
Performance and Energy Prediction of OpenMP and CUDA
Applications using Machine Learning and Pre-execution

Features

Fellipe Queiroz1, Luan Siqueira1, Erick Damasceno1,
Thiago Rodrigues1, Marcos Amaris 1

1Universidade Federal do Pará
Faculdade de Engenharia de Computação, Tucuruı́ - Pará

{fellipe.queiroz, luan.siqueira, erick.silva,
thiago.rodrigues}@tucurui.ufpa.br, amaris@ufpa.br

Abstract. This study investigates how machine learning techniques can predict
the performance of CUDA applications on GPUs and the energy consumption of
OpenMP applications on multi-core machines. Models such as ridge regression
and random forest are applied using pre-execution data. The analysis, based on
the Rodinia (GPU) and PolyBench (CPU) benchmarks, aims to understand how
these ML techniques can predict the performance and energy efficiency of these
hardware systems. The results indicate that task optimization can reduce energy
consumption without affecting performance.

Resumo. Este estudo investiga como técnicas de aprendizado de máquina po-
dem prever o desempenho de aplicações CUDA em GPUs e o consumo de ener-
gia de aplicações OpenMP em máquinas multi-core. Modelos como regressão
ridge e floresta aleatória são aplicados usando dados de pré-execução. A
análise, baseada nos benchmarks Rodinia (GPU) e PolyBench (CPU), busca
entender como essas técnicas de ML podem prever o desempenho e a eficiência
energética desses hardwares. Os resultados indicam que a otimização de tarefas
pode reduzir o consumo de energia sem afetar o desempenho.

1. Introduction
The rapid expansion of high-performance applications in areas such as artificial intelli-
gence, scientific simulations, and big data analysis has driven the development and opti-
mization of GPU (Graphics Processing Unit) architectures. GPUs are recognized for their
massive parallelism capabilities, offering an efficient alternative for executing complex
tasks[NVIDIA 2024]. To harness this computational power, Nvidia introduced CUDA
in 2006, a platform that enables developers to leverage the GPUs’ parallel processing
capabilities. However, predicting the performance of these applications remains a chal-
lenge due to the variability in factors influencing execution, such as GPU architecture and
application-specific characteristics [NVIDIA and CUDA 2015]

Simultaneously, the exponential growth of the digital world, marked by a doubling
in the number of internet users and a 25-fold increase in global data traffic since 2010, has
made data centers crucial for the efficiency of the global network. In 2022, data centers
consumed between 240 to 340 TWh of electricity, with projections reaching 752 TWh
by 2030, accounting for 1.3% of global electricity consumption and 0.3% of global CO2



emissions [IEA 2023]. This alarming rise in energy consumption raises significant con-
cerns about the sustainability of these infrastructures. In response, Green Computing has
emerged as a vital research area, aiming to make computing processes more sustainable
and eco-friendly [Cordeiro et al. 2023]. Innovations such as multi-core processors and
OpenMP have shown promise in improving energy efficiency but present optimization
challenges.

In this context, understanding current technologies and developing strategies to
optimize them is essential. Predicting an application’s performance or energy consump-
tion is complex due to the often incomplete and non-deterministic nature of applications.
Machine Learning, with its potential to identify complex and nonlinear relationships in
data, offers a promising solution.

This study investigates the use of Machine Learning techniques to predict both
performance and energy efficiency in multi-core machines. The research operates on
two fronts: for CPUs, the focus is on predicting energy consumption during the execu-
tion of OpenMP applications, while for GPUs, the study aims to predict the execution
time of CUDA applications. Models such as ridge regression, decision tree, and ran-
dom forest are employed, leveraging pre-execution characteristics and GPU architecture
information for prediction. The analysis focuses on data from Rodinia/GPU and Poly-
Bench/OpenMP benchmarks to develop predictive models that optimize performance and
energy efficiency, contributing to decision-making in high-performance computing task
scheduling.

This document is divided into 6 sections, as follows: Section 2 demonstrates the
essential concepts of this research. Section 3 presents some relevant papers for under-
standing this work. Section 4 presents the methodology. Section 5 explains the results
and finally Section 6 presents the conclusions and future work.

2. Theoretical Background
2.1. CUDA for Nvidia GPUs and OpenMP for CPUs Multicore
NVIDIA’s GPU architecture consists of processing cores organized into streaming multi-
processors, enabling the parallel execution of thousands of threads and the efficient han-
dling of complex tasks. Components such as registers, load/store units, cache, and clock
speed directly influence application performance. CUDA, a parallel computing API de-
veloped by NVIDIA, allows developers to harness the parallel processing capabilities of
GPUs. It organizes threads into blocks and grids, facilitating a high level of parallelism
and computational efficiency [NVIDIA and CUDA 2015].

OpenMP is an API for multi-threaded programming on Unix and Windows NT
systems, introduced in 1997. It facilitates the parallelization of applications through sim-
ple compiler directives [Penha et al. 2002]. OpenMP employs the fork-join model, where
master threads split to execute tasks simultaneously and then synchronize afterward. De-
spite its standardization and portability across platforms, OpenMP faces challenges in
scalability across many cores and complexity in large-scale systems.

2.2. Machine Learning for Performance and Energy Consumption Predictions
Machine learning presents a promising approach for predicting the performance of com-
plex applications. Techniques such as Ridge Regression, Decision Tree, and Random



Forest are employed to create predictive models that estimate outcomes based on specific
inputs. These models are trained on pre-execution data, capturing the relationships be-
tween code characteristics and expected performance [Susto et al. 2014]. Ridge Regres-
sion extends linear regression by incorporating regularization to address multicollinearity
and enhance the robustness of estimated coefficients [Hastie et al. 2009]. Decision Tree
is a non-parametric technique that constructs a predictive model by dividing the popula-
tion into branches based on simple decision rules [yan Song 2015]. Random Forest com-
bines multiple decision trees to reduce model variance and improve prediction accuracy
[Breiman 2001].

2.3. Linear and Polynomial Regression
The simple Linear Regression model is a basic predictive method that relates a de-
pendent variable Y to an independent variable X through a straight-line representation
[Chein 2019]. Although it can suggest a cause-and-effect relationship, it is crucial to note
that simple Linear Regression alone does not prove causality. Polynomial Regression is an
extension of Linear Regression where the relationship between the independent variable
X and the dependent variable Y is modeled as a polynomial of degree n. Unlike the sim-
ple linear model, which can only represent linear relationships, Polynomial Regression
can capture more complex and curvilinear relationships between variables.

2.4. Performance Metric: Mean Absolute Percentage Error (MAPE)
The Mean Absolute Percentage Error (MAPE) is a widely used metric for evaluating the
accuracy of predictions due to its ease of interpretation and scale independence. MAPE
calculates the average of the absolute differences between actual and predicted values, ex-
pressed as a percentage of the actual values. This allows for an intuitive understanding of
the absolute percentage error [Kim and Kim 2020]. The MAPE is defined in Equation 1,

MAPE =
1

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100 (1)

where n is the number of observations, yi is the actual value of the i-th observa-
tion, and ŷi is the predicted value of the i-th observation. The interpretation of MAPE
values generally follows a scale where smaller numbers indicate more accurate predic-
tions [Lewis 1982].

MAPE Interpretation
-10% Highly accurate prediction
10 to 20% Good prediction
20 to 50% Reasonable prediction
50% + Inaccurate prediction

Table 1. Interpretation of MAPE values.

2.5. Green Computing
With the proliferation of computational resources, there has been a growing demand
for computational power, leading to increased energy consumption and CO2 emissions.
Green Computing aims to use comethodmputational resources efficiently and in an en-
vironmentally responsible manner, reducing energy consumption and CO2 emissions. Its



practices include energy-efficient hardware and software design, sustainable design, waste
management, virtualization, green data centers, and cloud computing. Environmental is-
sues arising from increased CO2 emissions and the financial costs associated with energy
consumption have driven studies focused on developing mechanisms and technologies for
energy-efficient computing, known as Green Computing [Williams and Curtis 2008].

3. Related Works

Previous studies have demonstrated the effectiveness of machine learning in predicting
application performance. For instance, [Amaris et al. 2023] proposed a model based on
the Bulk Synchronous Parallel (BSP) paradigm to estimate the execution times of CUDA
applications, highlighting its simplicity and ability to handle various GPU configurations.
The authors discussed various approaches for predicting CUDA kernel execution times
on general-purpose GPUs, noting that while analytical models work well for regular ap-
plications, machine learning techniques yield better predictions for irregular ones.

Similarly, [Wang et al. 2019] developed a hybrid framework that combines su-
pervised and unsupervised learning, emphasizing the critical role of feature selection in
building precise models. [Mittal and Vetter 2016] further reinforced the importance of in-
tegrating application-specific features with machine learning techniques to enhance pre-
diction accuracy, especially in heterogeneous computing environments.

More recent research by [Zhang et al. 2020] showed that deep neural networks
could capture complex relationships between variables, significantly improving perfor-
mance prediction accuracy. Their work suggests that the complexity and non-linearity of
HPC applications demand more sophisticated models to achieve reliable predictions.

Saurav et al.[Saurav and Benedict 2021] provided a taxonomy of energy-aware
schedulers for scientific workflows in large-scale heterogeneous infrastructures, offering
a foundation for designing energy-efficient scheduling techniques. Similarly, Caripán
et al.[Caripán Uribe 2022] introduced the ’PowerTester’ platform, which utilizes Intel
RAPL and Linux ’Perf’ to measure and analyze energy consumption and performance
in C++ programs. The platform organizes and presents data in graphical formats and
CSV files, with its usability validated through experiments and evaluated using the SUS
scale, highlighting areas for improvement.

[Benedict et al. 2015] introduced a Random Forest Modeling (RFM) method for
predicting the energy consumption of OpenMP applications within compilers. Tested on
various applications like NAS benchmarks and matrix multiplication, the RFM approach
achieved a prediction accuracy with a Mean Square Error (MSE) of less than 0.699 and an
R2 value of 0.998. The study also explores the impacts of energy variation, the number
of independent variables, and the proportion of testing data on the performance of the
model.

[Shahid et al. 2021] addressed the challenge of energy efficiency in ICT, focus-
ing on energy predictive modeling based on performance monitoring counters (PMCs).
It introduces a new theoretical framework that clarifies the role of PMCs in energy con-
sumption and identifies causes of model inaccuracies. The theory provides guidelines
for selecting model variables and improving prediction accuracy. Experiments on Intel
multicore servers show that using this framework enhances the accuracy of linear regres-



sion models from 31.2% to 18% and can achieve up to 80% energy savings compared to
existing measurement tools.

In this article, we implement a machine learning model to predict kernel execu-
tion time on NVIDIA GPUs and the energy consumption of OpenMP applications. Unlike
other works that rely on runtime profiling, our approach extracts data during the compila-
tion phase, providing early-stage predictions for performance and energy efficiency.

4. Methodology
4.1. Test Algorithms
Nine CUDA kernels were utilized, including four for matrix multiplication, two for ma-
trix addition, and one each for dot product, vector addition, and the maximum submatrix
problem. The matrix multiplications covered strategies involving both uncoalesced and
coalesced accesses to global memory, as well as uncoalesced and coalesced accesses to
shared memory. The matrix additions included algorithms with uncoalesced and coa-
lesced accesses to global memory. The vector addition performed parallel computations
on GPUs, while the dot product calculated the multiplication of elements from two vec-
tors. The maximum submatrix problem optimized the search for the contiguous submatrix
with the largest combined element count.

4.2. Hardware and Software Components
The hardware setup utilized in this study consists of an Intel Core i5-7200U processor
with 2 physical cores and 4 logical cores, operating at a base frequency of 2.50 GHz,
coupled with 12 GB of DDR4 memory at 2133 MHz. The operating system used was
Linux Ubuntu version 22.04, and the GCC compiler version 13.2.0 was employed for all
compilation tasks.

NVIDIA GPUs from various architectures, such as Kepler (Compute Capability
3.X) and Maxwell (Compute Capability 5.X), were used. Detailed specifications of each
GPU are listed in Table 2, including compute version, memory size, memory bandwidth,
L2 cache size, and the number of cores per Streaming Multiprocessor (SM). These specifi-
cations are crucial for understanding the impact of hardware characteristics on application
performance.

Table 2. GPU hardware specifications
Model CC/Memory Bandwidth L2 Cores/SM
GTX-680 3.0/2 GB 192.2 GB/s 0.5 MB 1536/8
Tesla-K40 3.5/12 GB 276.5 GB/s 1.5 MB 2880/15
Tesla K-20 3.5/4 GB 200 GB/s 1 MB 2496/13
Titan 3.5/6 GB 288.4 GB/s 1.5 MB 2688/14
Q k5200 3.5/8 GB 192.2 GB/s 1 MB 2304/12
Titan X 5.2/12 GB 336.5 GB/s 3 MB 3072/24
GTX-970 5.2/4 GB 224.3 GB/s 1.75 MB 1664/13
GTX-980 5.2/4 GB 224.3 GB/s 2 MB 2048/16

4.3. Dataset
For experiments predicting execution times of CUDA applications with pre-executions
characteristics, data collection involved compiling heterogeneous applications across var-
ious GPU architectures (3.0, 3.5, and 5.2) using a Python script. Different CUDA thread



block sizes (82, 162, 322) were considered to evaluate parallelization. The CUDA Occu-
pancy Calculator was used to analyze GPU occupancy, capturing data such as registers
and memory utilization, stored in a CSV file, Figure 3 shows the features used for per-
formance prediction of GPU kernels. The analysis was further enriched with additional
data from [Amaris et al. 2016], resulting in 8,459 samples and twelve features, ensuring
consistency in data merging.

Table 3. Features used as input for model learning
Feature Description
compute version Compute capability of the architecture
registers Number of registers
smem Amount of shared memory
cmem Amount of constant memory
num of cores Number of cores per GPU
l2 Cache
bandwidth Memory bandwidth
theoretical flops Floating-point operations per second
occupancy Kernel multiprocessor occupancy
input size Input size
duration Execution time
block x Number of threads per block

The applications selected for energy consumption predictions in this research
were sourced from PolyBench/ACC, chosen due to their parallelized implementations.
PolyBench-ACC is derived from the PolyBench/C benchmark suite and provides imple-
mentations using OpenMP, OpenACC, CUDA, OpenCL, and HMPP. The benchmarks
used in this study are listed below in Table 4

Benchmark Benchmark Benchmark
2mm 3mm Trmm
Symm Gemm Syr2k
Syrk Gramschmidt Correlation
Covariance LU Cholesky

Table 4. Selected Benchmarks

The benchmarks cover a range of computational tasks: 2mm and 3mm perform
matrix multiplications, Trmm tests triangular matrix multiplications, Symm and Gemm
assess symmetric and general matrix multiplications, Syr2k and Syrk conduct symmetric
rank updates, Gramschmidt implements orthogonalization, Correlation and Covariance
calculate correlation and covariance, and LU and Cholesky execute matrix decomposi-
tions. The methodology involved using a script to automate the execution of benchmarks,
each run 101 times with input sizes ranging from 800 to 4000, incremented by 32, ensur-
ing repeatability and the analysis of different problem sizes.

The script compiled and executed the benchmarks, gradually adjusting the input
values, and simultaneously used the JouleIt tool to monitor and collect energy consump-
tion data in CSV files. The collected data were categorized by attributes such asCORE
(Processing core), CPU (Central Processing Unit), DRAM (Dynamic Random Access
Memory), DURATION (Execution time), UNCORE (Part of the processor that is not the
processing core), and INPUT (Values provided to a system for processing)..



Energy metrics were recorded in microjoules and duration in microseconds to cap-
ture fine variations. A static code evaluation provided additional data, including INPUTS
(number of inputs), 1D (use of one-dimensional arrays), ARRAYS (number of arrays),
LOOPS (loops), and mathematical operations (MULT, SOM, SUB, DIV), which help in
understanding the complexity and energy efficiency of the applications.

4.4. Data Preprocessing
Initially, we predicted performance in GPU kernels with a correlation analysis among the
variables to identify significant relationships. The correlation matrix, presented in Figure
1, shows the presence of multicollinearity, indicated by high correlations between several
variables, such as L2 and theoretical flops (0.91), num of cores and bandwidth (0.79),
and bandwidth and theoretical flops (0.85), complicating the determination of individual
effects in a regression model.

Figure 1. Correlation Matrix

Next, the frequency distribution of the “duration” variable was analyzed to bet-
ter understand how the execution times of applications were distributed. Figure 2.Left
shows that most durations were concentrated at lower values, with a long tail to the right,
indicating left-skewness or negative skewness.

Figure 2. Left: Frequency distribution of the ’Duration’ variable. Right: Fre-
quency distribution after logarithmic transformation of the ’Duration’ variable.

To facilitate machine learning model training and improve performance, a loga-
rithmic transformation was applied to the ”duration” variable. The logarithmic transfor-
mation helps reduce skewness in the data, making the distribution more symmetric and



closer to a normal distribution, which is desirable for many machine learning techniques.
Figure 2.Right shows the distribution of the “duration” variable after logarithmic transfor-
mation. We followed the same steps with energy consumption predictions for OpenMP
Applications.

When analyzing the energy consumption of the benchmarks OpenMP, Syr2k and
Syrk, which perform Linear Algebra, were the highest consumers. Trmm, Symm, 3mm,
2mm, and Gemm, which perform matrix multiplications with some differences in opera-
tions, showed similar consumption, reflecting variations in specific operations. Cholesky
and LU had comparable consumption as they perform matrix decomposition, while Co-
variance, Gramschmidt, and Correlation had the lowest consumption, with no direct rela-
tionship between them.

The analysis of execution time revealed that energy consumption is not directly
linked to execution duration, as shown in Table 5. Syrk and Syr2k had high energy con-
sumption despite short execution times, while Gramschmidt had lower energy consump-
tion but a longer execution time. This suggests that optimizing task distribution in terms
of execution time could reduce energy consumption without compromising efficiency.

3mm GramSchmidt Symm 2mm Covariance Gemm Correlation Syr2k Syrk Tmm LU Cholesky
Duration (h:m:s) 5:25:08 4:51:12 3:38:18 3:36:41 1:55:22 1:48:15 1:31:21 0:27:38 0:14:22 0:12:25 0:10:06 0:03:20

Consumption (watts) 14.50 13.00 15.25 14.00 12.30 13.50 12.85 17.40 17.00 15.55 14.25 15.25

Table 5. Execution duration and energy consumption of applications

Finally, for the OpenMP applications, we performed a correlation analysis with hi-
erarchical clustering, which highlighted patterns among the applications, as shown in Fig-
ure 4.4. Energy consumption relationships were observed between Covariance, Gemm,
and Gramschmidt, as well as between Correlation and Symm. This suggests that spe-
cific adjustments can be implemented to improve efficiency in similar applications, while
isolated ones like Cholesky and LU may require distinct optimization approaches.

Figure 3. Heatmaps of correlation with hierarchical clustering.



4.5. Model Training

For the development of each model, eight applications were selected as the training set
while one application was reserved for the test set. This process was repeated for each
of the nine applications. Machine learning models, including Ridge Regression, Deci-
sion Tree and Random Forest were used to evaluated the performance predictions in GPU
Kernels. All scripts developed during this research are publicly available on the GitHub
repository to ensure that the results of this study are clear and replicable. It can be ac-
cessed via the following link: GitHub - Project Repository.

Linear and polynomial regression were applied to predict energy consumption,
with the goal of understanding current behavior and forecasting future trends. With poly-
nomial regression, we proposed an approach of combining multiple benchmark datasets
for training and using a separate dataset for testing, with the polynomial degree varying
from 1 to 3. MAPE was used to evaluate the prediction accuracy in this approach. The
scripts developed in this research are publicly available on the GitHub repository. The
repository can be accessed through the following link: GitHub - Project Repository.

5. Results and Discussions

For experiments about performance prediction of CUDA Kernels using Pre-execution
features, we split the dataset into 90% for training and 10% for testing. The effectiveness
of each model was assessed using the Mean Absolute Percentage Error (MAPE) metric.

Application Random Forest Ridge Regression Decision Tree
MMGU 5.96% 0.2% 3.66%
MMGC 0.45% 1.98% 0.94%
MMSU 0.88% 0.86% 0.51%
MMSC 4.66% 1.53% 5.0%
MAC 0.4% 20.58% 0.03%
MAU 0.03% 13.07% 0.04%
dotP 0.17% 5.48% 0.04%
vAdd 0.07% 25.78% 0.03%
MSA 1.03% 13.6% 0.09%

Table 6. Comparison of MAPE for Models Across Different Applications

For the experiments predicting energy consumption of OpenMP applications, 11
out of the 12 datasets were used for training, with the remaining dataset reserved for test-
ing. The performance of each model was evaluated using the Mean Absolute Percentage
Error (MAPE) metric.

The data presented in the Tables 6 and7 demonstrate the performance of differ-
ent regression models (Random Forest, Ridge Regression, and Decision Tree for CUDA;
and Linear Regression, Polynomial Degree 2, and Polynomial Degree 3 for OpenMP)
based on MAPE values. For performance predictions of CUDA kernels, Ridge Regres-
sion showed the best performance in most applications, indicating that it is more suitable
for this type of data. In the case of energy consumption predictions for OpenMP, Polyno-
mial Regression Degree 2 presented the lowest MAPE values across several benchmarks,

https://github.com/luanrsiqueira/cuda_project
https://github.com/marcosamaris/OpemMPestimationenergy


Table 7. Comparison of MAPE values for different regression models
Benchmark Linear Regression Polynomial Degree 2 Polynomial Degree 3

2mm 3.04% 1.86% 7.55%
3mm 6.37% 5.71% 7.06%

Correlation 8.96% 46.01% 33.42%
Covariance 62.15% 15.41% 15.90%
Cholesky 20.13% 30.26% 14.92%

Gemm 8.22% 2.81% 8.39%
Syrk 20.30% 7.61% 8.33%

Syr2k 16.23% 6.00% 4.12%
Symm 46.82% 39.33% 30.75%
Trmm 4.12% 5.87% 7.26%

Gramschmidt 41.96% 29.41% 59.52%
LU 8.11% 9.09% 4.26%

suggesting that the relationship between energy consumption and input variables may be
better captured by a moderately nonlinear model.

These choices indicate that for execution time predictions, a regularized linear
model like Ridge can handle multicollinearity well, while for energy consumption predic-
tions, a second-degree polynomial model balances simplicity and accuracy in capturing
the nonlinear relationships in the data.

6. Conclusions and Future Works
This study presented a comprehensive analysis of machine learning models to predict
both the performance of CUDA applications and the energy consumption of OpenMP
applications on multi-core machines. The results demonstrated that Ridge Regression
consistently outperformed other models in predicting execution times for CUDA kernels,
showcasing its effectiveness in handling the complex relationships between GPU archi-
tecture and performance. On the other hand, Polynomial Regression of degree 2 was
the most effective for predicting energy consumption in OpenMP applications, indicating
that moderately nonlinear models can capture the inherent complexities of energy behav-
ior more accurately.

The results highlight that energy consumption in applications is not directly cor-
related with execution time. This suggests that optimizing task distribution, particularly
for applications where quick execution is not critical, can enhance energy efficiency with-
out compromising computational performance. Furthermore, the study emphasizes the
importance of selecting suitable machine learning models tailored to the specific appli-
cation type and hardware characteristics to achieve optimal results in high-performance
computing environments.

Future work should focus on expanding the dataset to include a wider variety of
benchmarks and applications, both for CUDA and OpenMP, to ensure more generalized
model performance. Additionally, exploring more advanced machine learning techniques
such as deep learning or ensemble models may lead to further improvements in prediction
accuracy. Integrating additional features from source code analysis, exploring hardware-
specific optimizations, and applying Natural Language Processing (NLP) to low-level
code analysis, such as PTX, could also provide new insights into performance and energy



efficiency optimization.

Lastly, future research should investigate the impact of operating system configu-
rations and programming practices on energy consumption and performance, potentially
uncovering additional avenues for improving the sustainability of high-performance com-
puting systems.

References

[Amaris et al. 2023] Amaris, M., Camargo, R., Cordeiro, D., Goldman, A., and Trystram,
D. (2023). Evaluating execution time predictions on gpu kernels using an analytical
model and machine learning techniques. JPDC, 171:66–78.

[Amaris et al. 2016] Amaris, M., de Camargo, R. Y., Dyab, M., Goldman, A., and Trystram,
D. (2016). A comparison of gpu execution time prediction using machine learning
and analytical modeling. In 2016 IEEE 15th International Symposium on Network
Computing and Applications (NCA), pages 326–333. IEEE.

[Benedict et al. 2015] Benedict, S., Rejitha, R., Gschwandtner, P., Prodan, R., and
Fahringer, T. (2015). Energy prediction of openmp applications using random forest
modeling approach. In 2015 IEEE International Parallel and Distributed Processing
Symposium Workshop, pages 1251–1260.

[Breiman 2001] Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.

[Caripán Uribe 2022] Caripán Uribe, D. (2022). Plataforma para medir el consumo en-
ergético de algoritmos. Universidad de Concepción.

[Chein 2019] Chein, F. (2019). Introdução aos modelos de regressão linear: um passo ini-
cial para compreensão da econometria como uma ferramenta de avaliação de polı́ticas
públicas. ENAP, Brası́lia.

[Cordeiro et al. 2023] Cordeiro, D., Francesquini, E., Amarı́s, M., Castro, M., Baldassin,
A., and Lima, J. (2023). Green cloud computing: Challenges and opportunities. In
Anais do XIX SBSI, pages 129–131, Maceió/AL. SBC.

[Hastie et al. 2009] Hastie, T., Tibshirani, R., and Friedman, J. H. (2009). The Elements
of Statistical Learning: Data Mining, Inference, and Prediction. Springer Series in
Statistics. Springer, 2nd edition.

[IEA 2023] IEA (2023). Tracking clean energy progress. https://www.iea.org/
reports/tracking-clean-energy-progress-2023. Licença: CC BY
4.0.

[Kim and Kim 2020] Kim, S. and Kim, H. (2020). A new metric of absolute percent-
age error for intermittent demand forecasts. International Journal of Forecasting,
36(3):1115–1127.

[Lewis 1982] Lewis, C. D. (1982). Industrial and Business Forecasting Methods. Butter-
worths.

https://www.iea.org/reports/tracking-clean-energy-progress-2023
https://www.iea.org/reports/tracking-clean-energy-progress-2023


[Mittal and Vetter 2016] Mittal, S. and Vetter, J. S. (2016). A survey of methods for analyz-
ing and improving gpu energy efficiency. ACM Computing Surveys (CSUR), 49(3):41.

[NVIDIA 2024] NVIDIA (2024). Gpu accelerated solutions for data science. NVIDIA
Newsroom.

[NVIDIA and CUDA 2015] NVIDIA, C. C. and CUDA, C. (2015). Programming guide,
version 7.

[Penha et al. 2002] Penha, D., Corrêa, J., and Martins, C. (2002). Análise comparativa do
uso de multi-thread e openmp aplicados a operações de convolução de imagem. In
Anais do III Workshop em Sistemas Computacionais de Alto Desempenho, pages 118–
125, Porto Alegre, RS, Brasil. SBC.

[Saurav and Benedict 2021] Saurav, S. K. and Benedict, S. (2021). A taxonomy and survey
on energy-aware scientific workflows scheduling in large-scale heterogeneous archi-
tecture. In 2021 6th International Conference on Inventive Computation Technologies
(ICICT), pages 820–826.

[Shahid et al. 2021] Shahid, A., Fahad, M., Manumachu, R. R., and Lastovetsky, A. (2021).
Energy predictive models of computing: Theory, practical implications and experi-
mental analysis on multicore processors. IEEE Access, 9:63149–63172.

[Susto et al. 2014] Susto, G. A., Schirru, A., Pampuri, S., McLoone, S., and Beghi, A.
(2014). Machine learning for predictive maintenance: A multiple classifier approach.
IEEE Transactions on Industrial Informatics, 11(3):812–820.

[Wang et al. 2019] Wang, X., Huang, K., Knoll, A., and Qian, X. (2019). A hybrid frame-
work for fast and accurate gpu performance estimation through source-level analysis
and trace-based simulation. In 2019 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA), pages 201–214. IEEE.

[Williams and Curtis 2008] Williams, J. and Curtis, L. (2008). Green: The new computing
coat of arms? IT Professional Magazine, 10(1):12.

[yan Song 2015] yan Song, Y. (2015). Decision tree methods: applications for classification
and prediction. International Journal of Data Analysis Techniques and Strategies,
7(2):228–243.

[Zhang et al. 2020] Zhang, Y., Wang, S., and Chen, G. (2020). Deep learning-based perfor-
mance prediction for gpu-accelerated applications. Journal of Parallel and Distributed
Computing, 144(3):12–23.


	Introduction
	Theoretical Background
	CUDA for Nvidia GPUs and OpenMP for CPUs Multicore
	Machine Learning for Performance and Energy Consumption Predictions
	Linear and Polynomial Regression
	Performance Metric: Mean Absolute Percentage Error (MAPE)
	Green Computing

	Related Works
	Methodology
	Test Algorithms
	Hardware and Software Components
	Dataset
	Data Preprocessing
	Model Training

	Results and Discussions
	Conclusions and Future Works

