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Abstract. This paper develops and evaluates an Agent-Based Model (ABM)
simulator for disease transmission using the C++ Sender Programming Model.
The asynchronous approach with the Sender Model is, on average, 2.61 times
faster than synchronous methods, enhancing performance while preserving
cross-platform compatibility. This research offers a valuable alternative for
simulating complex epidemiological scenarios, advancing computational epi-
demiology by optimizing both performance and portability. Future work will
focus on improving memory management and validating the model across dif-
ferent hardware configurations and population densities.

1. Introduction
The transmission of infectious diseases, such as the SARS-CoV-2 and H1N1 outbreaks, has
been notably accelerated by global interconnectedness, underscoring the vital role of com-
putational technologies in public health management. Consequently, mathematical mod-
els and simulations, as demonstrated by [Rachah and Silva 2024], have become crucial
for developing effective health strategies. Additionally, the need for simulating complex
epidemiological scenarios and advancements in High Performance Computing (HPC) has
driven the adoption of Agent-Based Models (ABMs) in computational epidemiology, as
discussed by [Elsheikh 2024]. These models provide insights into epidemic dynamics by
simulating disease progression at an individual level, highlighting the spatial and tempo-
ral interactions between agents and their environment [Cunha et al. 2022]. However, the
implementation of Agent Based Simulations presents challenges, particularly due to the
significant computational resources required in terms of memory storage and processing
time, which can become a limiting factor as the number of individuals or spatial resolu-
tion increases [Rosenstrom et al. 2024]. Another issue when implementing those types of
simulations is portability, as the particularities of each parallel programming model, such
as CUDA, can hinder the reuse of code and narrow the range of hardwares that can be
used to run the simulations.

Usually, Agent Based simulations are GPU accelerated [Kitson et al. 2024,
Thomopoulos and Tsichlas 2024], often utilizing the CUDA programming model. That
approach, despite often providing the best performance, has the drawback of having lim-
ited portability, as CUDA is a proprietary technology that only works on NVIDIA hard-
ware, causing a lock-in effect in the code and a shortage of libraries and resources avail-
able for the development of the simulations. Moreover, moved by the prominence of
the c++ programming language in various areas of HPC, recent research has shown the



effectiveness of ISO C++ parallel algorithms in enhancing computational performance
across various scenarios by leveraging GPUs and other accelerators to provide a standard-
ized, cross-platform approach to parallelism [Brown et al. 2019]. Further research sits on
developing a structured parallelism approach in C++ called the Sender Model, which
aims to provide portable and high-level abstractions for asyncronous and hetereogeneous
parallelism in the language [Dominiak et al. 2024].

In light of this, this work aims to develop a parallel implementation of an Agent-
Based Model (ABM) simulation in C++ using the Sender Model for parallelism and to
evaluate its computational efficiency. The authors seek to contribute to the literature by
offering a portable and efficient alternative to traditional ABM simulation implementa-
tions. Also, this study contributes to the HPC literature by demonstrating the application
and feasibility of the experimental Sender Model in parallel computing environments.
The implementation demonstrated positive results, with the asynchronous and heteroge-
neous nature of the Sender Model enabling concurrent task execution on either the CPU
or GPU, depending on the task’s nature. Experimental evaluations showed that the asyn-
chronous approach is significantly faster than the synchronous one and that assigning
critical routines to the appropriate device can greatly enhance simulation performance.

That said, this paper is organized as follows: section 2 presents some recent ex-
amples of ABM implementations, highlighting the implementatios decisions, technolo-
gies used and key results; section 3 discusses the particularities of the model; section 4
examines the parallel programming model used, with subsection 4.1 discussing the im-
plementation details; section 5 presents the results of the computational evaluation of the
simulation; Finally, section 6 presents the conclusions of the work, discussing the main
contributions and future works.

2. Related Work
The literature on Agent-Based Models is vast and diverse, encompassing numerous ap-
proaches and implementations. Therefore, this revision specifically focuses on imple-
mentations using the C++ programming language or its variants.

In [Cunha et al. 2022], an agent-based simulation system for dengue propagation
is developed, employing a multi-agent compartmental SEIRS model. In the implementa-
tion of the proposed model, the author utilized the CUDA programming model and the
Thrust parallel algorithms library. However, although Cunha’s study does not focus on
the use of high-performance computing techniques to improve computational efficiency in
computational epidemiology, it has shown excellent results in approximating the dengue
cases in the city of Cascavel-PR, Brazil over a one-year period.

In the work [Gallagher et al. 2024], the authors present a COVID-19 ABM sim-
ulation using the C++ programming language and its standard threads library. Despite
being designed as an educational tool, it has been able to simulate 5 million agents in New
Zealand on a personal workstation in roughly 8 hours. The authors also discuss the lim-
itations of the implementation, such as the compromise between performance and code
readability.

Also, [Kühn et al. 2024] introduces a versatile software platform that implements
various simulation models, including a COVID-19 model applied to Germany. The plat-
form leverages OpenMP as the parallel programming model to enhance performance.



However, the authors report several issues when running the software on platforms other
than Linux, with the most significant problems being related to build and dependency
management.

So based on this, the present research differentiate itself from previous studies by
offering a structured, asynchronous, and heterogeneous approach to parallelism applied
to ABM simulations, providing a portable and efficient alternative to traditional imple-
mentations.

3. Agent-Based and Compartmental Modeling

In the simulator, each individual agent is characterized by attributes including age, lo-
cation, and health status, within a spatial environment modeled as a mobility graph, as
shown by Figure 1. Agents interact within the surroundings through a series of time
steps or cycles, enabling movement within the environment, contact with other agents,
and also transitions in health status. These status changes adhere to the SEIRS model (as
illustrated in Figure 2), cycling agents through predetermined health states: Susceptible,
Exposed, Infected, and Recovered; thus dynamically simulating the spread and impact
of diseases over time. This conceptual disease spreading model is based on the work by
[Cunha et al. 2022], incorporating the Monte Carlo method to account for the stochastic
nature of disease spreading, running multiple simulations with random parameters within
a predetermined range. Specifically, the model is adapted for Dengue fever, incorporating
both human and mosquito agents in the simulation.
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Figure 1. SEIRS Model
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Figure 2. Mobility Graph

The simulation process process is conceptually simple. Before the execution, the
environment and parameters are parsed and initialized. The environment is represented as
a graph, with nodes representing the mobility points and edges representing the connec-
tions between them. The parameters are read from a configuration file, which specifies for
each probability action (such as infection, recovery, and death) the respective minimum
and maximum values. After this, each simulation is composed of the routines: inser-
tion, movement, contact, and transition. The insertion routine initializes the agents in
the environment, the movement routine updates the agents’ positions, the contact routine
simulates the interaction between agents, and the transition routine changes the agents’
health status according to the SEIRS model. The simulation process is summarized in
Algorithm 1.



Algorithm 1: Simulation Process
Input: Simulation parameters, Environment configuration
Output: Simulation results

1 Function Main():
2 parse parameters();
3 parse environment();
4 insertion();
5 for i← 0 to num cycles do
6 movement();
7 contact();
8 transition();
9 end

4. Parallelizing the simulator using the Sender Model

The maturity of C++ in the HPC ecosystem has led to high-level parallel programming
models directly based on the language, reducing the time and effort needed for main-
taining and deploying applications while achieving portability and performance with a
single codebase [Deakin and McIntosh-Smith 2020]. These models aim to enable hetero-
geneous parallel programming with near-native performance [Breyer et al. 2022].

The ISO/IEC 14882:2017 standard (C++17) introduced synchronous (blocking)
parallel algorithms in the C++ standard library, supporting multi-core CPUs and GPUs
with competitive performance [Lin et al. 2022]. This model is inherently synchronous,
blocking program execution until parallel tasks are complete, limiting concurrent par-
allelism [Lin et al. 2022]. To address this, efforts are focused on developing the asyn-
chronous (non-blocking) parallel programming model std::execution for the upcoming
C++26 standard, facilitating flexible and efficient asynchronous task execution using ab-
stractions like senders, receivers, and schedulers [Dominiak et al. 2024]. Thus, the sim-
ulator is implemented with a combination of the Sender Model and the C++17 parallel
algorithms, using an hetereogeneous approach for executing different tasks on the CPU
and GPUs. For example, the Code 1 shows how the insertion routine could be imple-
mented1 using the Sender Model.

4.1. Implementation Details

For the sake of brevity, this section will focus on the most relevant aspects of the
implementation, for the complete code is fully open-source and available at https:
//github.com/HpcResearchLaboratory/simulator. It is implemented us-
ing the NVIDIA HPC SDK [NVIDIA 2024], which provides modern ISO C++ Paral-
lel Algorithms and the experimental candidate for standardization https://github.
com/NVIDIA/stdexec library.

As shown in section 3, the simulation process is divided into four main routines:
insertion, movement, contact, and transition. The first one, insertion, executes in parallel
for every agent type, basically assigning a random position for the agent and setting the
struct into the unified memory. Next, movement also runs in parallel based on each agent,
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1 const auto insert_susceptible_human = [...](auto i) noexcept {...};

2 ...

3 const auto insert_susceptible_mosquito = [...](auto i) noexcept {...};

4 ...

5 const auto work = stdexec::when_all(

6 stdexec::just() | exec::on(gpu.get_scheduler(),

7 stdexec::bulk(params->nh, insert_s_human)),

8 stdexec::just() | exec::on(cpu.get_scheduler(),

9 stdexec::bulk(params->nm, insert_s_mosquito)))

10 stdexc::sync_wait(work);

Listing 1. Insertion routine with the Sender Model

choosing a random position based on the “possible paths from a position” set. Follow-
ing, the contact routine simulates the interaction between agents, executing in parallel
for every position and simulating the human-mosquito and mosquito-mosquito dynamics.
Finally, the transition routine changes the agents’ health status according to the SEIRS
model state machine, also executing in parallel for every agent.

Complex routines, such as the movement and contact between
mosquitoes—which involve many nested loops and data-dependent logical flows2—are
now executed on the CPU, as it is a more suitable device than the GPU for such opera-
tions. More details are discussed below in subsubsection 5.3.2. Also, the asynchronous
nature of the Sender Model is used to execute various kernel streams concurrently,
enabling the GPUs to run independent routines in parallel.

Next, the simulator was implemented with consideration for the unified memory
architecture of CUDA and the RAII programming technique3 [CPP reference 2023]. As a
result, there are no small-volume memory transfers, as all memory used in the simulation
is allocated and initialized in a shared memory space between all CPUs and GPUs at
the time of simulation creation. This approach also eliminates the issue of asynchronous
transfers, as the memory is shared and accessible by all devices, and page swaps are
handled dynamically by the CUDA driver [Chien et al. 2019].

5. Experimental Evaluation
After the implementation of the simulator, were conducted a series of experiments to
evaluate the computational feasibility of the simulator. The experiments used resources
of the High-Performance Computing Park (PCAD), an HPC infrastructure located at the
Institute of Informatics of the Federal University of Rio Grande do Sul (INF/UFRGS)4.
The tests were carried out on the “beagle” computational node, with the configuration
detailed in Table 1.

2Data-dependent logical flows occur when each branch of a decision structure (such as if or case)
accesses data outside this structure.

3RAII (Resource Acquisition Is Initialization) is a programming paradigm in languages with managed
memory that ties the lifetime of all resources used by an object (especially dynamically allocated memory)
to the lifetime of the object itself.

4http://gppd-hpc.inf.ufrgs.br.
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Table 1. Configuration of the “beagle” node.

Type Component Specification Quantity

Processor Intel Xeon E5-2650 2.0GHz, 32 threads, 16 cores 2

Memory DDR3 32 GB 1

GPU NVIDIA GeForce GTX 1080Ti 3584 CUDA cores 2

Two specialized tools were employed for analysis and benchmarking. NVIDIA
Nsight Systems5 [NVIDIA Corporation 2023] was used to analyze occupancy informa-
tion, memory patterns, and kernel execution on the GPUs, providing detailed insights
into performance and potential bottlenecks. For runtime benchmarking, Hyperfine6

[Peter 2023] was adopted, a command-line tool that allows precise measurement of pro-
gram execution time, facilitating comparisons between different software versions.

5.1. Simulation Configurations

The tests were conducted in four different environments corresponding to urban pedes-
trian street networks, ranging from small to very large, with the goal of evaluating the
simulator’s performance in different scenarios. The small environment, corresponding
to the area near the State University of Western Paraná (UNIOESTE), has 362 mobility
nodes and is illustrated in Figure 3. The medium environment, representing the southern
part of Cascavel/PR, has 2,494 mobility nodes and is shown in Figure 4. The large envi-
ronment, characterizing the entire city of Cascavel/PR, has 8,268 mobility nodes and is
presented in Figure 5. Finally, the very large environment, representing the central region
of Curitiba/PR, has 19,207 mobility nodes and is depicted in Figure 6.

For each environment size, a corresponding number of agents was used. The small
simulation has 1,300 humans and 32 mosquitoes; the medium one has 13,000 humans and
3,000 mosquitoes; the large one has 130,000 humans and 120,000 mosquitoes; and the
very large one has 100,000 humans and 60,000 mosquitoes. Although the very large sim-
ulation has fewer agents than the large one, this is due to GPU memory limitations in the
execution environment. To effectively test the operators parallelized by location under
these constraints, the authors chose to reduce the agent density in the largest environ-
ment. Additionally, each simulation was run for 10 iterations. Table 2 summarizes the
configurations for each simulation.

Table 2. Simulation Configurations

Simulation Environment Nodes # of Humans # of Mosquitoes
Small 362 1,300 32
Medium 2,494 13,000 3,000
Large 8,268 130,000 120,000
Very Large 19,207 100,000 60,000

5https://developer.nvidia.com/nsight-systems.
6https://github.com/sharkdp/hyperfine.
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Figure 3. Small Environment
Figure 4. Medium Environment

Figure 5. Large Environment Figure 6. Larger Environment

5.2. Validation Criteria and Test Cases

The test cases for performance evaluation were planned to ensure statistical reliability.
Each test scenario was executed separately ten times to obtain accurate metrics. To mini-
mize performance variations caused by caching, each case was run three times beforehand
to warm up the system before effective performance measurements were taken.

Profiling analyses were conducted in dedicated runs to avoid profiling overheads
affecting the performance statistics. For collecting metrics on behavior, memory patterns,
and kernel execution, the NVIDIA Nsight Systems tool [NVIDIA Corporation 2023] was
used. Runtime metrics, on the other hand, were obtained using the Hyperfine software
[Peter 2023].

In comparing runtime between two distinct tests, Welch’s T-test was applied. Un-
like the traditional T-test, it does not assume equal variances between groups, making it
more appropriate when variances differ, which is relevant in the present testing context
[West 2021]. The formula for calculating the t statistic is given by:

t =
∆X

s∆X

=
X1 −X2√
s2
X1

+ s2
X2

(1)

sXi
=

si√
Ni

(2)



Where X i and sXi
represent the sample mean and standard error for the i-th group,

respectively. The term si denotes the corrected sample standard deviation, and Ni indi-
cates the sample size of each group. Thus, given the associated t value, the p value is
calculated to determine statistical significance. If the p value is less than the significance
threshold, the null hypothesis is rejected, indicating that the group means are significantly
different. Otherwise, the null hypothesis is not rejected, suggesting that the data are not
sufficiently persuasive to prefer the alternative hypothesis. For this work, the significance
threshold was set at 0.05 (95% confidence).

5.2.1. Test Case 1

In the first test, the execution time was evaluated using the synchronous and asynchronous
approaches in the very large simulation configuration. The objective here is to assess the
impact of transitions between different execution approaches. For this, two hypotheses
(null and alternative) were defined:

• H0: There is no significant difference in execution times between the synchronous
and asynchronous approaches.

• H1: There is a significant difference in execution times between the synchronous
and asynchronous approaches.

5.2.2. Test Case 2

In the second test case, using the very large simulation configuration, the execution time
was evaluated when each of the four main routines (insertion, movement, contact, and
transition) was switched to execution on the CPU. The objective is to assess the impact
of moving critical routines to the CPU on the simulator’s performance. For this, for each
routine, two hypotheses (null and alternative) were defined:

• H0: There is no significant difference in execution times when the routine is exe-
cuted on the CPU compared to the standard execution.

• H1: There is a significant difference in execution times when the routine is exe-
cuted on the CPU compared to the standard execution.

5.3. Test Case Execution and Results

Hence, the test cases were executed in the “beagle” node, and the results and discussions
are presented in the following sections.

5.3.1. Test Case 1

Test Case 1 revealed that the asynchronous approach significantly outperforms the syn-
chronous approach in terms of speed, being on average 2.61 times faster than its alter-
native. Table 3 details the measured execution times, while Figure 7 visually illustrates
the differences in execution times between the two approaches. Additionally, the asyn-
chronous approach showed significant variation in execution times, with a standard de-
viation of 16.285 seconds, while the synchronous approach had a standard deviation of



0.809 seconds. This suggests that the asynchronous approach is more sensitive to work-
load variations.

Table 3. Test Case 1 Results

Approach Mean [s] Min [s] Max [s] Ratio
Synchronous 200.428 ± 0.809 199.263 201.444 2.61 ± 0.55
Asynchronous 76.836 ± 16.285 48.741 97.477 1.00

Figure 7. Test Case 1 Comparison

The t-test yielded a t value of 24.0 and a p value of 1.7×10−9, indicating a statisti-
cally significant difference between the synchronous and asynchronous approaches. This
result supports the rejection of the null hypothesis H0 and does not reject the alternative
hypothesis H1, indicating that the asynchronous approach is significantly faster than
the synchronous approach.

It is also important to note that the standard deviation of the asynchronous ap-
proach is significantly larger than that of the synchronous counterpart. This occurs be-
cause, in synchronous algorithms, operations are executed immediately, while in asyn-
chronous algorithms, small tasks are individually scheduled to the devices. This individ-
ual scheduling becomes sensitive to latency, especially if the devices are loaded, resulting
in greater variability in execution times.

5.3.2. Test Case 2

The analysis of execution times for critical routines in Test Case 2 reveals distinct results
regarding the impact of execution on the CPU compared to the GPU. As evidenced in
Table 4, Table 5, and Table 7, the insertion, movement, and transition operations show
that there are no significant advantages between performance on the CPU and GPU.
Only the contact operation presents a significant difference, with execution on the CPU
being 1.6 times faster than execution on the GPU.

Figure 8, Figure 10, Figure 9, and Figure 11 illustrate and visually compare the
differences in execution times between the approaches.

Therefore, the null hypotheses H0 for the insertion, movement, and transition
routines were not rejected, indicating no significant advantages between execution on
the CPU and the standard configuration, as evidenced by the high p values. However, for
the contact routine, the alternative hypothesis H1 was accepted, indicating a marked



Table 4. Execution: insertion

Approach Mean [s] Min [s] Max [s] Ratio
Insertion GPU 73.431 ± 16.310 55.239 93.531 1.19 ± 0.38
Insertion CPU 61.524 ± 13.829 48.159 87.195 1.00

Table 5. Execution: movement

Approach Mean [s] Min [s] Max [s] Ratio
Movement GPU 77.459 ± 17.718 53.858 101.082 1.00
Movement CPU 82.442 ± 12.377 64.529 99.681 1.06 ± 0.29

Table 6. Execution: contact

Approach Mean [s] Min [s] Max [s] Ratio
Contact GPU 69.267 ± 14.220 48.523 90.124 1.60 ± 0.33
Contact CPU 43.161 ± 0.805 41.838 44.388 1.00

Table 7. Execution: transition

Approach Mean [s] Min [s] Max [s] Ratio
Transition GPU 85.123 ± 14.336 60.055 105.431 1.00
Transition CPU 86.186 ± 15.762 65.164 109.046 1.01 ± 0.25

and favorable difference for the standard execution compared to execution on the CPU.
This relationship of values and results is summarized in Table 8.

Table 8. Results of Test Case 2

Operation t-value p-value Result
Insertion 1.76 0.0957 H0 accepted: No significant difference
Movement -0.729 0.476 H0 accepted: No significant difference
Contact 5.8 0.000254 H1 accepted: Significant difference
Transition -0.158 0.876 H0 accepted: No significant difference

6. Conclusions

This work proposed an SEIRS agent-based simulator for the spread of dengue fever, uti-
lizing the Senders parallel programming model. The simulator was implemented using a
heterogeneous approach, assigning different tasks to the CPU and GPUs to leverage the
specific advantages of each hardware type. The experimental evaluation demonstrated the
computational feasibility of this approach, showing viable execution times for simulating
various scenarios. The results also highlighted the importance of the asynchronous ap-
proach for performance optimization, as well as the impact of offloading critical routines
to appropriate devices. With this, the authors aim to contribute to the field of computa-
tional epidemiology by providing an alternative approach for simulating disease spread.

It is important to note that, despite the Sender model being in the middle of the
process for standardization, it’s current reference implementation on the NVIDIA HPC
SDK only targets NVIDIA hardware. So, the portability benefits of using a parallel model
built in the language will only come in later versions of the language.

For future work, the authors propose several strategies to enhance the simula-
tor’s performance and applicability. First, implementing efficient or lock-free synchro-
nization structures on GPUs could optimize memory usage and enable larger-scale sim-
ulations. Second, exploring methods to minimize variability in execution times for the
asynchronous approach—possibly by improving task scheduling and resource manage-
ment—is recommended. Additionally, adapting the model for other infectious diseases
would make the simulation more versatile and applicable in different epidemiological
contexts. Furthermore, validating the simulator with different numbers of GPUs is crucial
to assess performance and behavioral differences. Conducting further testing with varying



Figure 8. insertion Figure 9. contact

Figure 10. movement Figure 11. transition

densities of humans and mosquitoes is also advised, as these factors could significantly in-
fluence GPU utilization and scalability. Finally, once the aforementioned standardization
process is complete, the authors intend to make the implementation hardware-agnostic,
allowing it to operate on GPUs beyond those of NVIDIA.
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