
Comparative Analysis of Compiler Efficiency: Energy
Consumption Metrics in High-Performance Computing

Domains

Erick Damasceno1, Fellipe Queiroz1, Luan Siqueira1, Thiago Rodrigues1, Marcos Amaris 1

1Universidade Federal do Pará
Programa de Pós-Graduação em Computação Aplicada - PPCA

Tucuruı́ - Pará
{erick.silva, fellipe.queiroz, luan.siqueira,

thiago.rodrigues}@tucurui.ufpa.br, amaris@ufpa.br

Resumo. Este estudo apresenta uma análise comparativa abrangente da
eficiência dos compiladores, com destaque para as métricas de consumo de
energia em diversos domı́nios da computação de alto desempenho. Através
de uma avaliação rigorosa do desempenho do GCC, do Clang e do ICC, a
investigação visa elucidar quais os compiladores que se destacam em áreas
especı́ficas, fornecendo assim informações valiosas para a seleção estratégica
destas ferramentas com base nos requisitos únicos de várias tarefas computa-
cionais. Os resultados revelam que, entre a energia total consumida durante
os cálculos, o GCC foi responsável por 33,23%, o Clang por 36,01% e o ICC
por 30,76%. Notavelmente, o ICC demonstrou uma eficiência energética su-
perior, sendo 7,43% mais eficiente que o GCC, enquanto o Clang foi 8,35%
menos eficiente. Esses resultados ressaltam a importância crı́tica de selecionar
o compilador apropriado para otimizar a eficiência energética em ambientes de
computação de alto desempenho.

Abstract. This study presents a comprehensive comparative analysis of com-
piler efficiency, with a focus on energy consumption metrics across diverse do-
mains of high-performance computing. By rigorously evaluating the perfor-
mance of GCC, Clang, and ICC, the research aims to elucidate which compil-
ers excel in specific areas, thereby providing valuable insights for the strategic
selection of these tools based on the unique requirements of various computa-
tional tasks. The findings reveal that, among the total energy consumed during
the computations, GCC accounted for 33.23%, Clang for 36.01%, and ICC for
30.76%. Notably, ICC demonstrated superior energy efficiency, being 7.43%
more efficient than GCC, while Clang was 8.35% less efficient. These results
underscore the critical importance of selecting the appropriate compiler to op-
timize energy efficiency in high-performance computing environments.

1. Introduction
Parallel and High-Performance Computing (HPC) is not solely dependent on hardware
architectures and algorithm design methods but also on the programming languages and,
critically, the compilers used. A compiler is a tool that translates programs written in high-
level programming languages into low-level versions suitable for processing by assem-
blers and linkers. Compilers play a pivotal role in this process by translating high-level



programs into machine-level instructions, directly influencing the efficiency and behavior
of applications [Daniel and Page 2009].

In the context of programming for parallel computers, the language C is often
the imperative language, complemented by various parallel frameworks as OpenMP and
Message Passing Interface, as pointed out by [Hatcher et al. 1991]. With the rapid ad-
vancement of high-performance software and hardware, there has been an increasing need
to accurately measure the efficiency of these platforms. Benchmarking tools have been
developed for this purpose, providing a standardized method to test and evaluate system
performance. These tools are essential for assessing a system’s ability to solve complex
problems and perform realistic simulations.

In the current era, energy efficiency and environmental impact have become
paramount concerns. This study seeks to evaluate the performance of various bench-
marks within the context of energy consumption and execution time. Specifically, several
benchmarks from the Rodinia suite were tested across three C compilers: GCC [2.1.2],
CLANG [2.1.3], and ICC [2.1.4]. The goal was to compare their performance and energy
efficiency, providing insights into how compiler choice can influence the overall effec-
tiveness of HPC systems.

The main objective of this work is to analyze and compare the energy efficiency
and execution time of High-Performance Computing applications using various C compil-
ers and the OpenMP library on multicore machines. For this, we must conduct a thorough
collection of energy consumption data for each selected benchmark, with three separate
measurements for each, using different compilers. This approach will enable a detailed
comparative analysis of how compiler choice affects energy consumption. We will per-
form a comparative evaluation of benchmark efficiency with each compiler to determine
how each performs under various scenarios, revealing insights into their relative perfor-
mance across different demands and benchmark characteristics. We will examine the
correlation between the residual size of each binary generated after compilation and its
impact on final performance. This analysis will assess the effect of compilation overhead
on benchmark efficiency and overall performance, contributing to a deeper understanding
of the factors influencing system performance.

This document is divided into 6 sections, as follows: Section 2 demonstrates the
essential concepts of this research. Section 3 presents some relevant papers for under-
standing this work. Section 4 presents the methodology. Section 5 explains the results
and finally Section 6 presents the conclusions and future work.

2. Theoretical Background

2.1. C Programming Language

In simpler terms, the C language is a versatile programming language initially devel-
oped for the UNIX operating system, and is not considered a high-level language. It
has emerged as a valuable tool for real-time and computationally intensive tasks. Al-
though there was historical preference for other languages, such as FORTRAN, for dig-
ital signal processing, the shift to C is deemed inevitable due to its superior advantages
[Embree et al. 1991].



2.1.1. Open Multi-Processing

According to [Kiessling 2009], the OpenMP (Open Multi-Processing) Application Pro-
gramming Interface (API), which was initially released in 1997, has become a standard
for writing parallel applications with shared memory in C, C++, and Fortran. OpenMP
offers the advantage of being easily integrated into existing serial code, enabling incre-
mental parallelization. Additionally, it is widely used, highly portable, and particularly
well-suited for multicore architectures, which are becoming increasingly common in ev-
eryday desktop computers.

2.1.2. GCC - GNU C Compiler

The GNU C Compiler (GCC), developed by Richard Stallman, originated within the con-
text of the GNU Project in 1984. The project aimed to create a free software operating
system similar to UNIX. Funded through donations to the Free Software Foundation,
GCC has evolved from a C compiler into a versatile, multilingual tool supporting over
30 architectures and various programming languages, including Fortran, ADA, Java, and
Objective-C [Gough and Stallman 2004]. This expansion has solidified GCC’s role as a
cornerstone in the development of open-source software, offering a robust and flexible
compiler infrastructure that underpins numerous modern computing applications.

2.1.3. LLVM and CLANG

LLVM (Low-Level Virtual Machine) is a compiler framework designed to support the
ongoing analysis and transformation of programs throughout their lifecycle. It pro-
vides a common code representation in the form of Static Single Assignment (SSA),
coupled with a simple, language-independent type system, an instruction set for typed
address arithmetic, and an efficient mechanism for implementing exception handling
[Lattner and Adve 2004]. LLVM’s modular design allows for the implementation of a
wide range of optimizations and analyses, making it a powerful tool for both academic
research and industrial applications.

Clang, serving as the C/C++ front-end for LLVM, parses source code, checks for
errors, and generates an Abstract Syntax Tree (AST), which is subsequently converted
into LLVM Intermediate Representation (LLVM IR). This IR undergoes various opti-
mizations before being translated into machine code. Clang’s library-based architecture
enables the flexible combination of front-end components to meet diverse needs, simplify-
ing the integration process for new developers and promoting innovation in compiler tech-
nology [Mishra et al. 2020]. Its design philosophy emphasizes modularity, performance,
and compatibility, making Clang a popular choice for modern software development.

2.1.4. ICC - Intel C Compiler

The Intel C Compiler (ICC) is a suite of compilers for C and C++, developed by Intel
Corporation, with support for Linux, Windows, and macOS. Available at no cost to aca-
demic institutions, ICC is tailored for x86 architecture, enabling efficient compilation and



performance optimization. It is distinguished by its comprehensive support for OpenMP
4.0 and its capability for automatic parallelization, which is particularly advantageous in
symmetric multiprocessing environments. Beyond C and C++, ICC also supports For-
tran, thereby extending its applicability to a broader range of scientific and engineering
domains [Machado et al. 2017]. The compiler’s advanced optimization techniques, in-
cluding vectorization and loop unrolling, are crucial for achieving high performance on
Intel processors.

2.2. Rodinia Benchmark Suite
The Rodinia Benchmark Suite is a widely used collection of benchmarks designed to
evaluate the performance of parallel computing systems, encompassing multicore CPUs,
GPUs, and multi-node environments. Developed by the University of Virginia, the suite
includes a diverse array of benchmarks across domains such as physical simulations,
image processing, and data analysis. Utilizing the Berkeley Dwarf Taxonomy, Rodinia
provides a comprehensive set of benchmarks to assess the efficiency of parallel and dis-
tributed architectures, as well as to explore non-traditional memory hierarchies and opti-
mization layers. Its primary objectives are to deliver a diverse benchmark suite, facilitate
performance measurement, and advance research in parallel computing [Che et al. 2010].
Rodinia’s benchmarks are instrumental in identifying bottlenecks and guiding the design
of next-generation computing systems.

2.3. Profiling, Power API and Joule It
Power API is a programming interface that offers access to information and control
over energy consumption and management in computing systems. It allows develop-
ers to interact with hardware components such as CPUs, GPUs, and DRAM to moni-
tor and optimize energy usage. Power API provides detailed real-time data, which is
essential for managing the power consumption of applications and components, partic-
ularly in mobile devices, servers, and data centers where energy efficiency is critical
[Inria, University of Lille 2024]. Joule It complements this by offering fine-grained en-
ergy profiling capabilities, enabling developers to identify and mitigate energy hotspots
within their code, thereby contributing to the development of greener, more sustainable
computing technologies.

2.4. Green Computing
Green Computing, refers to the efficient and environmentally responsible use of comput-
ers and their resources. This approach encompasses various practices and strategies. With
the widespread adoption of computational technologies, there has been an increasing de-
mand for greater computing power, which, in turn, has led to higher energy consumption
and, consequently, greater carbon dioxide (CO2) emissions into the environment. The
environmental issues caused by increased CO2 emissions and the financial costs asso-
ciated with energy consumption have driven research aimed at developing mechanisms
and technologies for more efficient energy use. These mechanisms and technologies are
collectively referred to as Green Computing [Williams and Curtis 2008].

3. Related Works
This section aims to present references to related works that provided the foundation
for the development of this research. By exploring prior works and relevant studies, we



seek to establish a solid theoretical and contextual foundation for the present work. The
literature review was conducted comprehensively, considering research and publications
that address similar or directly related topics to the objectives of this investigation. We
discussed the main contributions found in the literature, highlighting concepts, method-
ologies, and results that influenced the formulation of research questions, the definition of
methodological approaches, and the interpretation of obtained results.

Modeling Power and Energy Usage of HPC Kernels [Tiwari et al. 2012] un-
derscores the significance of computationally intensive kernels in the realm of High-
Performance Computing (HPC) applications, as these kernels account for a substantial
portion of execution time. The development of power and energy models for Central Pro-
cessing Units (CPUs) and Dynamic Random-Access Memory (DIMMs) involves training
Artificial Neural Networks (ANNs) on three widely used HPC kernels. These neural net-
works are trained with empirical data collected from the target architecture. The models
use kernel-specific optimization parameters and hardware adjustments as inputs for pre-
dicting power consumption rates and energy usage of system components. The results
show an average absolute error rate of less than 5.5% for three major kernels—matrix
multiplication (MM), stencil computation, and LU factorization.

Seven Pillars to Achieve Energy Efficiency in High-Performance Computing
Data Centers [Hussain et al. 2019] highlights that energy efficiency in intensive comput-
ing environments, such as data centers and HPC systems, has become a perennial concern
due to its crucial relevance today. Energy-efficient design and ecological measures rep-
resent central challenges in HPC environments. However, current research focuses on
practical methods for measuring energy utilization aimed at promoting Green Computing
without exceeding resources and compromising performance. This work provides a com-
prehensive analysis of issues, challenges, and solutions related to energy consumption in
data centers and HPC systems, focusing on the period from 2010 to 2016.

The study categorizes existing problems in energy efficiency faced by data cen-
ters, providing a broad view of the models adopted by each approach. The work has a
dual contribution. Firstly, through this categorization, it seeks to offer a concise view
of the underlying energy efficiency model adopted by each approach. Secondly, it pro-
poses a seven-pillar framework for energy efficiency in HPC systems and data centers,
representing an original contribution to the field.

Performance Assessment of OpenMP Constructs and Benchmarks Using
Modern Compilers and MultiCore CPUs [Gawrych and Czarnul 2023] fits into the
context of contemporary advances in Computer System Architecture, especially consider-
ing the increasing number of cores, cache memory expansion, and evolving architectures,
along with the ongoing improvement of compilers. The demand for accurate assessments
of workloads, frequently executed and representative, becomes imperative in this ever-
changing scenario.

The primary metric explored in this article is execution speed, as the computa-
tional power of modern CPUs is predominantly derived from the efficient use of multiple
cores. The experiments cover a variety of codes, including batch normalization, convo-
lution, linear functions, matrix multiplication, prime number testing, and wave equation.
These operations were executed with different compilers, such as GNU gcc, LLVM clang,
icx, and icc, across four distinct systems, consisting of 1 or 2 sockets: namely, 1 x Intel



Core i7-5960X, 1 x Intel Core i9-9940X, 2 x Intel Xeon Platinum 8280L, and 2 x Intel
Xeon Gold 6130.

By discussing and analyzing the performance achieved in different hardware and
compiler configurations, this work contributes to a deeper understanding of the impact of
architectural and software choices on computational efficiency.

SIMD Programming Using Intel Vector Extensions
[Amiri and Shahbahrami 2020] explores the context of Single Instruction, Multiple
Data (SIMD) extensions, one of the most significant capabilities of modern General-
Purpose Processors (GPPs), aimed at enhancing application performance with minimal
hardware modifications. Each GPP vendor, such as HP, Sun, Intel, and AMD, presents
its own Instruction Set Architecture (ISA) and SIMD microarchitecture with distinct
perspectives.

The goals of this work are threefold. Firstly, it offers a review of SIMD technology
in general and Intel’s SIMD extensions in particular. Secondly, it compares SIMD fea-
tures of Intel technologies such as MMX, SSEs, AVX, and FMA in terms of ISA, vector
width, and SIMD programming tools. Finally, it compares the performance of different
auto-vectorizers and IPM approaches using Intel C++ (ICC), GNU Compiler Collection
(GCC), and Low Level Virtual Machine (LLVM) by mapping and implementing some
representative multimedia kernels in AVX and AVX2 extensions.

GCC vs. ICC Comparison Using PARSEC Benchmarks
[Almomany et al. 2014] aligns with the goal of evaluating the impact of various
compiler optimizations on program performance by using two renowned compiler suites:
GNU C Compiler and Intel’s C/C++ Compiler with PARSEC benchmarks. Compiler
optimization involves adjusting a compiler’s output to minimize or maximize specific
attributes of an executable program. Optimization is often achieved through the activation
of optimization flags.

This research explores the potential to enhance program performance through bet-
ter utilization of existing architectural features, notably through compiler optimizations.
The careful activation of these optimizations not only has the potential to improve pro-
gram performance but also to reduce the need for costly updates and, consequently, the
development costs of the system.

Assessing the effectiveness of compiler optimizations is a crucial component in
the quest for more efficient and cost-effective programs. The choice between GNU C
Compiler and Intel’s C/C++ Compiler, as well as the specific selection of optimization
flags, becomes fundamental to achieving results that not only benefit program perfor-
mance but also optimize existing architectural resources.

By investigating the impact of these optimizations on specific benchmarks, this
work contributes to a deeper understanding of how compiler optimization choices can
significantly influence program performance in practical environments. This comparative
analysis between widely used compiler suites and the use of recognized benchmarks adds
valuable perspective to the existing body of knowledge, providing relevant insights for
developing efficient and economically viable software.

mdspan in C++: A Case Study in the Integration of Performance Portable
Features into International Language Standards [Hollman et al. 2019] highlights the



ubiquitous presence of multidimensional arrays in High-Performance Computing (HPC),
underscoring their importance. However, their absence in the C++ language represents
a recognized and enduring limitation for HPC use. This work refers to the design and
implementation of mdspan, a multidimensional span proposal for inclusion in the C++23
standard. This proposal is heavily inspired by the work done in the Kokkos project, a
high-performance C++ programming model used by various HPC institutions to prepare
their codebases for exascale-class supercomputing systems.

The text describes the final design of mdspan after a five-year process to achieve
consensus in the C++ community. It specifically explores how the design addresses some
fundamental challenges of performance-portable programming, highlighting customiza-
tion points that enable seamless extension to areas not currently covered by the C++ stan-
dard but critically important in modern heterogeneous computing.

A significant aspect emphasized in the text is the adaptation of the design to the
needs of performance-portable programming, in addition to providing a high-quality im-
plementation in its current form. It also includes various benchmarks to demonstrate the
zero-overhead nature of the proposed modern design.

4. Methodology
4.1. Hardware Components
The system used in this study is powered by an Intel Core i7 5500U CPU, with a base
frequency of 2.4 GHz, which can increase up to 3.0 GHz in turbo mode. This processor
has two physical cores and four threads, and is built with the 14 nm lithography of the
Haswell microarchitecture. The CPU includes a total of 4 MB of cache distributed across
three levels (L1: 64 KB, L2: 256 KB, L3: 4 MB). Additionally, the system is equipped
with 10 GB of DDR3L RAM operating at 1600 MHz.

It is important to highlight that the choice of this hardware for the tests was due to
its availability and the system’s suitability for the study’s objectives. Although it is not the
latest processor, the Intel Core i7 5500U offers a suitable balance between performance
and energy efficiency.

4.1.1. Software Components

The operating system utilized for this research is Linux Ubuntu version 22.04.1 LTS.
Three general-purpose compilers were selected for the study:

• GCC: Version 11.4.0;
• ICC: Version 2021.10.0 (released on 2023-06-09);
• CLANG: Version 11.4.0.

The benchmarks chosen from the Rodinia suite 2.2 for this study include:

• LU Decomposition: Implementation of the LU decomposition, a linear algebra
algorithm used for matrix factorization into a lower triangular matrix and an upper
triangular matrix;

• Back Propagation: A benchmark related to neural networks, specifically back-
propagation, which is a fundamental technique in the supervised training of neural
networks;



• Streamcluster: A clustering algorithm used to analyze large datasets, identifying
patterns and grouping similar data points;

• LavaMD: Implementation of the Molecular Dynamics method, a common bench-
mark for simulating the behavior of particles in a system.

4.2. Data Collection

Data collection was automated using a Bash script that runs the benchmark binaries in
conjunction with the “jouleit.sh” script, which monitors energy consumption using intel
RAPL and records the results in a CSV file. Modifications were made to the source code
to remove the terminal output lines, ensuring accurate data collection. In addition, five
sets of data were collected for each benchmark and averaged to obtain a safe margin to
analyze.

The data collection method established a maximum input value that did not over-
load the system, serving as an upper load limit, and used powers of two for the input
values. This maximum value was halved to obtain the initial value, which was then incre-
mented by 128 in each iteration until the maximum value was reached, resulting in 128
samples. This method is mathematically expressed as:

Vmax − Vmin

128
= Value (1)

This approach proved effective for three of the four selected benchmarks. How-
ever, for the LavaMD benchmark, only 90 samples could be collected due to its unique
characteristics, but these were still sufficient for the analysis.

The data collection configuration was as follows:

• Back Propagation ranged from 16,777,216 to 33,554,432, with increments of
131,072 per iteration;

• LavaMD ranged from 1 to 90, with increments of 1 per iteration;
• LU Decomposition ranged from 16,384 to 32,768, with increments of 128 per

iteration;
• Streamcluster ranged from 2,097,152 to 4,194,304, with increments of 16,384 per

iteration.

This process yielded twelve CSV datasets, exemplified in Table [1], each contain-
ing an additional column labeled INPUT to facilitate controlled analysis of the collected
data. Additionally, data on the sizes of the compiled binaries were collected for potential
correlation analysis. This information is exemplified in Table [2].

Table 1. Sample CSV Data Generated by the Collection Script
CORE CPU DRAM DURATION UNCORE EXIT CODE INPUT

73647760 91968454 10552097 9812865 2503 0 512
27366324 34201390 3997121 3636782 1587 0 516
74480400 92856879 10615390 9855222 2990 0 520
31772136 39662802 4590259 4200268 1648 0 524

... ... ... ... ... ... ...
Source: Own work.



Table 2. Sample Data on Binary File Sizes
File Name Size (KB)
lud omp 21.828125
backprop 49.8359375
lavaMD 20.734375
sc omp 40.671875

Source: Own work.

4.3. Data Analysis

To conduct the data analysis, a thorough cleaning and preprocessing of the collected data
were performed to correct potential errors and adjust variable types, including converting
microjoules to joules and milliseconds to seconds. Performance analysis was visualized
through comparative graphs and parameterization of the results, providing a clear and
detailed view of the data presented in this research.

Additionally, a percentage gain analysis was conducted using the binary data to
investigate the relationships between energy consumption, performance, and binary size.

5. Results

5.1. Performance

The analysis of the performance data reveals that the Intel C++ Compiler (ICC) exhibits
the highest efficiency, with a performance percentage of 30.76%. In comparison, Clang
and GCC demonstrate performance percentages of 36.01% and 33.23%, respectively.
These findings are visually represented in Figure 1.

Figure 1. Percentage of Consumption by Compiler

In terms of the total time required to complete all benchmark iterations, ICC com-
pleted the process in 60 hours, 23 minutes, and 21 seconds. By contrast, GCC took 66
hours, 18 minutes, and 51 seconds, while Clang required 74 hours, 11 minutes, and 50
seconds. When considered in percentage terms, as illustrated in Figure 2, ICC accounted
for 30.1% of the total time spent, GCC for 33%, and Clang for 36.9%.



Figure 2. Time Spent by Compiler

5.2. Binary Size
Investigating the potential correlation between the size of generated binaries and com-
piler efficiency, it was observed that ICC tends to produce significantly larger binaries
compared to GCC and Clang, as depicted in Figure 3.

Figure 3. Binary Size (KB) by Compiler

When examining this comparison from a percentage perspective relative to GCC,
ICC shows an average relative increase of 289.6% in binary size. This trend suggests that
larger binaries might be associated with better performance, as indicated in Figure 4.

Figure 4. Percentage Increase in Binary Size (KB) Relative to GCC



6. Conclusions and Future Works
The results presented in this study indicate that the Intel C Compiler (ICC) exhibits supe-
rior efficiency in both energy consumption and total time required to complete the bench-
marks. Specifically, ICC achieved a consumption percentage of 30.76% and a total exe-
cution time of 60 hours, 23 minutes, and 21 seconds. In comparison, the GNU Compiler
Collection (GCC) and Clang demonstrated lower performance metrics. GCC consumed
33.23% of the total energy and required 66 hours, 18 minutes, and 51 seconds to complete
the same benchmarks, while Clang exhibited the highest consumption at 36.01% and the
longest execution time of 74 hours, 11 minutes, and 50 seconds. These findings under-
score the advantages of ICC in terms of compilation efficiency and resource utilization.

Furthermore, it was observed that the binaries generated by ICC were significantly
larger, with an average relative increase of 289.6% in binary size compared to those pro-
duced by GCC. This substantial increase in binary size may be correlated with the im-
proved performance, suggesting that ICC employs optimization techniques that produce
larger binaries but enhance execution efficiency. The trade-off between binary size and
performance gain highlights the effectiveness of ICC’s approach to optimizing compiled
code, potentially offering a more favorable balance between resource consumption and
execution time in high-performance computing scenarios.

In future studies, it is essential to utilize more advanced machines to continue this
research. Additionally, exploring various hardware configurations is crucial, as differ-
ent setups can yield valuable data for the evaluation conducted in this work, given that
the selected benchmarks cover diverse areas. Furthermore, to gain deeper insights into
the binaries produced by the compilers, reverse engineering the binaries to assembly lan-
guage could provide additional information on how the generated size affects the energy
consumption of these applications.

References
[Almomany et al. 2014] Almomany, A., Alquraan, A., and Balachandran, L. (2014). Gcc

vs. icc comparison using parsec benchmarks. IJITEE, 4(7).

[Amiri and Shahbahrami 2020] Amiri, H. and Shahbahrami, A. (2020). Simd programming
using intel vector extensions. Journal of Parallel and Distributed Computing, 135:83–
100.

[Che et al. 2010] Che, S., Sheaffer, J. W., Boyer, M., Szafaryn, L. G., Wang, L., and
Skadron, K. (2010). A characterization of the rodinia benchmark suite with compari-
son to contemporary cmp workloads. In IEEE International Symposium on Workload
Characterization (IISWC’10), pages 1–11.

[Daniel and Page 2009] Daniel and Page (2009). Compilers, pages 451–493. Springer Lon-
don, London.

[Embree et al. 1991] Embree, P. M., Kimble, B., and Bartram, J. F. (1991). C language
algorithms for digital signal processing.

[Gawrych and Czarnul 2023] Gawrych, B. and Czarnul, P. (2023). Performance assessment
of openmp constructs and benchmarks using modern compilers and multi-core cpus.
In 2023 18th Conference on Computer Science and Intelligence Systems (FedCSIS),
pages 973–978. IEEE.



[Gough and Stallman 2004] Gough, B. J. and Stallman, R. (2004). An Introduction to GCC.
Network Theory Limited.

[Hatcher et al. 1991] Hatcher, P. J., Quinn, M. J., Lapadula, A. J., Anderson, R. J., and
Jones, R. R. (1991). Dataparallel c: A simd programming language for multicom-
puters. In The Sixth Distributed Memory Computing Conference, pages 91–92. IEEE
CS.

[Hollman et al. 2019] Hollman, D. S., Lelbach, B. A., Edwards, H. C., Hoemmen, M., Sun-
derland, D., and Trott, C. R. (2019). mdspan in c++: A case study in the integration of
performance portable features into international language standards. In International
Workshop on Performance, Portability and Productivity in HPC, pages 60–70. IEEE.

[Hussain et al. 2019] Hussain, S. M., Wahid, A., Shah, M. A., Akhunzada, A., Khan, F.,
Amin, N. u., Arshad, S., and Ali, I. (2019). Seven pillars to achieve energy efficiency
in high-performance computing data centers. Recent Trends and Advances in Wireless
and IoT-enabled Networks, pages 93–105.

[Inria, University of Lille 2024] Inria, University of Lille (2024). Power api. Copyright ©
2024 Inria, University of Lille. Made with Material for MkDocs.

[Kiessling 2009] Kiessling, A. (2009). An introduction to parallel programming with
openmp. In The University of Edinburgh, A Pedagogical Seminar (accessed 24 Septem-
ber 2020), URL: https://www. roe. ac. uk/ifa/postgrad/pedagogy/2009 kiessling. pdf,
volume 76.

[Lattner and Adve 2004] Lattner, C. and Adve, V. (2004). Llvm: a compilation framework
for lifelong program analysis & transformation. In International Symposium on Code
Generation and Optimization, 2004. CGO 2004., pages 75–86.

[Machado et al. 2017] Machado, R. S., Almeida, R. B., Jardim, A. D., Pernas, A. M.,
Yamin, A. C., and Cavalheiro, G. G. H. (2017). Comparing performance of c compil-
ers optimizations on different multicore architectures. In 2017 International Sympo-
sium on Computer Architecture and High Performance Computing Workshops (SBAC-
PADW), pages 25–30.

[Mishra et al. 2020] Mishra, A., Malik, A. M., and Chapman, B. (2020). Extending the
llvm/clang framework for openmp metadirective support. In 2020 IEEE/ACM 6th
Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC) and Workshop
on Hierarchical Parallelism for Exascale Computing (HiPar), pages 33–44.

[Tiwari et al. 2012] Tiwari, A., Laurenzano, M. A., Carrington, L., and Snavely, A. (2012).
Modeling power and energy usage of hpc kernels. In IEEE 26th International Parallel
and Distributed Processing Symposium Workshops & PhD Forum, pages 990–998.

[Williams and Curtis 2008] Williams, J. and Curtis, L. (2008). Green: The new computing
coat of arms? IT Professional Magazine, 10(1):12.


	Introduction
	Theoretical Background
	C Programming Language
	Open Multi-Processing
	GCC - GNU C Compiler
	LLVM and CLANG
	ICC - Intel C Compiler

	Rodinia Benchmark Suite
	Profiling, Power API and Joule It
	Green Computing

	Related Works
	Methodology
	Hardware Components
	Software Components

	Data Collection
	Data Analysis

	Results
	Performance
	Binary Size

	Conclusions and Future Works

