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Abstract. The ability to aggregate the computational resources of multiple clus-
ters is useful for solving large problems that can benefit from multicluster plat-
forms. In this context, this paper introduces an extension to Julia that enables
multilevel parallelism and allows users to exploit use cases of multicluster com-
putation. The proposal is evaluated through a proof-of-concept case study based
on the multizone version of the NAS Parallel Benchmarks (NPB-MZ), focusing
on evaluating inter-cluster communication and load-balancing overheads.

1. Introduction
The ability to aggregate the computational resources of multiple clusters is useful for
solving large problems that can benefit from multicluster platforms. There are relevant
use cases, including BigData processing over geographically distributed datasets that can
not be moved across computing sites, computation offloading using cloud-based clusters,
insufficiency of computational resources in a single on-premises cluster site, and taking
advantage of specific computational resources (e.g., high-end accelerators) that are not
present in the local computation infrastructure. However, deploying multiclusters is chal-
lenging for most technical and scientific computing programmers due to the requirement
of third-party tools often outside the programming language ecosystem.

This paper presents an approach to enable multicluster computations in a pro-
gramming language designed to reconcile productivity and high-performance computing
(HPC) requirements. The testbed language is Julia [Bezanson et al. 2018], targeted at
technical and scientific computing programmers. For cluster computing, it offers built-
in support through the standard Distributed.jl package, which addresses loosely cou-
pled parallel computations, where little or no communication requirements during the
computation exist. For tightly coupled parallel computations, users have the third-party
package MPI.jl, which supports message-passing through MPI (Message Passing Inter-
face) [Dongarra et al. 1996]. Users may benefit from the complementarity between Dis-
tributed.jl and MPI.jl by using MPIClusterManagers.jl, a package for deploying processes
that can interact through both packages across the nodes of a cluster.

Distributed.jl assumes that parallel programs are launched from within the clus-
ter’s network domain through an access node (e.g., bastion host) to reach the computation
nodes, which generally do not have public IP addresses. Based on this assumption, Dis-
tributed.jl do not allow the recursive creation of processes from within other processes,



except the master process, which initiates the computation. Therefore, we propose an
extension to Distributed.jl that removes such a restriction, inspired by the notion of multi-
level parallelism [De Carvalho Junior and Carneiro 2023], and demonstrates how such an
extension enables multicluster computations in Julia by exploiting the complementarity
between Distributed.jl and MPI.jl to benefit users of high-end parallel computing platforms.

As a proof of concept, we present a case study based on the mul-
tizone version of the NAS Parallel Benchmarks (NPB) [Bailey and et al. 1991,
Jin and Van der Wijngaart 2006], reporting the results of performance evaluation experi-
ments mainly concerned with inter-cluster communication overheads and load balancing.

In what follows, Section 2 characterizes distributed and parallel computing sys-
tems to clarify the complementarity between Distributed.jl and MPI.jl. Also, it defines
multilevel parallel programming, motivates multicluster computing, and introduces Julia.
Section 3 first describes the existing support of Julia for cluster computing through Dis-
tributed.jl and MPI.jl. Then, it presents the multilevel extension to Distributed.jl and how
it can handle multicluster computation deployment together with MPI.jl and MPICluster-
Managers.jl. The proof-of-concept evaluation of such an extension through the multizone
case study is presented in Section 4. Finally, Section 5 conclude this paper by discussing
its relevance, pointing out future works, and presenting final remarks.

2. Background and Related Works

Distributed computing is concerned with using a set of autonomous computing systems
that interact through a communication network to achieve the objectives of an application.
In turn, distributed-memory parallel computing is concerned with using a set of comput-
ing devices (possibly non-autonomous) that cooperate by exchanging messages through
a network interconnection to carry out a computing task in the shortest possible time.

Clusters, representing 88,5% of the parallel computing platforms listed in the
June’2024 ranking of Top500, belongs to the intersection between distributed comput-
ing and distributed-memory parallel computing systems, whereas MPPs (Massive Parallel
Processors), representing the other 11,5%, are not distributed computing systems, since
their computing nodes in general cannot be viewed as autonomous computers.

Clusters can be classified into tightly coupled and loosely coupled systems, as
well as into capability and capacity systems. Examples of the former are high-end clus-
ters with low-latency interconnections targeted at HPC, the competitors of MPPs in the
top positions of Top500. They are suitable for fine-grained parallel computations, where
inter-process communication interspersed with local computation is very frequent. They
are mostly capability systems, i.e., specific-purpose supercomputers designed to apply all
their computing power to solve a certain computationally challenging problem. In turn,
examples of loosely coupled systems are commodity clusters, using off-the-shelf hard-
ware, and multiclusters, where communication between processing nodes (clusters) may
be performed over long-distance networks, such as the Internet. Loosely coupled systems
suit embarrassingly and coarse-grained parallel computations, where inter-process com-
munication does not exist, or its costs are negligible compared to computation costs. They
are mostly capacity systems, whose computation power is divided among independent
users interested in solving problems of their particular interest through queue systems.



2.1. Multilevel Parallel Programming

Modern parallel computing platforms have a hierarchical structure with multiple paral-
lelism levels, each with a possibly distinct natural programming model to better exploit
its potential performance [Ciccozzi et al. 2022]. To deal with the complexity of such plat-
forms, multilevel parallel programming offers abstractions to develop efficient parallel
code at the different parallelism levels [De Carvalho Junior and Carneiro 2023].

In a multicluster platform, we assume a parallelism hierarchy comprising the fol-
lowing levels: multicluster-level, having two or more clusters as processing elements that
communicate through a high-latency network, such as the internet, when the clusters do
not belong to the same organization or infrastructure provider; cluster-level, where the
cluster nodes are the processing elements, having a dedicated network for communica-
tion; multiprocessor-level, having a set of processors and/or accelerators as processing
elements, communicating through shared memory; and multicore/manycore-level, with
processor cores as processing elements, also communicating through shared memory and
sharing cache memory at one or more levels depending on the processor architecture.

Multiprocessor and multicore levels have shared-variables between threads as a
natural programming model. In turn, message-passing and remote procedure calls (RPC)
are the natural models at multicluster and cluster levels. While message-passing is better
for programming parallel processes that act as interacting peers, commonly found among
tightly-coupled systems, RPC and its variants are better when processes do not communi-
cate with each other during computation, such as in embarrassingly parallelism patterns
(e.g., master-slave, bag-of-tasks, and map-reduce) or there are hierarchical relations be-
tween them, such as client-server, commonly found among loosely-coupled systems.

2.2. Why Multicluster Computing?

The idea of combining the resources from a set of clusters to exploit their com-
bined benefits in solving compute-intensive applications dates back to the end of the
1990s [Abawajy and Dandamudi 2003]. In the 2000s, it became a hot requirement in
the research on grid computing systems [Foster and Kesselman 2004], mainly to tackle
embarrassingly parallel computation patterns, such as bag-of-tasks, due to the high
latency of the network connecting the clusters. In the 2010s, the interest in mul-
ticluster systems was boosted by cloud computing and Big Data analytics applica-
tions [Wu et al. 2017], justified by the need to deal with geographically distributed large
amounts of data that cannot be copied outside organization boundaries due to transfer
costs and/or data protection policies. In this context, the interest in large-scale parallel
processing frameworks emerged, leading to the MapReduce frameworks (e.g., Hadoop)
with several variants and extensions, such as stream processing frameworks (e.g., Spark
and Flink) [Wang et al. 2012, Jayalath et al. 2014].

There are other real use cases for multicluster systems. For example, when users
cannot find sufficient processing resources in a single cluster site, they may desire to look
for more resources on other sites. Also, users may create clusters in cloud providers to
offload computation when the computational resources offered by an on-premises cluster
are insufficient for their needs. Finally, parts of the application may demand computa-
tional resources unavailable in the local environment or the current cloud provider, such
as a high-end acceleration device that only a specific cloud provider can provide.



2.3. The Julia Programming Language
Julia appeared at the end of the 2000s, targeting scientific and technical computing ap-
plications [Bezanson et al. 2018]. It is maintained as an open-source project1 by the Juli-
aHub company and a vibrant community of users and contributors, offering several pack-
ages for solving problems in different domains of science and engineering.

Julia aims to reconcile the productivity of dynamic languages like Python with
the performance of native execution languages like Fortran and C/C++. For that, it
combines just-in-time (JIT) compilation with a rich type system [Nardelli et al. 2018]
designed to support a dynamic multiple dispatch mechanism. This approach makes it
possible to generate efficient native code for methods that satisfy the type stability prop-
erty [Pelenitsyn et al. 2021]. Since the performance of Julia’s methods depends on how
the code is structured, Julia’s documentation includes a “performance tips” document to
guide developers2, as well as idiomatic coding guidelines.

In the next section, we present how Julia addresses issues of distributed and par-
allel computing and our contribution with a proposal to overcome the limitations of such
an approach when dealing with multicluster computations.

3. Multilevel Parallel Computing in Julia
Julia includes Distributed.jl3, a built-in package designed for loosely-coupled cluster com-
puting since it is based on a variant of RPC. A Distributed.jl program comprises a set of P
processes, numbered from 1 to P , where the process 1 is called master and the others are
called workers. A standalone program or REPL session is the master process responsible
for creating and coordinating the worker processes, which may reside in other hosts, such
as the compute nodes of a cluster. The communication between the master and worker
processes, and between worker processes, is mainly performed by the remote evaluation
of expressions, a variant of RPC, from a caller to a callee process.

The master process creates worker processes by calling the function addprocs. In
turn, the functions procs, nprocs, workers, nworkers, and myid may be used to inspect the
number and identities of existing processes. Workers can be removed using rmprocs.

The cluster manager argument of addprocs determines the cluster environment
where worker processes will be instantiated. For that, addprocs has a method for each
cluster manager, selected through multiple dispatch. Julia provides two builtin cluster
managers: LocalManager, for launching workers on the same host of the master process,
and SSHManager, for launching workers on remote hosts that accept ssh authentication.

The ClusterManager.jl4 package offers cluster managers for popular job queue sys-
tems, such as Slurm, Kubernetes, LSF (Load Sharing Facility), SGE (Sun Grid Engine),
PBS (Portable Batch System), etc. In fact, any contributor may develop cluster managers
for different cluster environments. In this work, we are interested in MPIClusterMan-
agers.jl5, which provides support for message-passing between worker processes through
MPI, the most popular message-passing interface for HPC [Dongarra et al. 1996].

1
https://github.com/JuliaLang/julia

2
https://docs.julialang.org/en/v1/manual/performance-tips

3
https://github.com/JuliaLang/Distributed.jl

4
https://github.com/JuliaParallel/ClusterManagers.jl

5
https://github.com/JuliaParallel/MPIClusterManagers.jl
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Figure 1. Distributed.jl versus MPI.jl

Master and worker processes interact through asynchronous remote evaluation of
expressions. To evaluate an expression remotely, the caller process invokes the @spawnat
macro, passing the callee process identifier and the expression as arguments. It immedi-
ately returns a value of Future type that may be passed to the @fetch macro (or fetch func-
tion) to wait and receive the result. There are variations of @spawnat, such as @spawn,
which calls in an arbitrary worker, and @fetchfrom, which combines @fetch and @spaw-
nat calls (synchronous evaluation). In turn, @everywhere evaluates the expression across
a set of workers. Finally, the remotecall function provides support for asynchronous re-
mote function calls, with synchronous variations: remotecall_fetch and remotecall_wait.
Distributed.jl also offers high-level functions and macros for data distribution, such as
@distributed and pmap, implementing the map/reduce paradigm.

3.1. The limitations of Distributed.jl

This paper addresses two limitations of Distributed.jl. The first is a feature limitation, as
worker processes cannot create other worker processes recursively. If addprocs is called
by a worker process, an exception is raised, and no worker is created. The second is
an expressiveness limitation. Despite the programming model of Distributed.jl nicely fits
client/server relations between processes, which applies to popular parallel computation
patterns, such as bag-of-tasks and map/reduce, it is not suited to tightly-coupled parallel
computing systems, since RPC and its variants are awkward and inefficient to implement
peer-to-peer process interactions.

3.2. MPI.jl: message-passing in Julia

To face the expressiveness limitation of Distributed.jl, the Julia ecosystem offers MPI.jl6,
a package for using MPI (Message Passing Library) [Dongarra et al. 1996]. MPI is not
a general distributed computing programming interface like Distributed.jl. It is designed
for HPC, targeting tightly-coupled parallel systems and having implementations for clus-
ters and MPPs. Figure 1 depicts how MPI.jl and Distributed.jl complement each other,
showing that they are alternatives to each other for loosely-coupled parallel systems.

3.3. MPIClusterManagers.jl: Reconciling Distributed.jl and MPI.jl

To implement multicluster computations in Julia, we argue that MPI.jl is the choice to
implement tightly-coupled parallel computations inside a cluster. In contrast, Distributed.jl
is better for coordinating the clusters and managing their communication.

6
https://github.com/JuliaParallel/MPI.jl

https://github.com/JuliaParallel/MPI.jl
https://github.com/JuliaParallel/MPI.jl


By making N calls to addprocs using MPIClusterManagers.jl as the cluster man-
ager, the master process can create N groups of worker processes. Workers in the same
group can communicate through the MPI.COMM_WORLD communicator, as each worker
group is launched by a distinct mpiexec call. Workers of distinct groups may interact
through Distributed.jl. In what follows, we present an illustrative example where N = 4:

� �
1 using Distributed
2 using MPIClusterManagers
3 SUM = Ref(0); function reduce_master(x) SUM[] += x end
4 group = Array{Array{Int}}(undef, 4)
5 clustersize = [4,8,4,8]
6 for i in 1:4
7 group[i] = addprocs(MPIWorkerManager(clustersize[i]))
8 @everywhere group[i] using MPI
9 end

10 Threads.@threads for i in 1:4
11 @everywhere group[i] begin
12 clusterid = $i
13 MPI.Init()
14 size = MPI.Comm_size(MPI.COMM_WORLD)
15 rank = MPI.Comm_rank(MPI.COMM_WORLD)
16 @info "my info: rank=$rank, size=$size, cluster=$clusterid"
17 X = rand(1:10)
18 r = MPI.Reduce(X, (x,y) -> x + y, 0, MPI.COMM_WORLD)
19 rank == 0 && @spawnat 1 reduce_master(r)
20 MPI.Finalize()
21 end
22 end
23
24 @info "The sum across all groups is $(SUM[])$"� �

In the above code, each worker group (group[i] for i ∈ {1, 2, 3, 4}) performs,
concurrently to each other, a reduction operation to sum their X variables initialized with
some value between 1 and 10 in the variable r of the worker with rank 0. Finally, these
workers call reduce_master at the master to sum their r in the master’s variable SUM .

Unfortunately, the master process can not launch worker groups across dis-
tinct clusters because addprocs works with a local MPI installation. MPICluster-
Managers.jl has been designed to launch Julia/MPI computations in a single clus-
ter. To circumvent this limitation, we propose a multilevel extension to Distributed.jl
based on a multilevel parallel programming model introduced in a previous work
[De Carvalho Junior and Carneiro 2023]. It is described in the next section.

3.4. A Multilevel Extension to Distributed.jl

The multilevel extension to Distributed.jl allows workers to create other workers recur-
sively using addprocs, enabling multicluster computations using MPIClusterManagers.jl.
In this context, the master is now called driver process, and its workers are called entry
processes, each placed in the access node of a cluster. Then, each entry process, acting as a
master in its cluster, calls addprocs to create a set of worker processes across the cluster’s
nodes, called compute processes. While entry processes can interact with each other and
compute processes they created only through Distributed.jl, compute processes can select
between MPI.jl, for implementing tighly-coupled parallel computations, or Distributed.jl,
for loosely-coupled computations. This is illustrated in the following code using MPI.jl:

� �
1 using Distributed
2 using MPIClusterManagers
3 SUM = Ref(0); function reduce_master(x) SUM[] *= x end
4 mid = Array{Int}(undef, 4) # manager IDs
5 clustersize = [4,8,4,8]
6 for i in 1:4
7 clusterid[i] = addprocs(["<host address>"]; #= kw parameters to connect to the access host =# ...)[1]
8 @everywhere [clusterid[i]] thisclustersize = $(clustersize[i])



9 end
10 @everywhere mid using MPIClusterManagers
11 @everywhere mid addprocs(MPIWorkerManager(thisclustersize); #= kw parameters to configure MPI =# ...)
12 @everywhere mid @everywhere workers() using MPI
13 for i in 1:4
14 @spawnat mid[i] @everywhere workers() clusterid = $(mid[i])
15 end
16 @everywhere mid reduce_master(x) = @spawnat role=:worker 1 reduce_master(x)
17 @everywhere mid @everywhere workers() begin
18 MPI.Init()
19 size = MPI.Comm_size(MPI.COMM_WORLD)
20 rank = MPI.Comm_rank(MPI.COMM_WORLD)
21 @info "my info: rank=$rank, size=$size, cluster=$clusterid"
22 X = rand(1:10)
23 r = MPI.Reduce(X, (x,y) -> x + y, 0, MPI.COMM_WORLD)
24 rank==0 && @spawnat role=:worker 1 reduce_master(r)
25 MPI.Finalize()
26 end
27
28 @info "The sum across all clusters is $(SUM[])"� �

This code performs the same computation as the previous code. The entry process
of each cluster is created in lines 6-9, and compute processes are created by nested calls
to addprocs from entry processes using MPIClusterManagers in line 11. So, these com-
pute processes exchange messages through MPI.jl. In line 16, each entry process defines
a reduce_master function to forward, to the driver process, the result (r) sent by each
compute process with rank 0 to the entry process (line 24). This is necessary because
compute processes cannot communicate directly with the driver process.

The role parameter An entry process may perform two roles when executing any oper-
ation: master (id = 1), when interacting with its compute processes, and worker (id > 1),
when interacting with the driver and other entry processes. This is valid for any intermedi-
ary process (non-root and non-leaf) in a hierarchy of processes created by recursive calls
to addprocs. For that, an additional keyword parameter role has been added to each Dis-
tributed.jl operation, with possible values :master and :worker. Since keyword parameters
are optional, existing Distributed.jl programs still works with the extension. For that, the
default value of role is :master for the driver process and :worker for the other ones.

4. Case Study: Multizone NAS Parallel Benchmarks (NPBMZ.jl)

The NAS Parallel Benchmarks (NPB) was developed in the 1990s to evaluate parallel
computing platforms for CFD applications [Bailey and et al. 1991]. The original NPB
implementation comprised 5 kernels (EP, IS, CG, MG, and FT) and 3 simulated appli-
cations (SP, BT, and LU), coded in Fortran or C, with serial and parallel versions based
on MPI and OpenMP. Over the years, NPB has been widely used to evaluate the perfor-
mance of platforms and programming languages for parallel computing, and new official
and unofficial versions have been developed to add new kernels and problem instances.

We have implemented a proof-of-concept for multicluster computations us-
ing the multilevel version of Distributed.jl based on the multizone version of NPB
3.4.3 [Jin and Van der Wijngaart 2006], which includes the simulated applications. In the
original version, for single clusters, the grid is partitioned into zones distributed across
cluster nodes using MPI. Then, each zone is parallelized across processor cores using
OpenMP. In the alternative multicluster version we developed, written in Julia, zones are
distributed across clusters and then partitioned into cells distributed across the cluster
nodes. Inter-cluster and intra-cluster interactions are implemented in Distributed.jl and



Figure 2. NPB Multizone General Architecture (SP, BT, LU)

MPI.jl, respectively. Figure 2 depicts such a parallelism hierarchy. A third level of paral-
lelism is exploited by computing zones in different processor cores of the cluster nodes.

From Fortran to Julia To implement NPB 3.4.3-MZ in Julia, we firstly derived a Ju-
lia/MPI.jl version of SP, BT, and LU from NPB3.4-MPI, i.e., the original MPI versions
of NPB, in Fortran, producing two versions for each program. The first version is a lit-
eral translation from Fortran to Julia. The second one applies Julia’s performance tips 7

to reach competitive performance compared to the original Fortran version. Finally, the
multi-zone version was built from the second version, implementing zone partitioning.

Listing 1. Launching MPB-MZ (BT, class E)� �
1 using Distributed
2 addprocs(... #= launching parameters for the entry process of the 1st cluster =#)
3 addprocs(... #= launching parameters for the entry process of the 2nd cluster =#)
4 process_count = [(2,4),(3,4)]
5 @everywhere workers() using MPIClusterManagers
6 @everywhere workers() using MPI
7 for (w,np) in process_count
8 fetch(@spawnat w addprocs(MPIWorkerManager(np); threadlevel=:multiple))
9 end

10 @everywhere workers() @everywhere workers() using NPBApps
11
12 using NPBApps
13 BT.go(BT.CLASS_E; itimer=2, npb_verbose=3)� �

Listing 1 outlines the code of a driver process launching a multizone NPB pro-
gram (i.e., BT, class E) across two clusters with four nodes. Only compute processes,
created in lines 7-9, perform relevant computations. The entry processes, created in lines
2-3, only manage the communication between clusters (exchange of zone faces) and com-
municating with the driver process to receive parameters and send results, by setting the
role parameter to :worker, as well as communicating with compute processes to mediate
parameter and result passing between them and the driver, by setting role to :master.

7https://docs.julialang.org/en/v1/manual/performance-tips/

https://docs.julialang.org/en/v1/manual/performance-tips/


cluster locale provider CPU mark⋆ nodes memory CPUs CPU cores networkcount per node per node model per node
grvingt Nancy Grid’5000 20,411 4 192GB 2 Intel Xeon Gold 6130 32 100Gbs Omni-Path

roazhon8 Rennes Grid’5000 11,676 2 256GB 2 Intel Xeon E5-2630 v4 24 10Gbs Ethernet
p2.xlarge us-east-1 AWS EC2 20,900 4 16GB 1 Intel Xeon E5-2686 v4 4 10Gbs Ethernet

⋆ CPU mark according to https://www.cpubenchmark.net/cpu_list.php

Table 1. Clusters Characteristics

This experiment aims to evaluate the feasibility of deploying multicluster com-
putations in Julia programs, as well as to assess performance overheads related to inter-
cluster communication and load balancing. Speedup by employing multiple clusters is not
a concern, as we argue that multicluster is an alternative only when running on a single
cluster is not feasible. The methodology of the experiment follows in the next section.

4.1. Experimental Scenarios and Methodology

Table 1 describes the testbed clusters. In turn, Table 2 describes the problem classes D
and E (workloads) applied in the three scenarios, for SP, BT, and LU.

Table 3 describes the experimental scenarios and performance results and deserves
special attention. First, to fill the tables (a), (b), and (c) of Table 3, single cluster and
multicluster executions of SP, BT, and LU have been executed for problem classes D and
E over the grvingt and roazhon8 clusters. Single cluster executions, i.e., over each cluster
individually, have been performed only for D instances since the E instances do not fit the
memory of a single cluster, requiring the use of the two clusters in parallel.

The column procs sets the number of MPI processes launched across the nodes
of each cluster. For all the programs, it must be a square number. So, it was the max-
imum square number less than the number of processor cores across the cluster nodes,
but restricted by the partitioning of zones in cells (cells must have no less than 3×3×3
dimension) 8. This is why only 16 processes have been employed for BT in both clusters.

Trying to quantify the main sources of multicluster parallelism overhead, the ex-
ecution times (per iteration) are determined by the sum of three components, in columns
comm (inter-cluster communication time), comp (intra-cluster execution time), and idle
(idle time). Since processes across all clusters synchronize at each iteration, the execu-
tion time is determined by the time from the beginning of an iteration to the finish of
the execution on the “slower” cluster. The measurements in Table 3 are averages for the
iterations of a single run of each program (see the number of iterations in Table 2).

8I would be better to run a single MPI process per node and distribute the zones to be processed among
threads, one per core. Unfortunately, the use of threads and MPI in Julia has some technical issues outside
the scope of this paper. See at https://github.com/JuliaParallel/MPI.jl/issues/725.

grid dimensions zone count iterationsx y z x y total

D
SP

1632 1216 34 32 32 1024
500

BT 250
LU 300

E
SP

4224 3456 92 64 64 4096
500

BT 250
LU 300

Table 2. Problem classes used in the experiments

https://www.cpubenchmark.net/cpu_list.php
https://github.com/JuliaParallel/MPI.jl/issues/725


(a) BT
class clusters procs comm comp idle lbal

D

grvingt 16 0.14 10.9 - 100%

roazhon8 16 0.33 16.3 - 100%

grvingt 16 3.1 3.5 7.0 50%
roazhon8 16 10.5 0.0 50%

E grvingt 16 5.1 106.9 45.1 50%
roazhon8 16 152.0 0.0 50%

(b) LU
class clusters procs comm comp idle lbal

D

grvingt 64 0.01 1.1 - 100%

roazhon8 36 0.01 2.2 - 100%

grvingt 64 0.37 0.6 0.5 50%
roazhon8 36 1.1 0.0 50%

E grvingt 64 40.4 9.0 15.6 50%
roazhon8 36 24.6 0.0 50%

(c) SP
class clusters procs comm comp idle lbal

D

grvingt 64 0.1 2.5 - 100%

roazhon8 36 0.5 4.8 - 100%

grvingt 64 1.9 1.3 1.2 50%
roazhon8 36 2.4 0.0 50%

E grvingt 64 9.0 13.0 13.9 50%
roazhon8 36 26.9 0.0 50%

(d) SP (cloud offloading)
class clusters procs comm comp idle lbal

D

grvingt 64
11.4

1.0 3.2 33.3%
roazhon8 36 1.8 2.4 33.3%
p2-xlarge 4 4.2 0.0 33.3%

grvingt 64
5.4

1.6 0.18 55.9%
roazhon8 36 1.7 0.07 30.9%
p2-xlarge 4 1.7 0.00 13.2%

E
grvingt 64

21.8
19.7 0.0 58.9%

roazhon8 36 15.4 4.3 31.7%
p2-xlarge 4 18.2 1.5 9.04%

Table 3. Performance measures (per iteration)

Finally, the lbal column informs load balancing, i.e., the distribution of zones
across the target clusters. In Table 3(a-c), they are uniformly distributed across them.

Table 3(d) evaluates two aspects. First, it exemplifies the offloading of computa-
tions on cloud-based clusters by including a third cluster from AWS EC2 provider com-
prising eight p2.xlarge instances as nodes. Second, it demonstrates the impact of loading
balancing across the clusters. For that, at first, the zones are uniformly distributed across
the grvingt, roazhon8, and p2-xlarge clusters. Then, the zones are redistributed across
these clusters by using the performance results to minimize idle time. This methodology
works for class D but fails for E because the uniform distribution does not fit the memory
capacity of the offloading cluster (p2-xlarge). So, for E, we have assigned to the p2-
xlarge cluster the maximum possible number of zones and balanced the number of zones
assigned to grvingt, roazhon8 according to the performance results of Figure 3(c).

4.2. Discussion

The numbers of Table 3 show two sources of multicluster parallelism overhead:

• The high latency of communication between the clusters, especially when they
must communicate through the internet;

• The different processing powers of the clusters result in high idle times without
proper load balancing (zone assignment).

Using comm, we define the inter-zone communication overhead as the percentage
of execution time that the programs waste synchronizing zone faces. For instance, the
minimum communication overhead for single cluster execution has been measured for
LU by less than 1% (negligible), while the maximum has been measured for SP: 4.2%
for grvingt and 8.9% for roazhon8. These measures have been 1.3% and 2.0% for BT. In
a single cluster, all interzone communication is performed through MPI, and the higher
overhead for roazhon8 is justified because grvingt uses a faster interconnection compared
to roazhon8 (see Table 1). In contrast, still for class D, multicluster execution makes



the communication overhead of LU, SP, and BT increase to 25.2%, 44.2%, and 22.8%,
respectively, while, for class E, the values are 62.1%, 25.1%, and 3.2%.

Another important source of overhead in multicluster execution is the lack of load
balancing. Due to the different processing capabilities of clusters, this leads to inefficient
use of computational resources, resulting in significant idle times. For instance, in Table
3, the difference in processing speed between grvingt, roazhon8, and p2.xlarge clusters
may be observed by looking at the comp column for the experimental cases where the
workload (zones) is uniformly distributed across the clusters.

As pointed out in Section 4.1, Table 3(d) presents performance measures by bal-
ancing the number of zones assigned to the three clusters for SP, using the information
of uniformly distributed executions and satisfying memory restrictions of the offloading
cluster (p2.xlarge). For class D, the execution time of SP over the three clusters (comm +
comp + idle) moves from 15.6s to 7.1s, with negligible idle time. For class E, we can not
compare with the execution time of uniform load balancing because it was not possible
to run this case due to memory restrictions of the p2.xlarge cluster, but the maximum idle
time compared to the total execution time is around 10%, less than a half compared with
other results for class E using two clusters (24% for LU, 39% for SP, and 29% for BT).

5. Conclusions

This paper contributes to the problem of deploying multicluster computations in programs
using multilevel parallel programming [De Carvalho Junior and Carneiro 2023], herein
implemented by an extension to the Julia programming language. Such an extension re-
moves the restriction of the built-in Distributed.jl package that only the master process may
create worker processes, so that a hierarchy of processes may be created. Using this, the
master process of a Julia program (driver process) may launch workers (entry processes)
in the access nodes of distinct clusters, which in turn launch nested workers (compute
processes) across the cluster’s nodes. Using MPIClusterManagers, programmers may use
MPI.jl to code tighly-coupled parallel computations involving compute processes in the
same cluster (intra-cluster parallelism) and Distributed.jl to code loosely-coupled compu-
tations between entry processes (inter-cluster parallelism).

The ability to deploy multicluster computations in Julia may cover a number of
relevant use cases, including BigData processing over large geographically distributed
datasets, computation offloading in cloud-based clusters, insufficiency of computational
resources in a single on-premises cluster site (e.g., like in the case study with Grid’5000),
and taking advantage of specific computational resources (e.g., high-end accelerators) that
are not present in the local computation infrastructure.

As a proof-of-concept, we developed a multicluster implementation for the multi-
zone version of NPB in Julia, comprising the SP, BT, and LU simulated applications.
Due to the intensive communication between clusters in these applications, it has been
possible to analyze the overhead of multicluster execution, with special attention to high-
latency communication and load imbalance.

We plan to continue this work by creating new case studies to explore suitable use
cases of multicluster execution in Julia, and to work on proper abstractions to facilitate
multicluster deployment and hierarchical process interactions.



Acknowledgments
The experiments presented in this paper were carried out on the Grid’5000
testbed [Bolze et al. 2006], hosted by INRIA and including several other organizations.

References
Abawajy, J. H. and Dandamudi, S. P. (2003). Parallel Job Scheduling on Multicluster

Computing System. In IEEE Intern. Conference on Cluster Computing, pages 11–18.

Bailey, D. H. and et al. (1991). The NAS Parallel Benchmarks. International Journal of
Supercomputing Applications, 5(3):63–73.

Bezanson, J., Chen, J., Chung, B., Karpinski, S., Shah, V. B., Vitek, J., and Zoubritzky, L.
(2018). Julia: Dynamism and Performance Reconciled by Design. ACM Programming
Languages, 2(OOPSLA).

Bolze, R., Cappello, F., Caron, E., Daydé, M., Desprez, F., Jeannot, E., Jégou, Y., Lanteri,
S., Leduc, J., and Melab, N. e. a. (2006). Grid’5000: a large scale and highly recon-
figurable experimental grid testbed. The International Journal of High Performance
Computing Applications, 20(4):481–494.

Ciccozzi, F., Addazi, L., Asadollah, S. A., Lisper, B., Masud, A. N., and Mubeen, S.
(2022). A Comprehensive Exploration of Languages for Parallel Computing. 55(2).

De Carvalho Junior, F. H. and Carneiro, T. (2023). A Component Model for Multilevel
Parallel Programming. In XXVII Brazilian Symposium on Programming Languages,
SBLP’23, page 25–32, New York, NY, USA. Association for Computer Machinery.

Dongarra, J., Otto, S. W., Snir, M., and Walker, D. (1996). A Message Passing Standard
for MPP and Workstation. Communications of ACM, 39(7):84–90.

Foster, I. and Kesselman, C. (2004). The Grid 2: Blueprint for a New Computing Infras-
tructure. M. Kauffman.

Jayalath, C., Stephen, J., and Eugster, P. (2014). From the Cloud to the Atmosphere:
Running MapReduce across Data Centers. IEEE Trans. on Computers, 63(1):74–87.

Jin, H. and Van der Wijngaart, R. F. (2006). Performance characteristics of the multi-zone
NAS parallel benchmarks. Journal of Parallel and Distributed Computing, 66(5):674–
685. IPDPS’04 Special Issue.

Nardelli, F. Z., Belyakova, J., Pelenitsyn, A., Chung, B., Bezanson, J., and Vitek, J.
(2018). Julia Subtyping: A Rational Reconstruction. Proceedings of the ACM Pro-
gramming Languages, 2.

Pelenitsyn, A., Belyakova, J., Chung, B., Tate, R., and Vitek, J. (2021). Type Stability
in Julia: Avoiding Performance Pathologies in JIT Compilation. ACM Programmming
Languages, 5(OOPSLA).

Wang, L., Tao, J., Marten, H., Streit, A., Khan, S. U., Kolodziej, J., and Chen, D. (2012).
MapReduce Across Distributed Clusters for Data-intensive Applications. In 26th In-
tern. Parallel and Distributed Processing Symposium, pages 2004–2011.

Wu, D., Sakr, S., Zhu, L., and Wu, H. (2017). Towards big data analytics across multiple
clusters. In 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, CCGrid ’17, page 218–227. IEEE Press.


	Introduction
	Background and Related Works
	Multilevel Parallel Programming
	Why Multicluster Computing?
	The Julia Programming Language

	Multilevel Parallel Computing in Julia
	The limitations of Distributed.jl
	MPI.jl: message-passing in Julia
	MPIClusterManagers.jl: Reconciling Distributed.jl and MPI.jl
	A Multilevel Extension to Distributed.jl

	Case Study: Multizone NAS Parallel Benchmarks (NPBMZ.jl)
	Experimental Scenarios and Methodology
	Discussion

	Conclusions

