
Lightweight Asynchronous Repartitioning for Local State
Partitioned Systems

Douglas Pereira Luiz1, Odorico Machado Mendizabal1

1Departamento de Informática e Estatı́stica
Universidade Federal de Santa Catarina (UFSC) – Florianópolis – SC – Brazil

douglas.pereira@posgrad.ufsc.br, odorico.mendizabal@ufsc.br

Abstract. Partitioning strategies combined with rebalancing algorithms can be
used to balance the load in high-throughput systems. Keeping the load bal-
anced constantly is desirable, but the cost of repartitioning can be high. This
work presents a rebalancing strategy based on balanced graph partitioning al-
gorithms with low impact during rebalancing operations. The new technique
allows for frequent partitioning updates by decoupling the repartitioning pro-
cess from the rest of the system, thereby avoiding disruptions within the system
due to the calculation of new partitioning schemas. In experimental evaluation,
the proposed strategy, implemented in an in-memory key-value store prototype,
eliminated scheduler pauses and increased throughput by 19% in workloads
predominantly composed of scanning requests.

1. Introduction
State partitioning is a common approach to increase throughput. However, predict-
ing an efficient partitioning schema is challenging, and strategies that establish the
level of parallelism at startup may be inadequate for handling dynamic workloads
[Alchieri et al. 2017]. To fully exploit the potential of available parallelism, partition-
ing can be reconfigured during execution. This dynamic reconfiguration helps balance
the workload among threads and reduces the impact of synchronization overhead caused
by conflicting operations [Goulart et al. 2023].

Graph partitioning algorithms can be employed to define distributed partitioning
schemes based on observed workload patterns [Curino et al. 2010, Quamar et al. 2013,
Hoang Le et al. 2019]. This approach enhances the quality of data placement decisions in
systems with partitioned state, providing an alternative to workload-unaware placement
policies such as hash, range or other static partitioning methods.

Systems with partitioned local state can also benefit from graph-based partition-
ing strategies. By monitoring recent workload, these systems can reconfigure the parti-
tion schema during execution, in a process known as repartitioning [Goulart et al. 2023].
However, pausing the execution or restricting repartitioning to idle periods may be inad-
equate strategies for high-throughput systems where minimizing downtime is crucial. In
light of this, we aim to reduce the cost of repartitioning, enabling applications to benefit
from frequent or even continuous repartitioning.

Our new technique avoids system downtime by introducing an additional execu-
tion thread dedicated to graph partitioning. Due to the minimal disruption caused by
repartitioning with our strategy, it is possible to present the scheduler with new partition-
ing schemes consecutively.



2. Related work
Graph partitioning algorithms are used in [Quamar et al. 2013] to address the data place-
ment problem in a distributed environment, aiming to achieve load balancing and mini-
mize the number of distributed transactions. The system models the workload as a hyper-
graph and employs a compression technique to reduce partitioning costs. This approach
includes repartitioning the system to adapt to the current load. However, the repartitioning
process is conducted incrementally due to the high cost associated with transferring data
between nodes.

A dynamic load balancing approach was presented in
[Didona and Zwaenepoel 2019], where the authors introduce a partitioned-state
key-value store that makes scheduling decisions based on the size of the requests. The
proposed strategy divides the execution threads into two disjoint sets, assigning different
processor cores to handle requests for small and large items. This prevents fast requests
from being queued behind slower ones. The threshold differentiating large and small
requests is automatically reconfigured during execution. Experimental evaluations show
that this technique promotes faster processing of requests with lower computational
weight, resulting in significantly lower latencies in the 99th percentile and a throughput
7.4 times higher than similar key-value store solutions.

A different approach to handling repartitioning overhead is presented in
[Goulart et al. 2023]. Recognizing that the costs of repartitioning are inevitable, the au-
thors mitigate the effects of scheduling downtime associated with rebalancing by utilizing
system downtime during system recovery checkpoints. During these pre-programmed idle
periods, the system’s partitioning scheme is redefined, rendering the scheduling downtime
imperceptible. Although the cost of repartitioning itself is not eliminated, it is effectively
masked by the system’s inactivity during snapshots. This solution, however, is limited in
its applicability, as it depends on the presence of known or expected idle periods.

3. State partitioning execution model
In this work, we assume a replicated system where each replica implements a scheduler-
based multi-threaded execution model. In each replica, the scheduler dispatches incoming
requests to worker threads according to a partition map. This scheduling strategy based
on partitioning is for scaling up performance and is similar to the approaches presented
in [Goulart et al. 2023, Mendizabal et al. 2017, Li et al. 2016, Li et al. 2018]. The appli-
cation state S is a set partitioned into n disjoint sets, each of which is called a partition.
The set of partitions is {p1, p2, ..., pn} and the union of the elements of each pi is equal to
S. The system executes n worker threads, where thread ti is responsible for the execution
of requests involving the partition pi. Requests are dispatched to the appropriate queues
respecting their delivery order.

Replicas implement a key-value store service that handles read, write, and scan
requests, given by commands read(k), write(k, v), and scan(ki, kj). The read command
returns the value v associated to k, the write command updates the variable given by the
key k with a value v, and the scan command returns a list of values [vi, vj] associated
to keys in the range interval [ki, kj]. The choice of the key-value store service stems
from its simple and lightweight execution, as well as its wide adoption in today’s data-
intensive applications. Our motivation is to address a relevant class of application for



state management while keeping application costs low so that our analysis emphasizes
the costs inherent to repartitioning.

The replicas include the following components:

• Worker threads: these threads (ti, .., tn) receive requests from a queue (qi, .., qn,
respectively) and execute them. Requests that depend on keys within a single
partition are executed immediately, while requests involving keys in multiple par-
titions are coordinated with the worker threads serving all the partitions involved;

• Workload tracker: is a thread responsible for recording the access pattern to keys
in the form of a graph. This component has a queue from which it retrieves the
scheduled requests to update the workload graph at runtime;

• Scheduler: it receives incoming requests and dispatch them to both the worker
threads and workload tracker. The scheduler follows a partition map to determine
to which thread queues each request will be delivered. Single partition requests
are just added to the proper queue while cross-partition multi-variable requests are
added to multiple thread queues, as they require synchronization between threads
to implement atomicity and, consequently, maintain consistency.

The requests received by the scheduler may be for reading, writing, or scanning,
and each request necessarily includes a key. If it is the first time a request with a par-
ticular key is submitted to the system, the scheduler assigns the key to a partition in a
round-robin manner. The synchronization required for scanning requests is ensured with
a special synchronization command sync, which holds a barrier for the number of parti-
tions involved in the request. When a worker removes a sync command from the queue,
it waits for the other involved workers to reach the barrier, thus ensuring atomicity of the
scanning execution.

Partition reconfiguration, or repartitioning, modifies the partition map based on
information from the workload graph generated by the workload tracker. Figures 1(a)
and (b) illustrate how different types of requests affect the weights in the graph, showing
the received requests’ history alongside the corresponding graph. For each key read or
written in a request, the weight of the corresponding vertex is incremented by one. For
each pair of keys within the read range of a scan request, the weight of the edge between
the corresponding vertex pairs is incremented by one. If a specific vertex or edge does not
exist, it is created with an initial weight of one.

Repartitioning is performed by the scheduler every ∆p scheduled operations,
where ∆p is defined at system initialization. At every repartitioning interval, the sched-
uler synchronizes with the workload tracker, performs the repartitioning, and updates the
partition map. Before resuming scheduling, the scheduler ensures the safe execution
of requests by adding a sync command to all worker threads queues, allowing them to
complete all the operations scheduled according to the previous partition scheme before
starting executing the operations dispatched according to the new partition map.

There is a tradeoff in choosing the repartition periodicity. While frequent reparti-
tions may balance the load distribution among worker threads and reduce the expensive
multi-partition operations, the repartition itself forces scheduling interruptions. There-
fore, ∆p must be chosen carefully, as small values lead to frequent stops, while large
values might provide insufficient rebalancing.



(a) Read or write operation.

(b) Scan operation.

Figure 1. Example of workload graph update.

4. Asynchronous repartitioning scheduler

In this section, we present a new repartitioning approach designed to minimize schedul-
ing interruptions caused by repartitioning. In the asynchronous repartitioning approach,
referred to as Async, a dedicated partitioning thread obtains a copy of the workload graph
generated by the workload tracker and creates a new partition map using a partition-
ing algorithm. During this process, the scheduler continues to dispatch requests, and
the worker threads continue to process them without interruption. Repartitioning occurs
asynchronously with respect to the scheduler.

At the end of the partitioning process, the scheduler is notified of the new partition
map and simply performs the mapping switch, which is a quick operation. After the
switch, the process repeats in a new iteration. This way, the Async strategy does not
require setting a fixed ∆p, as it can run continuously with minimal overhead. Figures 2(a)
and (b) illustrate the service execution and partitioning processes as presented in Section 3
and in this work, respectively. In the traditional repartitioning (see Figure 2(a)) the costs
associated with updating the workload graph and executing the partitioning algorithm
directly impact scheduling interruptions. In contrast, with the asynchronous repartitioning
approach (see Figure 2(b)), scheduling interruption is practically unnoticed. As observed,
when the workload tracker detects that no partitioning process is in progress, it creates a
copy of the graph, notifies a dedicated thread, called the partitioner, and resumes updating
the workload graph based on new requests. Upon notification, the partitioner creates a
new partition map using the graph copy and notifies the scheduler. When the scheduler
detects the existence of the new map, it replaces the current map with the updated one
and signals that the rebalancing has been completed. At this point, the workload tracker
initiates a new rebalancing process.

The behavior of the components shown in Figure 2 can be described in
Algorithms 1, 2 and 3. For simplicity, synchronizations in the INSERT and
WAITANDREMOV E calls on the trackerQ queue, as well as in the reads and writes
of the isAvailable and isPartitioning variables, are omitted. The procedure in Algo-
rithm 1 is executed by the scheduler thread for each incoming request. The DISPATCH
method forwards the request to a worker thread based on the mapping defined in



(a) Common repartitioning approach.

(b) Asyncronous continuous repartitioning approach.

Figure 2. Comparison between repartitioning approaches.

PartitionMap, managing synchronizations for scan requests. The SY NC(Workers)
call inserts a synchronization command for all threads into each worker queue.

Algorithm 1 Scheduler
1: procedure SCHEDULE(request)
2: DISPATCH(request) ▷ Forwards request to the respective workers
3: trackerQ.add(request) ▷ Forwards request to workload tracker
4: if isAvailable = true then ▷ There’s a new map available
5: PartitionMap← UpdatedPartitionMap ▷ Updates map
6: SYNC(Workers) ▷ Synchronizes workers
7: isAvailable← false
8: isPartitioning ← false ▷ Signals end o repartitioning iteration
9: end if

10: end procedure

In Algorithms 2 and 3, the semaphore partitionSem is used to keep the partitioner
in a wait state until it is signaled by the pattern tracker. The PARTITION(GraphCopy)
call generates a partition map based on the graph copy.

4.1. Optimizations
The Async repartitioning uses a dedicated thread for partitioning, allowing the scheduler
to continue dispatching requests while the new partition map is created. Although this
strategy might seem only advantageous at first glance, it can introduce an unintended
consequence. Since scheduling is a rapid process, by the end of a partitioning iteration,
many requests using the outdated partition scheme might still be enqueued in the worker
threads. This phenomenon can delay the benefits of the new map, as they will only be-
come apparent after the last request forwarded before the map switch is processed by a
worker.



Algorithm 2 WorkloadTracker
on thread run:

1: while true do
2: request← WAITANDREMOVE(trackerQ) ▷ Waits and removes request
3: UPDATEGRAPH(Graph, request) ▷ Updates graph
4: if ¬isPartitioning then ▷ When there’s not ongoing partitioning
5: isPartitioning ← true
6: GraphCopy ← Graph ▷ Copies the workload graph
7: SIGNAL(partitionSem) ▷ Starts a repartitioning iteration
8: end if
9: end while

Algorithm 3 Partitioner
on thread run:

1: while true do
2: WAIT(partitionSem) ▷ Wait for signal
3: UpdatedPartitionMap← PARTITION(GraphCopy) ▷ Creates new mapping
4: isAvailable← true ▷ Signals availability of the new map
5: end while

To address this problem, we modified our approach to include bounding the
worker threads’ queues to a predefined size. With this modification, the scheduler can
delay dispatching a request if the queue it is trying to insert into already holds Q re-
quests. The bounded queue enhancement ensures that the maximum number of requests
processed before the new partition scheme takes effect is known, potentially leading to
faster performance improvements.

In the workload tracking method described in Section 3, the graph’s vertices and
edges are created or their weights incremented for each request received throughout the
system’s entire lifetime. As a result of this continuous accumulation, the overall size or
total weight of the graph increases with each received request, leading to high partitioning
times as more requests are processed.

To improve partitioning time, we propose constructing the workload graph using
only the most recent W requests. This approach, based on sliding window, limits the
maximum number of vertices and edges in the workload graph by disregarding older
requests. The sliding window method may be particularly effective for workloads where
the most recent W requests accurately represent the current workload.

5. Experimental evaluation

To experimentally evaluate the Async technique, we considered the key-value store pro-
totype presented in [Goulart et al. 2023], which we refer to as Base, and it represents the
repartitioning strategy described in Section 3. We extended this version by implementing
the techniques described in Section 4, resulting in the Async version.1 The Base version
requires the configuration of the interval ∆p between rebalancings, in number of opera-

1https://github.com/douglaspereira04/kvpaxos



tions. The Async version can be configured with window size W and queue size Q. When
omitted, these sizes are considered unlimited.

The prototype allows configuration of the number of partitions/worker threads
and can operate without performing partitioning, using a round-robin scheduling policy
that assigns new keys to worker threads in a circular manner. To solve the minimum cut
problem in graphs, METIS [Karypis and Kumar 1998] was used for partition reconfigu-
ration. The experiments were configured with: 106 key-value pairs initially in the system;
8 worker threads; keys of 4 bytes; values of 4 kbytes.

The set of requests executed in the experiment is based on workloads A, D, and E
from the Yahoo! Cloud Serving Benchmark (YCSB) [Cooper et al. 2010]. Workload A
was configured with 5×107 requests, consisting of 50% updates and 50% reads. Workload
D was configured with 5×107 requests, comprising 5% writes of new key-value pairs and
95% reads. Workload E was configured with 5× 106 requests, with 95% scans, having a
uniform variation in the number of keys accessed, ranging from 2 to 8, and 5% updates to
existing keys in the system. The tests were conducted on a computer with two Intel Xeon
E5-2630 processors, each running at 2.4 GHz, with 8 cores and 20 MB cache, and 64 GB
of DDR4 RAM. The operating system used was Ubuntu v22.04 64-bit. The test programs
were developed in C++17 and compiled with gcc v9.4.0.

Experiments were conducted with workloads A, D, and E, and graphs were pro-
duced showing execution time in seconds on the x-axis and throughput in thousand op-
erations per second on the y-axis. Experiments were performed with the Base, Async,
round-robin (RR), and single worker thread (SW) versions. When configured, the values
for ∆p, W , and Q are defined in labels.

5.1. Sliding window results
In the experiments with workload A, ∆p was set to 100×103, 1×106, and 10×106 for the
Base version. For this workload, the lowest makespan observed with Base was achieved
using ∆p = 10 × 106, which resulted in an 11% decrease compared to the round-robin
version (RR). The SW version, with a single worker thread, completed the execution in
817 seconds, which is 5.7 times longer than the RR version. These results highlight the
advantages of employing repartitioning and multiple workers under this workload.

Figure 3 presents the results for the Async versions with different sliding window
sizes, Base, and RR The RR version, unlike the other versions, experienced a stair-stepped
decline in throughput after 100 seconds due to the load imbalance among worker threads.
This imbalance can be quantified with the help of the coefficient of variation (CV ) of the
sizes of the worker queues measured every second throughout the experiment. While the
median CV of RR was 23.44%, Base displayed a median CV of 1.41%, and Async mea-
surements were lower than 0.7%. The Base version, which achieved the lowest makespan,
experienced throughput drops of up to 75% during partitioning due to the scheduler halt-
ing during reconfigurations.

The default Async achieved a makespan that was 9.9% lower than the RR version.
The configuration of sliding windows led to an increase in execution time of up to 9.2%.
Compared to the Base version, which completed in 125s, the Async version had a higher
makespan of 127s. However, the Async version did not experience significant throughput
drops, as the strategy kept the scheduler free to forward requests.



Figure 3. Execution under Workload A with sliding windows. Higher throughput
and lower execution time indicate better performance.

By recording the number of repartitions performed during the experiments, we
observed that Async repartitioned 60 times without using sliding windows. In contrast,
the highest-performing Base version performed 4 repartitions, a number dictated by the
workload’s request count. For the versions with W = 1 × 103, W = 10 × 103, and
W = 100 × 103, the numbers of partitioning iterations were 825, 6, 836, and 60, 065,
respectively. Since partitioning time is proportional to the size of the partitioned graph, the
smaller the window, the more repartitions can be performed within the same time interval.
As each repartitioning causes the synchronization of all workers, the high frequency of
repartitions was responsible for the decrease in the maximum throughput observed.

Figure 4 shows the results of the sliding window approach under Workload D.
This workload continuously inserts new values and is dominated by read requests for
recently inserted keys, simulating scenarios like trending topics in social networks. In
such cases, versions with repartitioning offer little or no advantage over the RR version,
as the rebalancing relies on keys from previous requests that quickly become outdated
and rarely accessed.

Figure 4. Execution under Workload D with sliding windows. Higher throughput
and lower execution time indicate better performance.

Figure 5 presents the results under Workload E, a synchronization-intensive work-
load. In this workload, the RR approach with 8 threads performed worse than SW with
single worker. The SW, which does not require synchronization commands, completed in
270s, whereas RR, which must process synchronization commands for every scan across
different partitions, experienced decreased throughput, leading to a completion time of
969s. To improve visibility, we limited the x-axis (time value) to 300 seconds.

The Async version without optimizations takes as much time as RR to process the
workload because the scheduling of the whole workload is completed even before the



partitioner finishes the graph cut of the first partitioning iteration. Thus, no repartitioning
takes effect. Although the throughput of Async W = 1× 103 drops at the 27th second of
execution, this version achieved the shortest makespan, completing the execution in 117s.
This represents a 22% reduction in execution time compared to the Base version and a
56.6% reduction compared to the SW version.

Figure 5. Execution under Workload E with sliding windows. Higher throughput
and lower execution time indicate better performance.

The behavior displayed by Async W = 1 × 103 under Workload E is caused
by a combination of factors. The first repartitioning, for which the map switch occurs
0.0017s after the experiment begins, causes the sudden increase in throughput seen about
the 13th second. The map switch of the second repartitioning iteration occurs 0.1082s
after the first, allowing the processing of all requests forwarded in this interval to be
free from the interference of forced synchronizations of all threads due to repartitioning.
The subsequent intervals between map switches range from 0.0052s to 0.0315s, with a
median of 0.0068s and a mean of 0.0071s. These short intervals provide little time for
the worker threads to process requests without the interference of map switches which
are accompanied by synchronization commands in every worker thread queue, thereby
limiting parallelism. As a result, throughput decreases and remains limited due to the
excessive number of forced synchronizations of all workers. This suggests that, even if
there is no cost to produce a new map, very frequent repartitioning may be detrimental to
the system’s throughput.

5.2. Bounded queues results

The bounded queues optimization was tested with values of 1, 000, 10, 000 and 100, 000
for Q. As seen in Figure 6, we could not improve throughput or makespan with this
modification under Workload A. Since this workload consists entirely of update and read
requests, the constructed graph has no edges, and the number of vertices remains equal to
the number of keys in the initial population, which is 1, 000, 000 throughout the execution.
This makes the time taken to cut the graph very short.

This way, the effects of the repartitioning benefit postponement, as described in
Section 4.1, are not as intense as those under Workload E. Thus, under Workload A,
the most significant effect of this technique is the negative impact caused by introducing
additional synchronizations: while the default Async version completes 60 partitioning
iterations, 141 to 146 complete repartitionings were registered with bounded queues.

As shown in Figure 7, using bounded queues provided no benefits under Work-
load D. Versions with repartitioning, as discussed earlier, struggle under this workload.



Figure 6. Execution under Workload A with bounded queues. Higher throughput
and lower execution time indicate better performance.

Additionally, the increased number of repartitionings compared to the default Async ver-
sion causes the bounded queues version to underperform relative to the version with un-
bounded queues. The time taken to process the workload was 3.29% to 14.28% longer
than the Async version with no queues, and 20.51% to 33.33% longer than that of RR.

Figure 7. Execution under Workload D with bounded queues. Higher throughput
and lower execution time indicate better performance.

The experiments with Workload E showed that the bounded queues modification
allows to overcome the problem faced with the default Async version. In Figure 8, Async
versions with bounded queues can be seen outperforming default Async and SW versions,
processing up to 85, 000ops/s. Although Base achieved the highest throughput and lowest
makespan, processing up to 81, 000ops/s and completing the entire workload in 150s with
∆p = 100× 103, the ∆p value must be chosen carefully, given the other tested values for
Base’s ∆p resulted in poor performance, with makespans of 328s and 1141s.

Figure 8. Execution under Workload E with bounded queues. Higher throughput
and lower execution time indicate better performance.

The experimental evaluation highlighted the strengths and weaknesses of the
Async repartitioning strategy. The proposed strategy, designed to prevent scheduler in-



terruptions during repartitioning, has successfully resolved this issue, as seen in Figure 3.
Given the possibility of repartitioning without interrupting execution, the asynchronous
strategy was employed to assess the benefits of repartitioning as frequently as possible.
However, as already discussed, the introduction of an excessive number of synchronizing
commands can decrease performance.

Table 1 presents the makespan in seconds and the median throughput measures in
thousands of operations per second for each version under each workload. The highest
throughput results for each workload are highlighte in green. Although Async could not
match Base and RR in throughput under Workloads A and D, it showed significantly
higher throughput medians under Workload E, particularly for Async with W = 1 ×
103 and W = 10 × 103. While SW and Base displayed medians of 18, 606ops/s and
24, 194ops/s, respectively, the medians for Async W = 1 × 103 and W = 10 × 103

were 36, 115ops/s and 28, 863.5ops/s. This represents increases of 49.27% and 19.3%
compared to the Base version.

Table 1. Summary of experimental results

Workload A Workload D Workload E
Makespan Throughput

(103ops/s)
Makespan Throughput

(103ops/s)
Makespan Throughput

(103ops/s)
Async 127.02 406 91.01 568 976.12 5
Async Q=100×103 146.02 349 104.02 497 183.02 19
Async Q=10×103 147.02 344 94.01 544 176.02 20
Async Q=1×103 145.02 348 104.02 506 174.02 20
Async W=100×103 154.02 328 92.01 536 385.05 13
Async W=10×103 151.02 336 98.01 513 176.02 29
Async W=1×103 154.02 335 99.01 503 117.02 36
Base ∆p=100×103 461.56 100 1,079.30 31 1,141.30 3
Base ∆p=1×106 137.02 376 202.74 232 150.02 24
Base ∆p=10×106 125.02 423 86.02 624 328.04 5
SW 817.11 61 545.07 92 270.04 19
RR 141.02 418 78.01 664 969.12 5

Although the Async strategy shows good performance, the results highlight the
limitations of repartitioning too frequently. Intervals between repartitionings are benefi-
cial for execution, allowing worker threads to operate freely and take advantage of the
parallelism gained from reconfiguring the partitioning scheme.

6. Discussion
We implemented a rebalancing technique based on graph partitioning that takes the work-
load into account and does not interrupt scheduling. We introduced two modifications to
the initially proposed strategy: the use of bounded queues to avoid delaying the adoption
of the new partitioning scheme, and sliding windows to optimize partitioning time by
limiting the graph to represent only a recent portion of the workload.

The experiments suggest an additional cost associated with the use of the new
strategies when services are subjected to workloads primarily consisting of commands on
a single variable and frequent changes in access patterns for variables. However, unlike
the compared repartitioning strategy, the new approach does not cause undesirable periods
of service interruption, allowing the system to remain operational during repartitioning.



When the workload consisted primarily of scan requests, the repartitioning tech-
niques yielded better results. The highest median of throughput measures was achieved
with the new strategy, significantly surpassing the medians of the other tested approaches.

Acknowledgements
We wish to acknowledge the contribution of João Trombeta, Henrique Goulart, and
Álvaro Junio Pereira Franco, who were involved in earlier versions of the prototype and
offered valuable insights into the graph-based repartitioning approach.

References
Alchieri, E., Dotti, F., Mendizabal, O. M., and Pedone, F. (2017). Reconfiguring parallel

state machine replication. In Proceedings of SRDS ’17, pages 104–113.

Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R., and Sears, R. (2010). Bench-
marking cloud serving systems with ycsb. In Proceedings of SoCC ’10, page 143–154.

Curino, C., Jones, E., Zhang, Y., and Madden, S. (2010). Schism: a workload-driven
approach to database replication and partitioning. Proc. VLDB Endow., 3(1–2):48–57.

Didona, D. and Zwaenepoel, W. (2019). Size-aware sharding for improving tail latencies
in in-memory key-value stores. In Proceedings of the 16th USENIX Conference on Net-
worked Systems Design and Implementation, NSDI’19, page 79–93, USA. USENIX
Association.

Goulart, H., Trombeta, J., Franco, A., and Mendizabal, O. (2023). Achieving enhanced
performance combining checkpointing and dynamic state partitioning. In Proceedings
of SBAC-PAD ’2023, pages 149–159.

Hoang Le, L., Fynn, E., Eslahi-Kelorazi, M., Soulé, R., and Pedone, F. (2019). Dynastar:
Optimized dynamic partitioning for scalable state machine replication. In 2019 IEEE
39th International Conference on Distributed Computing Systems (ICDCS), pages
1453–1465.

Karypis, G. and Kumar, V. (1998). A fast and high quality multilevel scheme for parti-
tioning irregular graphs. SIAM Journal on Scientific Computing, pages 359–392.

Li, B., Xu, W., Abid, M. Z., Distler, T., and Kapitza, R. (2016). Sarek: Optimistic parallel
ordering in byzantine fault tolerance. In 2016 12th European Dependable Computing
Conference (EDCC), pages 77–88. IEEE.

Li, B., Xu, W., and Kapitza, R. (2018). Dynamic state partitioning in parallelized byzan-
tine fault tolerance. In 2018 48th Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks Workshops (DSN-W), pages 158–163. IEEE.

Mendizabal, O. M., De Moura, R. S., Dotti, F. L., and Pedone, F. (2017). Efficient and
deterministic scheduling for parallel state machine replication. In 2017 IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS), pages 748–757. IEEE.

Quamar, A., Kumar, K. A., and Deshpande, A. (2013). Sword: Scalable workload-aware
data placement for transactional workloads. In Proceedings of the 16th International
Conference on Extending Database Technology, EDBT ’13, page 430–441, New York,
NY, USA. Association for Computing Machinery.


