Simpósio em Sistemas
Computacionais de Alto Desempenho (WSCAD 2019). SBC.

Nesi, L. L., Miletto, M., Pinto, V., and Schnorr, L. (2021). Desenvolvimento de aplicações
baseadas em tarefas com openmp tasks. pages 131–152. SBC.

OpenMP (2021). OpenMP application program interface version 5.2.

Pinho, V., Yviquel, H., Machado Pereira, M., and Araujo, G. (2020). Omptracing: Easy
profiling of openmp programs. In 2020 IEEE 32nd International Symposium on Com-
puter Architecture and High Performance Computing (SBAC-PAD), pages 249–256.

Pinto, V. G., Leandro Nesi, L., Miletto, M. C., and Mello Schnorr, L. (2021). Providing
in-depth performance analysis for heterogeneous task-based applications with starvz.
In IEEE Int. Parallel and Distributed Processing Symp. Workshops (IPDPSW). IEEE.

Pinto, V. G., Stanisic, L., Legrand, A., Schnorr, L. M., Thibault, S., and Danjean, V.
(2016). Analyzing dynamic task-based applications on hybrid platforms: An agile
scripting approach. In Third Workshop on Visual Performance Analysis, VPA@SC
2016, Salt Lake, UT, USA, November 18, 2016, pages 17–24. IEEE.

Schuchart, J., Nachtmann, M., and Gracia, J. (2017). Patterns for OpenMP Task Data
Dependency Overhead Measurements, page 156–168. Springer.

Virouleau, P., Brunet, P., Broquedis, F., Furmento, N., Thibault, S., Aumage, O., and
Gautier, T. (2014). Evaluation of OpenMP dependent tasks with the kastors benchmark
suite. In Int. Workshop on OpenMP (IWOMP), page 16–29. Springer, Salvador, Brazil.

YarKhan, A., Kurzak, J., Luszczek, P., and Dongarra, J. (2016). Porting the plasma numer-
ical library to the openmp standard. Int. J. of Parallel Programming, 45(3):612–633.

	Introduction
	Background
	OpenMP tasking model
	OpenMP Tools Interface (OMPT)
	Performance analysis of Task-based applications

	Integrating Tikki and StarVZ
	Case Studies
	Experimental Methodology
	SW/HW Configuration
	Tikki overhead
	Influence of taskdepend clause
	Influence of priority clause

	Related Work
	Conclusion

