
A Modular Architecture and a Cost-Model to Estimate the
Overhead of Implementing Confidentiality in Cloud

Computing Environments
Mauro Storch1, Vinı́cius Meyer2, Avelino Zorzo1, Cesar A. F. De Rose1

1Pontifical Catholic University of Rio Grande do Sul (PUCRS) - Porto Alegre, Brazil

2University of Taquari Valley (UNIVATES) - Lajeado, Brazil

mauro.storch@acad.pucrs.br, vinimeyer@univates.br

avelino.zorzo@pucrs.br, cesar.derose@pucrs.br

Abstract. Cloud computing has become increasingly popular among organiza-
tions. As a result, security has become a major concern in the adoption of cloud
computing environments. To ensure confidentiality and prevent data leakage,
organizations have adopted various security measures, including sophisticated
authentication methods and strong cryptography algorithms. However, imple-
menting these measures generates additional overhead that could impact re-
source consumption and performance at user level. This paper proposes a mod-
ular architecture for a full-stack confidentiality cloud and a model to estimate
implementation costs for each component that can be used as a blueprint to im-
plement the needed confidentiality in a particular cloud scenario and estimate
the resulting overhead. It contributes to the literature by enabling cloud admin-
istrators and users to leverage confidentiality based on their security needs and
budget. Preliminary experiments show that our cost model achieves a high level
of accuracy, up to 95%.

1. Introduction
In recent years, the adoption of security mechanisms in public cloud computing environ-
ments has increased significantly, from small businesses to government agencies. Virtual
Private Networks (VPNs) and HTTPS are now standard solutions for ensuring data con-
fidentiality in-transit. For data at-rest, research has focused on embedded security using
standard cryptography algorithms, while ciphering techniques have been developed for
data on-processing [Kumbhakar et al. 2023].

Adding security layers to a software stack can significantly impact both software
performance and resource allocation, particularly in cases where the confidentiality prin-
ciple is a key concern. For example, when storing encrypted data in the cloud, cryptogra-
phy must be adopted throughout the persistence flow, resulting in additional overhead for
encrypting and deciphering data during access. Similarly, encrypting data during trans-
mission through the cloud’s networks also incurs a cost, as all transmitted data must be
encrypted before being sent and deciphered after being received on the destination host.
Furthermore, ensuring confidentiality during data processing is critical for increasing pri-
vacy levels and preventing data leakage, such as Cross-VM attacks that exploit in-memory
data leakage in shared tenancies. To address these challenges, techniques such as query-
ing over encrypted databases, outsourcing cryptography computations, and homomorphic



encryption have been developed to process data without disclosing it. However, imple-
menting these techniques also adds overhead to overall cloud allocation. As such, it is
essential to estimate the associated costs of adopting confidentiality in a computational
environment, particularly when resources are shared, such as in public cloud providers.

This work focuses on estimating the impact of implementing data confidentiality
in public cloud environments by examining the three fundamental components of a cloud
stack: communication, storage, and processing. We propose a full-stack modular architec-
ture that outlines the placement of security components to support confidentiality during
data transmission, storage, and processing. To estimate the performance impact of adding
security layers, we conduct a comprehensive analysis of the CPU overheads associated
with the confidentiality principle. Our evaluation includes factors such as Virtual Private
Networks for encrypting data in-transit, the overhead privacy costs of storage systems
such as Cryptography File Systems [Blaze 1993], and the various complexities involved
in processing encrypted databases, from hash comparisons to homomorphic operations.
We model these components separately and use an OLTP (online transaction processing)
benchmark (TPC-C) to reproduce real-world cloud usage scenarios. Finally, we use the
observed variables to introduce a cost-model that predicts the overhead of implementing
confidentiality foe each security layer of a cloud environment.

This paper is organized as follows. Section 2 presents related work regarding
security and confidentiality overhead evaluation in computational systems. Section 3 pro-
poses proposes a modular architecture for a full-stack confidentiality cloud. Section 4
presents the formal model for overhead estimation as a composed formula, built for com-
munication, storage, and processing overhead. Section 5 describes both the validation of
the intermediary models and the evaluation of the security overhead model using an OLTP
benchmark. Finally, the conclusion and future work are discussed in Section 6.

2. Related Work

Despite the advantages of cloud computing environments, security concerns are pointed
out as the main reason for companies with privacy requirements to avoid its adoption.
This motivates security studies to consider cloud characteristics including multi-tenancy
scenarios, where different users share the same virtualization stack to run their Vir-
tual Machines (VMs). This scenario is susceptible to information leakage in several
ways, such as cross-VM attacks [Giechaskiel et al. 2022] and the recent vulnerabilities
found in processor widely used in cloud computing providers [Lipp et al. 2018]. In ad-
dition, many other threats related to communication [Vashishtha et al. 2023] and stor-
age [Venkatesan and Chitra 2022], make managers consider cloud environments to be an
unsafe solution. The issues and challenges of cloud computing security [Noor et al. 2016]
have been investigated by researchers taking into account its repercussions for communi-
cation, storage, and processing of user’s data.

These three main elements are evaluated in several works for building cloud in-
stances with the aim of supporting confidentiality. To increase security in a computational
environment, including clouds, some solutions apply hardware-based security. Crypto-
graphic co-processors are used to support confidentiality during the runtime phase of an
application. These techniques are also applied to the virtualization layer to guarantee
the traceability of users’ VMs. Such solutions using specialized hardware components



are based on a model called Trusted Computing [Group 2017]. However, the utilization
of such hardware components demands physical modification of data centers, which can
increase operating costs of cloud providers.

On the other hand, software-based architectures for confidentiality in cloud com-
puting mainly cover issues and risks related to data in-transit and at-rest. Besides the
well-known techniques for supporting confidentiality for communication using Virtual
Private Networks and IPSec, the solutions for storage use encryption and decryption of
data during the persistence flow. Such approach uses a single key, since solutions are
based on symmetric cryptography algorithms, which is considered a single point of fail-
ure in case of key leakage. In order to guarantee trustful key distribution, some solutions
do validation of operating system’s images before launching VMs, ensuring they are not
modified to allow key leakage [Paladi et al. 2017].

Regarding performance, some strategies do data classification and adopt cryp-
tography for sensitive chunks only, reducing the overall impact of the encryption pro-
cess [Tang et al. 2022]. Software-based solutions that apply confidentiality on the on-
processing phase, have developed some novel cryptography techniques, such as Search-
able Symmetric Encryption Schema (SSE) [Poh et al. 2017] and Homomorphic Encryp-
tion [Gentry 2009]. But just few works have introduced these concepts in cloud comput-
ing environments [Ali et al. 2024, Lopez et al. 2024]. Although these works support high
protection level for sensitive data, they do not support confidentiality in communication,
storage, and processing simultaneously, nor evaluate the resource allocation impact of
adding cryptography solutions in a cloud environment, the two main contributions of our
work.

3. Full-Stack Confidentiality Architecture
Confidentiality is a necessity for users with sensitive data in cloud computing environ-
ments, especially when using public providers. To be effective, a cloud computing ar-
chitecture needs to consider confidentiality mechanisms for data in-transit, at-rest, and
on-processing. Although some works in the literature have studied confidentiality in this
domain, they lack in applying those mechanisms for all phases of the data workflow. Con-
sidering this scenario, it would be essential to support data confidentiality and to measure
the impact of specialized mechanisms for communication, storage, and processing axes
either isolated or combined, based on users’ privacy requirements.

Security costs of cloud deployment are measured from different perspectives ac-
cording to the chosen model: Infrastructure-as-a-Service (IaaS), Platform-as-a-Service
(PaaS), or Software-as-a-Service (SaaS). For the IaaS model, the security should be man-
aged and deployed by the cloud users. Users are responsible for the cryptography and
authentication mechanisms that will consume CPU cycles in their rented Virtual Ma-
chines. For PaaS and SaaS, the cloud provider delivers security as part of services such
as databases, e-mail services, and e-commerce systems. In both cases, measuring the se-
curity overhead impact can help both users and providers to estimate resource allocation,
availability, and costs.

On one hand, for PaaS or SaaS models, cloud providers offer security mechanisms
like file encryption and private networks. Those services are also known as Security-as-a-
Service (SECaaS) [Furfaro et al. 2014], where security is the responsibility of the cloud



provider. However, the user has lower control of the chosen algorithms and the key man-
agement. On the other hand, in the IaaS model, the user is responsible for deploying
the security mechanisms to communicate, store and also process data. In such scenarios,
security levels could be established following companies’ security requirements. Both
scenarios apply similar techniques to protect data, especially when supporting confiden-
tiality through cryptography algorithms.

To provide confidentiality in the cloud, it is necessary to start thinking about the
cloud as a computational system that is composed of data processing, storage, and com-
munication axes. From that perspective, this work considers exploring the costs of the
confidentiality principle in each of those axes.

Network Storage Processing

Con�dentiality (Cryptography Algorithms, Key Management, etc)

Physical Infrastructure

Infrastructure-as-a-Service

Network-as-a-Service Storage-as-a-Service Processing-as-a-Service

Communication

(VPN, HTTPS...)

Storage

Secure Object

Storing, CFS...

Processing
Quering Over Encrypted

Database, Homomorphic

Encryption...

Full-Stack Con�dentiality

On-Transit/On-Rest Con�dentiality

Figure 1. A modular confidentiality architecture for full-stack cloud environ-
ments.

Figure 1 shows a cloud architecture composed of services from a provider, which
are managed by a confidentiality layer offering security services to cloud users. When
using IaaS model, the deployment of this layer is the responsibility of cloud users. For
PaaS and SaaS, this layer should be supported by cloud providers. The components can be
combined to achieve a security level according to users’ needs, i.e. supporting in-transit
and at-rest confidentiality when choosing the communication and storage axes. A Full-
Stack confidentiality design consists of adding confidentiality in all software operations
from communicating to storing and processing. These three axes of a confidentiality cloud
have independent implementations as follows.

The first axis considered is the communication among cloud nodes, internally and
externally. To build confidentiality communication in the cloud, managers commonly cre-
ate channels based on Virtual Private Networks, such as HTTPS and IPSec. The channels
apply authentication protocols (using a password or digital certificates) and cryptographic
algorithms. These algorithms can generate overload in the system, based on the chosen
algorithm. Most cloud providers support confidentiality for communication as a standard
service; however, in the IaaS renting model, the user is responsible for the security of
communications among nodes, even internally in the cloud environment.

The second axis to be considered in a cloud environment is the storage layer used
for data persistence. Besides the novel techniques proposed in the literature, one can also
consider adopting Cryptographic File Systems (CFS) for data storage in public clouds.
This technique, initially proposed by Blaze [Blaze 1993] in the ’90s, consists of encrypt-



ing and deciphering data during the persistence flow, transparently supporting the con-
fidentiality principle. Regarding feasibility, this technique can support the adoption of a
strong algorithm with low impact on systems’ performance. Similarly, the Object-Storage
services provided by cloud software, such as OpenStack Swift 1 and AWS S3 2, have in-
troduced an encryption layer to support privacy for stored data.

The third axis is related to the processing layer in a cloud environment, specifically
related to the runtime phase of applications. In the last few years, researchers have been
proposing solutions to add confidentiality during the instruction execution inside the pro-
cessors. The embedded cryptography instructions of Intel processors allow (de)ciphering
data using hardware instructions. Those instructions handle only the registers’ data, keep-
ing data stored in the main memory encrypted. Although it could prevent data leakage
from some cross-VM attacks by exploring the shared memory, the data would be in plain
text in some manner inside the chip, theoretically allowing some leakage. Intel also in-
troduced in some processors the SGX instructions, which created a sandbox for execut-
ing sensitive parts of applications. However, the application should be modified to add
those instructions which add some overhead in its execution [Brenner et al. 2016]. Be-
sides hardware-based solutions, to support confidentiality in the processing phase, it is
also possible to consider algorithms that can handle encrypted data, such as operations
over encrypted databases and homomorphic encryption. These techniques would ensure
the computation of data without deciphering it entirely, and therefore avoid information
leakage. The encrypted database querying technique [Arasu et al. 2014] considers han-
dling enciphered data in the same manner as a Database Management System. Most
encrypted databases also support homomorphic encryption for some operations such as
SUM queries (SQL queries using SUM operations).

On top of such secure architecture, users’ applications could leverage the benefits
of cloud computing, such as resource elasticity and the pay-as-you-go fashion, without
disclosing sensitive data [Meyer et al. 2022, Meyer et al. 2021]. These three axes can co-
exist, increasing the security level and avoiding information leakage of both application
and data. Nowadays, public cloud providers already offer support to confidentiality for
communication and storage in their IaaS products. Additionally, they have also been
adopting security standards to support companies’ PLAs (Privacy Level Agreements)
in PaaS and SaaS products. Concerning feasibility, it is important for both users and
providers to understand the impact of adding privacy in this environment. Each axis
should be considered independently to produce a formulation to estimate the overhead
added by the confidentiality mechanisms.

4. Modeling Cloud’s Confidentiality Costs

As stated in previous sections, the cloud architecture can be seen as a computational
system built over the axes of communication, storage, and processing. The addition of
confidentiality in those axes can be evaluated in isolated models, allowing both users
and providers to decide which ones are part of their stack and to understand the costs of
supporting a required security level. On one hand, the user could be a company renting
resources in a public cloud environment following the IaaS model, where it is necessary

1http://www.openstack.org/
2https://aws.amazon.com/en/s3/



to calculate the security impact in rented resources. On the other hand, the provider could
be a cloud player (AWS, Azure) who offers confidentiality in their services in PaaS or
SaaS models, where it is necessary to calculate the total costs of the security service.

4.1. Network Modeling

Network security in cloud computing environments considers communication among ser-
vices, placed either inside or outside the cloud, for the models IaaS, PaaS, and SaaS. This
communication is commonly established through the Internet, and the security require-
ments should be considered for compliance with companies’ data exposure rules.

Regarding the application of confidentiality, tools such as IPSec and other VPN
implementations apply cryptography algorithms for ciphering the payload of the protocol
stack. The cipher used for this process is based on symmetric algorithms, which use a
single key for encrypting data before sending and then decrypting it after receiving. This
key is exchanged once, at the beginning of the communication during the authentication
process. Some implementation also considers recreating the communication key using
time intervals or communication events, increasing security by forcing an attacker to re-
calculate the target key. However, the overhead of these events is not significant compared
to that of the encryption process.

Based on the data encryption, one can first define a formula considering the CPU
time allocation for the cryptography spread over the communication time for a single
cloud node as:

N(d) =
Ctime(d)

T (d)
(1)

where C is the ciphering time consumption for a given d data amount, and T is the total
transmission time. Regarding specific aspects of encrypting and sending, receiving, and
deciphering data in a cloud node, the CPU time for each cryptography process needs to
be considered in different perspectives for a specific amount of data, divided into sent and
received amounts. So the formula could be rewritten as:

N(s,r,bs,br) =
E × s+D × r

s/bs+ r/br
(2)

where E and D give the weight of cryptography for a certain data volume for encrypting
and deciphering, respectively applied to each data amount. The sent and received vol-
umes are defined by s and r, respectively. The total time is given, then, considering the
bandwidth available per flow, expressed by bs and br. This formula produces a linear
relationship between data volume and CPU allocation, and the weights need to be fitted
according to the chosen algorithm.

Based on an application trace, it is possible to produce the values for fitting the
formula. It is necessary to calculate the data volume transferred in a single node, the
node’s network capacity in terms of bandwidth, and the algorithm cost for encrypting (E)
and deciphering (D) a certain data amount.

4.2. Storage Modeling

To support the confidentiality of data in a cloud environment during their at-rest stage,
the persistence layer should also support the use of both authentication and cryptography



tools. Considering the IaaS cloud service model, in most public clouds, the VM’s vir-
tual disks are stored in shared spaces (i.e. managed by Linux Volume Manager, LVM),
and data ciphering is often deployed by users. For PaaS and SaaS, providers support an
encryption mechanism using standard cryptography algorithms, e.g. AES. In such imple-
mentation, data should be ciphered in every disk access, encrypting before writing and
deciphering after reading.

Similarly to network modeling, there is also a linear relation considering the data
volume persisted and the CPU allocation by the cryptography mechanism adopted in the
persistence flow, such as in Cryptography File Systems. This relation is also observed in
the function of the bandwidth capacity of the I/O subsystem, like in network capacity. In
doing so, the formula to model the storage can be written as:

S(w,r,TPw,TPr) =
E × w +D × r

w × TPw + r × TPr

(3)

where w and r are total data written and read, respectively, and E and D are the weights
for estimating the CPU time of encrypting and deciphering an amount of data. These
values represent the time consumption cost for encrypting and decrypting a certain data
amount, respectively. An essential aspect to be noticed in this model is the TP (through-
put) variables that should consider the IO subsystem capacity, such as iowait Operating
Systems variables. In [Storch and Rose 2017], the authors presented a detailed evaluation
of the memory impact within the IO sub-system when using cryptographic file systems.

To apply this modeling, the application’s storage data access should be traced con-
cerning both reading and writing volumes. It is also necessary to measure the throughput
capacity of the IO subsystem and the CPU time for the cryptography algorithm.

4.3. Processing Modeling

Even if the communication is made through a private tunnel, and data stored in the cloud
is ciphered, it is also necessary to adopt privacy mechanisms during the processing phase
since the cloud environment is a public and shared environment. Possible attacks in-
clude the cross-VM attack, which exploits cache memory shared among Virtual Ma-
chines. For instance, Querying over Encrypted Databases has gained attention as a so-
lution for low transition issues since it follows structures such as the Relational Databases
Systems [Xu et al. 2017] and uses standard SQL instructions. This solution handles data
without disclosing it, using a set of complex operations. Unlike the linearity observed in
communicating and storing models, the complexity of each operation for the processing
axis needs to be considered separately, which demands the software’s tracking to estimate
the overall impact of privacy in the processing phase. For instance, a Select equality1 op-
eration is far cheaper than a Select sum2 operation since the first one computes simple hash
comparisons, while the second one requires Homomorphic operations [Popa et al. 2011].

The diversity of operations demands a formulation that considers each of them in
isolation. The dataset is also observed per operation. The cost of processing data with
privacy for this scenario is based on mapping the application’s operations that can be
replaced or wrapped by a secure instruction. For instance, the SQL instruction (insert,

1A SQL select with a where clause with an equals operation
2A SQL select with a SUM function adding values from a column



update, delete, select) can be replaced when using an encrypted database. The overhead
is then evaluated per operation and then summarized. This cost can be modeled as:

P(O,d) = O1(d) +O2(d) + · · ·+On(d)P(O,d) =
n∑

i=0

Oi(d) (4)

where n is the number of operations, and O is a matrix of cost functions over a certain dataset d.
Every replaced operation should be mapped in the O matrix, and their costs are then added to P ,
which represents the overhead of processing with confidentiality.

4.4. Full-Stack Modeling

The three formulas could be applied independently, according to the required mechanisms adopted
in the scenario. They could also be combined for scenarios, using two or three of the axes simul-
taneously. For cloud computing applications, one may consider, at least, combining the commu-
nication axis with secure storage as:

C(s,r,bs,br,w,r,TPw,TPr) =

N(s, r, bs, br) + S(w, r, TPw, TPr)
(5)

and finally adding secure processing costs as:

C(s,r,bs,br,TPw,TPr,O) = β0 + β1N(s, r, bs, br)+

β2S(s, r, TPw, TPr) + β3P (O, s+ r)
(6)

where O is the list of encrypted operations, which is processed over a dataset. The three formulas
presented in this section aim to explain the CPU overhead according to the nature of the cryp-
tography mechanism adopted for each component in its respective axis. The network and storage
axes use standard cryptography algorithms, most of them based on symmetric algorithms. As
mentioned, these algorithms impact the overall system linearly, according to the data volume that
is encrypted and deciphered. The processing axis also uses cryptography algorithms, i.e. homo-
morphic encryption, but the data volume is not a single determinant for estimating the overhead
since the complexity of the secure processing phase is variable.

This modeling evaluation and its applicability are presented in the next section for an
OLTP benchmark running in a cloud environment.

5. Model Evaluation
The nature of the two kinds of algorithms (standard cryptography and processing encryption)
drives the experiments that are demanded to produce an independent evaluation of each axis.

The model evaluation considers a benchmark execution over a cloud environment com-
posed of VMs that communicate through a local network, with storage provided by the virtualiza-
tion layer, in this case using Xen Server 6.2. The objective of this evaluation includes mapping
the overhead added by communicating through a VPN, storing data in the cryptographic file sys-
tem, and processing data into an encrypted relational database. After evaluating the network and
storage models independently, the CPU load added by the cryptography mechanism is used for
fitting a linear regression to predict the On-transit/At-Rest Confidentiality scenario depicted in
Figure 1. Then, these values are used in combination within the processing axis model to evaluate
the Full-Stack Confidentiality scenario.



The benchmark is a TPC-C 3 implementation producing a workload from one VM over
a standard MySQL instance hosted into the second VM. For each execution, the database is re-
populated, and both the communication and storage data volumes are profiled, as well as the
CPU load percentages of the database process and the entire node. These metrics are produced
in four execution scenarios: (1) without any cryptography, (2) with only Virtual Private Network
(VPN), (3) with only the Cryptography File System (CFS), and (4) with both VPN and CFS.
These four scenarios are also stressed using the benchmark, where the executions are from 1 to 10
simultaneous connections.

Figure 2. CPU load comparison among cryptography adoption modes: Plain,
VPN-only, CFS-only, VPN+CFS

Figure 2 shows an accumulated CPU load for the entire node but discards the CPU load of
the database process. These experiments aim to isolate the application and external mechanisms
added to the host. It is possible to observe that with the increasing of simultaneous connections,
the CPU load for scenario (1) plain does not have a significant difference. Otherwise, when adding
some privacy mechanisms to the scenario, the CPU load was affected, and it is also possible to
observe a linear relation within the data volume processed by the benchmark.

Regarding the fact that each experiment has different data volumes, it is possible to ex-
plain the CPU load as a function of the data volume as mentioned in Equations 2 and 3. Next, a
multi-linear regression was calculated for Scenarios (2) VPN and (3) CFS with the aim to predict
Scenario (4) VPN+CFS. For network overhead regression, the data volumes sent and received are
added up to explain the extra CPU time consumption in communicating with privacy. For storage
overhead regression, the volume written and read is then added up to explain the additional CPU
load added by the cryptographic layer in the persistence flow. The independent regressions achieve
an R-squared within 0.9991 and 0.9982, respectively. This evaluation drives the demonstration of
the accuracy of Equation 5, where the predictions based on network and storage are added up to
achieve the prediction of combined techniques.

Figure 3 shows the CPU overhead prediction for Scenario (4) VPN+CFS, based on the
regression over data volume and CPU consumption of Scenarios (2) VPN and (3) CFS. The values
demonstrate the application of Equation 5, with an accuracy close to 92% considering unstressed
scenarios, where the CPU idle variable is higher than 20%, and an accuracy close to 95.7% for
stressed cases, when CPU idle is lower than 15%, which was within the standard deviation.

After this validation, the same set of experiments for the four scenarios earlier described

3https://www.tpc.org/tpcc/



Figure 3. CPU Load prediction for TPC-C benchmark using Cryptography File
Systems and Virtual Private Networks.

Figure 4. CPU Load prediction for TPC-C benchmark running in virtual machines
with different memory sizes.

was reproduced for different memory sizes in the VM, with the aim of re-validating the relation of
data volume and CPU load. The same fitted values obtained with the multi-linear regression were
used to predict the CPU overhead. The predicted values for different memory size setups achieved
accuracy close to 94%. Figure 4 shows the comparison for these experiments.

Following the validation of the modeling, Equation 4 presents a sum of the overhead of
the different complexities for encrypted operations. The application of this formula requires a
profile of the cloud software. For these experiments, the set of operations executed by the TPC-
C benchmark was mapped, and the overhead for each one was calculated according to CryptDB
evaluation [Popa et al. 2011].

Besides the overhead added by the techniques of Querying over Encrypted Databases,
the CryptDB also changes the data volume persisted in the server side. This issue increases the
database volume by 4.5 times, which demands extra CPU for persisting it into a Cryptography File
System. However, no data volume increase is noticed in the communication.

To demonstrate the application of Equations 4 and 6, the CPU overhead is re-calculated in
a scenario where the CryptDB overhead reduces the number of processed operations. By reducing
the number of operations, a multi-linear function is calculated to achieve new values for reading
and writing variables based on data volumes considering a CFS. These new values are finally used
to recalculate the CPU overhead. Figure 5 shows the predicted overhead of VPN and CFS when
the CryptDB is adopted in the environment. It is also possible to observe a reduction in the number
of operations of up to 10% in average.



Figure 5. CPU Load overhead recalculated in function of CryptDB overhead and
its increased persisted data volume.

6. Conclusion and Future Work
In recent years, companies and government agencies have increased their security demands to
achieve privacy in cloud computing environments. However, the security mechanisms that support
the confidentiality principle are commonly not part of either software sizing estimations or cloud
pricing. This may lead to under-provisioning and, consequentially, performance loss at user-level
resulting in additional investments to maintain the service. A better understanding of the trade-offs
involved when privacy techniques and mechanisms are used will help users and providers to build
tools for estimating the extra overhead of adding confidentiality to the communication, storage,
and processing of sensitive data in cloud environments. Both the modular full-stack architecture
and the cost-model proposed in this paper are a first step in this direction, and this work already
considers the data volume, both transferred and persisted in the cloud, as well as the diverse
complexity of private operations, such as the homomorphic operations, computed inside virtual
machines in public clouds. The evaluation presented in this paper compares the execution of a
database benchmark with and without privacy mechanisms, which includes Cryptography File
Systems and Virtual Private Networks, and the model could predict the confidentiality overhead
with an accuracy close to 95%, enabling cloud administrators and users to leverage confidentiality
based on their security needs and budget constrains. In future work, we will expand the scope
of our experiments, validating the proposed cost model with applications from other domains,
like batch processing with Hadoop1, as well as streaming and signal processing applications, like
Flink2.

References
Ali, S., Wadho, S. A., Yichiet, A., Gan, M. L., and Lee, C. K. (2024). Advancing cloud security: Unveiling

the protective potential of homomorphic secret sharing in secure cloud computing. Egyptian Informatics
Journal, 27:100519.

Arasu, A., Eguro, K., Kaushik, R., and Ramamurthy, R. (2014). Querying encrypted data. In Proceedings
of the 2014 ACM SIGMOD International Conference on Management of Data, SIGMOD ’14, pages
1259–1261, New York, NY, USA. ACM.

Blaze, M. (1993). A cryptographic file system for unix. In Proceedings of the 1st ACM Conference on
Computer and Communications Security, CCS ’93, pages 9–16, New York, NY, USA. ACM.

1http://hadoop.apache.org
2https://flink.apache.org



Brenner, S., Wulf, C., Goltzsche, D., Weichbrodt, N., Lorenz, M., Fetzer, C., Pietzuch, P., and Kapitza, R.
(2016). Securekeeper: Confidential zookeeper using intel sgx. In Proceedings of the 17th International
Middleware Conference, Middleware ’16, pages 14:1–14:13, New York, NY, USA. ACM.

Furfaro, A., Garro, A., and Tundis, A. (2014). Towards security as a service: On the modeling of security
services for cloud computing. In 2014 Int. Carnahan Conf. on Sec. Tech., pages 1–6.

Gentry, C. (2009). A fully homomorphic encryption scheme. PhD thesis, Stanford University.

Giechaskiel, I., Tian, S., and Szefer, J. (2022). Cross-vm covert- and side-channel attacks in cloud fpgas.
ACM Trans. Reconfigurable Technol. Syst., 16(1).

Group, T. C. (2017). Trusted computing.

Kumbhakar, D., Sanyal, K., and Karforma, S. (2023). An optimal and efficient data security technique
through crypto-stegano for e-commerce. Multimedia Tools and Applic., 82(14).

Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Mangard, S., Kocher, P., Genkin, D., Yarom, Y.,
and Hamburg, M. (2018). Meltdown. ArXiv e-prints.

Lopez, L. J. R., Millan Mayorga, D., Martinez Poveda, L. H., Amaya, A. F. C., and Rojas Reales, W. (2024).
Hybrid architectures used in the protection of large healthcare records based on cloud and blockchain
integration: A review. Computers, 13(6).

Meyer, V., da Silva, M. L., Kirchoff, D. F., and De Rose, C. A. (2022). Iada: A dynamic interference-
aware cloud scheduling architecture for latency-sensitive workloads. Journal of Systems and Software,
194:111491.

Meyer, V., Kirchoff, D. F., Da Silva, M. L., and De Rose, C. A. (2021). Ml-driven classification scheme for
dynamic interference-aware resource scheduling in cloud infrastructures. Journal of Systems Architec-
ture, 116:102064.

Noor, T. H., Sheng, Q. Z., Maamar, Z., and Zeadally, S. (2016). Managing trust in the cloud: State of the
art and research challenges. Computer, 49(2):34–45.

Paladi, N., Gehrmann, C., and Michalas, A. (2017). Providing user security guarantees in public infrastruc-
ture clouds. IEEE Transactions on Cloud Computing, PP(99):1–1.

Poh, G. S., Chin, J.-J., Yau, W.-C., Choo, K.-K. R., and Mohamad, M. S. (2017). Searchable symmetric
encryption: Designs and challenges. ACM Comput. Surv., 50(3):40:1–40:37.

Popa, R. A., Zeldovich, N., and Balakrishnan, H. (2011). Cryptdb: A practical encrypted relational dbms.
Technical report, MIT Libraries.

Storch, M. and Rose, C. A. F. D. (2017). Cloud storage cost modeling for cryptographic file systems. In
2017 25th Euromicro International Conference on Parallel, Distributed and Network-based Processing
(PDP), pages 9–14.

Tang, X., Liu, Z., Shao, Y., and Di, H. (2022). Side channel attack resistant cross-user generalized dedu-
plication for cloud storage. In ICC 2022 - IEEE International Conference on communications, pages
998–1003.

Vashishtha, L. K., Singh, A. P., and Chatterjee, K. (2023). Hidm: A hybrid intrusion detection model for
cloud based systems. Wireless Personal Communications, 128(4):2637–2666.

Venkatesan, B. and Chitra, S. (2022). Retracted: An enhance the data security performance using an optimal
cloud network security for big data cloud framework. International Journal of Communication Systems,
35(16):e4854.

Xu, G., Ren, Y., Li, H., Liu, D., Dai, Y., and Yang, K. (2017). Cryptmdb: A practical encrypted mongodb
over big data. In 2017 IEEE International Conference on Communications (ICC), pages 1–6.


