
Performance Evaluation of Dense Linear Algebra Kernels
using Chameleon and StarPU on AWS

Vinicius Garcia Pinto1, João V. F. Lima2, Vanderlei Munhoz3, Daniel Cordeiro4,
Emilio Francesquini5, Márcio Castro3

1Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil

2Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil

3Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil

4University of São Paulo (USP), São Paulo, SP, Brazil

5Federal University of ABC (UFABC), Santo André, SP, Brazil

vinicius.pinto@furg.br,jvlima@inf.ufsm.br,vanderlei.filho@proton.me,

daniel.cordeiro@usp.br,e.francesquini@ufabc.edu.br,marcio.castro@ufsc.br

Abstract. Due to recent advances and investments in cloud computing, public
cloud providers now offer GPU-accelerated and compute-optimized Virtual Ma-
chine (VM) instances, allowing researchers to execute parallel workloads in vir-
tual heterogeneous clusters in the cloud. This paper evaluates the performance
and monetary costs of running dense linear algebra algorithms extracted from
the Chameleon package implemented using StarPU on Amazon Elastic Compute
Cloud (EC2) instances. We evaluated these metrics with a single powerful/costly
instance with four NVIDIA GPUs (fat node) and with a cluster of five less pow-
erful/cheaper instances with a single NVIDIA GPU in each node. Our results
showed that most of the linear algebra algorithms achieved better performance
and lower monetary costs on the fat node scenario even with one less GPU.

1. Introduction
Task-based programming interfaces offer software developers a paradigm where the com-
putation is decomposed into smaller units of work called tasks. Tasks represent individual
units of work that can be executed concurrently and independently, thus allowing parallel
execution of code. In this model, developers specify tasks and their dependencies, but
they do not explicitly manage threads or parallel execution. Instead, a runtime system or
scheduler dynamically manages the execution of tasks, mapping them to available com-
putational resources such as CPU cores, GPU accelerators, FPGAs, or distributed nodes.

StarPU [Augonnet et al. 2010] is one of these runtime systems. In particular, us-
ing StarPU, a developer can provide different implementations for the same task (e.g., one
for CPUs, other for GPUs) and let the runtime environment automatically select the best
implementation based on the computing environment and resource availability. This is
done in a way that aims at performance optimization. For instance, the runtime might em-
ploy intricate resource selection strategies to minimize network transfers between nodes
in a shared-memory environment. More importantly, this is done to isolate the developer



from the details of the target computing architecture, allowing for the creation of simpler
and more readily scalable applications.

Recently, significant progress and investments in Cloud Computing have resulted
in a notable expansion of services provided by public cloud providers. One of the key ad-
vancements has been the introduction of GPU-accelerated and compute-optimized Virtual
Machine (VM) instances. These specialized VM configurations offer researchers and de-
velopers the ability to execute parallel workloads in virtual environments, giving them the
illusion of physical on-premise heterogeneous computing hardware. This development
marks an important shift in Cloud Computing capabilities, enabling users to leverage the
power of GPUs and optimized compute resources for a wide range of applications and
tasks [Netto et al. 2018].

Understanding the performance and cost dynamics of executing task-based ap-
plications on Cloud Computing platforms is crucial since it allows organizations and
developers to make more informed decisions about resource allocation and budgeting.
By comprehensively evaluating the trade-offs between performance and monetary costs
across different deployment scenarios, users can optimize their Cloud Computing strate-
gies to strike a good balance between efficiency/makespan constraints and available bud-
get. In particular, dense linear algebra applications feature CPU and/or memory work-
loads and it is unclear how they will behave when executed in public Cloud Computing
infrastructures, specially when executed on multiple nodes interconnected by a network.
Resources offered by public cloud providers are usually shared among different users and
high-performance network interconnections between computing nodes may not be avail-
able in some public cloud providers.

In this paper, we show an evaluation of the performance and associated financial
costs of executing dense linear algebra algorithms extracted from a widely used linear al-
gebra library (Chameleon [Agullo et al. 2012]) with a state-of-the-art task-based runtime
environment (StarPU). Experiments were executed on Amazon Elastic Compute Cloud
(EC2) instances. The evaluation was performed in two different scenarios: (i) using a sin-
gle high-powered (yet costly) instance equipped with four NVIDIA GPUs; (ii) employing
a cluster configuration consisting of five less potent (but more economical) instances, each
equipped with a single NVIDIA GPU. Experimental results showed that, for most of the
dense linear algebra applications considered in this study, the first configuration yielded
superior performance compared to the latter configuration and also it incurred lower fi-
nancial costs than the clustered setup (even if it has one GPU less).

These results suggest that while distributed configurations may offer scalability
and some degree of fault tolerance in some very specific cases, they may not always pro-
vide optimal performance or minimize financial cost, especially for compute-intensive
tasks like dense linear algebra computations. Similarly, they also suggest that consolida-
tion of tasks in a single powerful node, when feasible, considering resource constraints,
might be desirable. Finally, they indicate that the current state-of-the-art task-based run-
time libraries employed in the High Performance Computing (HPC) domain lack specific
optimizations to take full advantage of virtualized clusters built on top Cloud Computing
infrastructures.



The remainder of this paper is organized as follows. Section 2 outlines the con-
cepts used in this work. Then, in Section 3, we detail our experimental methodology
followed by the experimental results in Section 4. Section 5 lists related work, and Sec-
tion 6 concludes this work. A publicly available companion at https://gitlab.
com/viniciusvgp/companion-chameleon-aws-2024.git includes the ex-
periments raw data.

2. Background

In this section, we first give a brief overview of the task-based runtime system and the
dense linear algebra library used in this paper (Section 2.1). Then, we present some
details about the cloud infrastructure employed in this paper (Section 2.2).

2.1. StarPU and Chameleon

StarPU [Augonnet et al. 2010] is a framework written in C for task-based programming
on hybrid CPU–GPU platforms. Applications using StarPU define tasks, i.e., wrappers
for functions whose parameters are flagged as read, write, or readwrite. To tar-
get different hardware architectures, the programmer can provide multiple implementa-
tions for the same task, e.g., pure sequential C, C with SSE/AVX extensions, CUDA and
OpenCL. At runtime, StarPU will dynamically choose the best task implementation to
run, considering resource availability, load distribution, and required data copies. StarPU
transparently takes care of required data copies on multicore platforms enhanced with
GPUs, allocating/deallocating GPU memory, deciding the appropriate number of threads
based on the available hardware, and overlapping transfers with computation through data
prefetching. On cluster platforms equipped with GPUs, StarPU relies on MPI by com-
bining usual MPI calls as Send and Recv with StarPU data management ones. The set
of created tasks is unrolled into a Directed Acyclic Graph (DAG) by using creation order
and access mode on each parameter. StarPU entirely manages intra-node load balancing
among threads by using several scheduling policies, while inter-node one (among MPI
processes) relies on static DAG partition based on application runtime parameters.

Chameleon [Agullo et al. 2012] is a framework written in C that provides rou-
tines to solve dense general systems of linear equations, symmetric positive definite
systems of linear equations, and linear least squares problems using LU, Cholesky,
QR, and LQ factorizations. At a higher level, Chameleon is based on PLASMA al-
gorithms [Buttari et al. 2009] and relies on runtime systems such as StarPU, PaRSEC,
or OpenMP to dynamically schedule its tasks, while the inner implementation of each
task uses classical BLAS and LAPACK routines. This paper uses Chameleon with the
StarPU runtime system to execute linear algebra algorithms on multiple heterogeneous
(CPU+GPU) nodes in AWS.

Currently, StarPU and Chameleon do not feature any optimization targeting Cloud
Computing VMs to enable efficient, economical, and resource-saving execution of paral-
lel applications in the cloud. In this paper, we evaluate how they perform on AWS both in
terms of performance and monetary costs.

https://gitlab.com/viniciusvgp/companion-chameleon-aws-2024.git
https://gitlab.com/viniciusvgp/companion-chameleon-aws-2024.git


2.2. Amazon Web Services (AWS)

Public clouds are designed to be accessible to anyone via the Internet without needing
long-term contracts or direct interaction with the provider. Three types of services tradi-
tionally describe their service model. Infrastructure as a Service (IaaS) refers to online
services that provide APIs for users to spawn and manage compute infrastructure, includ-
ing low-level details such as network, storage, and backups. The user often can choose the
computing capacity of the infrastructure to be rented—typically in terms of virtual CPUs
(vCPUs)—and can also configure other details such as hypervisor types, pre-installed OS,
accelerators, and more. Platform as a Service (PaaS) refers to services that the user can
use to create and deploy custom software applications using a configurable environment
hosted by the cloud provider. Runtime, middleware, and software features are abstracted
from the user and managed by the provider. Finally, Software as a Service (SaaS) are
ready-to-use software applications with specific purposes that the provider typically of-
fers through APIs, which users can use directly in their applications.

AWS is one of the most popular public cloud providers. It maintains physical re-
sources in several geographically dispersed data centers, giving users access to computing
resources in the form of instances. A VM is a type of virtually allocated instance on a
shared physical infrastructure maintained by AWS and is generally the most available and
affordable option. AWS offers various types of instances with different characteristics
such as type of hypervisor, CPU architecture, number of vCPUs, or amount of memory,
allowing users to choose the instance that best suits their needs.

Recently, AWS launched numerous HPC products and services. Its offerings in-
clude infrastructure options featuring: (i) high-speed interconnections, which employ its
proprietary Elastic Fabric Adapter (EFA)1 network interface that enables customers to
run applications requiring high levels of inter-node communications at scale; (ii) large
VM instances equipped with hundreds of vCPUs to cater to applications with substantial
processing demands; (iii) instances equipped with accelerators such as GPUs or TPUs;
(iv) fully managed shared storage named FSx2 built on popular high-performance file
systems (e.g., Lustre3 and OpenZFS4).

3. Experimental Methodology

In this section, we present our experimental methodology. First, we give an overview of
the parallel applications considered in this study. Then, we discuss the cloud infrastructure
and the evaluated scenarios.

3.1. Applications

We considered four dense linear algebra kernels from Chameleon (gemm, potrf, getrf
and geqrf). We also ran each kernel with single precision (s variant) and double preci-
sion (d variant). A brief description of each kernel is given below:

1https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa.html
2https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/storage_fsx.html
3https://www.lustre.org
4https://openzfs.org/wiki/Main_Page

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/storage_fsx.html
https://www.lustre.org
https://openzfs.org/wiki/Main_Page


Matrix multiplication (sgemm/dgemm): the matrix multiplication has the form C =
AB+C with a parallel blocked algorithm with a single task that operates over the
data tiles. The task has both CPU and GPU implementations;

Cholesky factorization (spotrf/dpotrf): the Cholesky factorization decomposes
an n× n real symmetric positive definite matrix A into the form A = LLT where
L is an n × n real lower triangular matrix with positive diagonal elements. The
task-based algorithm has four tasks types in total: POTRF, SYRK, TRSM, and
GEMM. The POTRF task has only a CPU implementation, while the others have
CPU and GPU implementations;

LU factorization (sgetrf/dgetrf): the LU factorization of a matrix A has the form
A = LU where L is lower triangular and U is upper triangular. The task-based al-
gorithm is the version without pivoting and has three tasks types in total: GETRF,
TRSM, and GEMM. The GETRF task has only the CPU implementation, while the
others have CPU and GPU implementations;

QR factorization (sgeqrf/dgeqrf): the QR factorization of an m× n real matrix A
has the form A = QR where Q is an m ×m real orthogonal matrix and R is an
m× n real upper triangular matrix. The task-based algorithm has four tasks types
in total: GEQRT, UNMQR, TPQRT, and TPMQRT. GEQRT and TPQRT have only the
CPU implementation, while the other two have CPU and GPU implementation.

All four kernels have the tile data layout for matrix representation. They were
executed with input matrices of size 67, 200 × 67, 200 (i.e., with 70 × 70 tiles of size
960×960). Panel factorizations of Cholesky, LU, and QR are tasks with no corresponding
GPU implementation.

3.2. Cloud Infrastructure

We leveraged the HPC@Cloud Toolkit [Munhoz et al. 2023, Munhoz and Castro 2024,
Munhoz et al. 2022] to set up the cloud infrastructure on AWS in a reproducible manner.
HPC@Cloud is a provider-agnostic software toolkit that enables users to manage virtual
HPC clusters in public clouds with minimal effort. It offers a suite of tools that can be
executed on the user’s machine. These tools enable users to configure cloud infrastruc-
ture, execute jobs, monitor performance, predict costs, and interact with the cloud in an
automated and provider-agnostic manner. HPC@Cloud is open-source software devel-
oped using Rust for the primary command-line application and Python for automation
and data-gathering scripts.

An Amazon Machine Image (AMI) with all the software needed to compile and
run the experiments discussed in this paper is also available in the HPC@Cloud Toolkit
repository.5

3.3. Evaluated Scenarios

To evaluate Chameleon kernels on AWS, we prepared two configurations:

1. A single fat node: a single g4dn.12xlarge instance configured with an Intel
Cascade Lake P-8259CL processor running at 2.5 GHz (48 vCPUs, 24 physical

5http://github.com/lapesd/hpcac-toolkit

http://github.com/lapesd/hpcac-toolkit


cores), 4× NVIDIA T4 GPUs (64 GB of memory total), and 192 GB of RAM.
During our experiments, the on-demand price of this instance was USD 3.912 per
hour.

2. A cluster of five thin nodes: five g4dn.2xlarge instances, each one configured
with an Intel Cascade Lake P-8259CL processor running at 2.5 GHz (8 vCPUs,
4 physical cores), 1× NVIDIA T4 GPU (16 GB of memory each) and 32 GB of
RAM. Thus, this cluster has 20 physical CPU cores and 5× NVIDIA T4 GPUs.
During our experiments, the on-demand price of the g4dn.2xlarge instance
was USD 0.752 per hour, so the cost of the full setup with five nodes was USD
3.76 per hour.

When using the fat node setup, we configured StarPU to use 19 threads to execute
CPU tasks (computation), 4 threads to control each GPU and 1 thread to run the applica-
tion’s main function. StarPU scheduler policy was set to dmdas to take load-balancing
decisions based on tasks’ previous execution and data transfer times.

For the scenarios using the cluster of thin nodes, we deployed, per node, 1 MPI
process, with 2 threads to compute CPU tasks (computation), 1 thread to control the node
GPU, and 1 thread to run the application’s main function. The StarPU scheduler policy
(intra-node scheduling) was also set to dmdas in each node, while the Chameleon P
parameter dictates inter-node load balancing.

In both cases, the number of worker threads on the CPU or the GPU was deter-
mined by the chosen runtime environment. All experiments were repeated 5 times, and
the presented results represent average values. We employed Spack [Gamblin et al. 2015]
to install all the software dependencies (Chameleon 1.2.0, StarPU 1.4.1, OpenMPI 4.1.2,
and CUDA 11.8.0).

4. Experimental Results
The goal of our experiments is to evaluate the performance and financial costs of the four
dense linear algebra kernels on two infrastructure scenarios on AWS. Our experimental
evaluation is based on the following analyses: performance evaluation (in GFLOPS) of
the four kernels in single and double precision on the cluster and fat node scenarios,
evaluation of the performance peak attained on both scenarios for gemm, and the trade-
off between the cluster and fat node scenarios on performance and monetary costs.

4.1. Evaluation of Chameleon’s Static Distribution

Chameleon’s P parameter determines how the DAG of tasks will be split across clus-
ter nodes following the ScaLAPACK strategy to distribute a matrix among the processes
[Choi et al. 1996]. This is a static workload division and does not change at runtime,
which differs from the adaptive load distribution conducted by the StarPU instance run-
ning at each node. For this reason, inappropriate values can reflect on application perfor-
mance bottlenecks [Garcia Pinto et al. 2018].

Since our cluster setup has five nodes, the only two possible values for P are 1 and
5. Figure 1 shows the impact on the GFLOPS rate for the four applications using single
precision. For all cases but sgeqrf (QR), our choice of P value has a minor influence on



sgemm sgeqrf sgetrf spotrf

1 5 1 5 1 5 1 5

0

3000

6000

9000

0

5000

10000

15000

0

2000

4000

6000

0

5000

10000

15000

P

gf
lo

ps
influence of P parameter on Cluster

Figure 1. Influence of Chameleon static workload division (P ) on the cluster sce-
nario (5 nodes featuring 4 CPUs and 1 GPU each).

Table 1. Performance of the four kernels (in GFLOPS) with single and double
precision on the cluster (5 nodes featuring 4 CPUs and 1 GPU each) and
fat node (24 CPUs and 4 GPUs) scenarios, followed by the percentage gap
between fat node over cluster scenario.

Single Precision Double Precision
Benchmark cluster fat node Diff. cluster fat node Diff.

Matrix multiplication (gemm) 15,482.74 18,081.56 14.3% 1,773.91 2,060.04 13.8%
Cholesky (potrf) 10,797.13 15,291.12 29.3% 1,647.31 2,077.14 20.6%

LU (getrf) 13,906.72 15,213.85 8.5% 1,767.38 2,068.83 14.5%
QR (geqrf) 6,426.93 6,006.89 -6.5% 1,161.05 990.31 -14.7%

performance, whereas executions with P = 5 present slightly higher GFLOPS. However,
with sgeqrf, setting P to 5 drops the GFLOPS rate to 40% of the one reached with
P = 1. Therefore, we set P = 1 in all other cluster experiments this paper shows.

4.2. Performance Evaluation

Table 1 shows the performance results of the four applications on each platform and the
percentage gap between the fat node over the cluster scenario. We used the GFLOPS
rate reported at the application output as a performance metric. The fat node outperforms
the cluster in most cases (gemm, potrf, and getrf). The gemm and potrf kernels
had significant gaps between the fat node and cluster scenarios. Nonetheless, geqrf
performed better on cluster than the fat node with a performance gap of 6.5% and 14.7%
for single and double precision, respectively.

These results can be explained by assuming that QR factorization has fewer
BLAS-3 tasks than the other three kernels that are compute-bound and their workloads are
dominated by BLAS-3 matrix-to-matrix operations that mostly execute on GPUs. On the
other hand, geqrf panel factorization comprises small BLAS-2 calls that are memory-
bound and do not have enough parallelism for GPUs [Agullo et al. 2011]. The hybrid
task-based algorithms of Chameleon perform panel factorization on CPUs and trailing
matrix updates on GPUs or CPUs. Moreover, we observed that StarPU peer-to-peer GPU



Table 2. Monetary cost (in USD) of the four kernels with single and double pre-
cision on the cluster (5 nodes featuring 4 CPUs and 1 GPU each) and fat
node (24 CPUs and 4 GPUs) scenarios, followed by the percentage gap
between fat node over cluster scenario.

Single Precision Double Precision
Benchmark cluster fat node Diff. cluster fat node Diff.

Matrix multiplication (gemm) 0.0409 0.0364 -12.2% 0.3573 0.3201 -11.6%
Cholesky (potrf) 0.0097 0.0071 -36.1% 0.0641 0.0529 -21.2%

LU (getrf) 0.0152 0.0144 -5.1% 0.1195 0.1062 -12.5%
QR (geqrf) 0.0657 0.0731 10.1% 0.3640 0.4440 18.0%

transfers improved the performance of the kernels dominated by BLAS-3 operations on
the fat node scenario compared to MPI messages from the cluster scenario.

4.3. Monetary Costs

Table 2 shows the monetary costs of each application running with single and double pre-
cision on both platforms and the percentage gap between fat node over the cluster. Since
the cluster setup had lower performance results, the fat node had a financial advantage in
most cases. For the dgeqrf kernel, it is cheaper to use the cluster setup since it spends
≈ 82% (double) and ≈ 89% (single) of the amount required at the fat node.

4.4. GEMM Peak Performance

Table 3 shows an overview of the performance results of gemm running with single and
double precision. The CPU-only performance was obtained with Chameleon, and results
with 1 and 4 GPUs were obtained with CUBLAS and CUBLAS-XT from NVIDIA. We
estimated the peak performance, adding results from CPUs and GPUs, and calculated
the difference from this peak for the fat node and cluster scenarios. Single precision
results outperformed our peak performance estimation by 6.9% and 32% on cluster and
fat node scenarios, respectively. On the other hand, double precision results were below
our peak performance estimation by 18.1% and 10.4% for cluster and fat node scenarios,
respectively. We believe that the single precision results from Chameleon outperformed
our peak performance estimation due to its optimizations for multi-GPU, such as the
overlap of computation and transfers.

5. Related Work

Dense linear algebra is an important tool of computational sciences. Due to its intrin-
sic computational complexity, several works have been done on distributing linear alge-
bra computations on HPC clusters. ScaLAPACK [Choi et al. 1992] proposed distributed
versions of the Level 3 BLAS implemented in LAPACK [Demmel 1989]. Distributed
PLASMA (DPLASMA) [Bosilca et al. 2011] introduced a novel scheduling algorithm
capable of dynamically distributing dense linear algebra algorithms on distributed sys-
tems. Poulson et al. [Poulson et al. 2013] presented Elemental, a framework designed
from scratch that leverages the distributed memory of many-core systems. Recent work



Table 3. Matrix multiplication (gemm) performance (in GFLOPS) with different
CPU/GPU configurations on fat node and cluster scenarios. We obtained
the 1x GPU result from CUBLAS and the 4x GPU from CUBLAS-XT.

Single Precision Double Precision
cluster fat node cluster fat node

CPUs 1,784.18 2,672.99 965.35 1,389.24
GPUs 2,537.63 11,018.68 240.23 910.67

Peak (CPUs+GPUs) 14,472.33 13,691.67 2,166,5 2,299.91
Chameleon 15,482.74 18,081.56 1,773.91 2,060.04

Diff. from peak 6.98% 32.06% -18.12% -10.43%

from Beaumont et al. [Beaumont et al. 2023] investigated how task-based runtime sys-
tems like StarPU and Chameleon can be used to build data distribution patterns that can
be used on an arbitrary number of nodes.

An overview of the history and main challenges of dense linear algebra software
implementation is presented by Luszczek, Kurzak, and Dongarra [Luszczek et al. 2014].
CPU/GPU hybridization is one of those challenges. Several libraries provide dense
linear algebra algorithms for BLAS and LAPACK [Demmel 1989] routines. Several
works [Igual et al. 2012, Buttari et al. 2009, Tomov et al. 2010, Agullo et al. 2012] as-
sume matrix representation with tile data layout. Tile algorithms create tasks that
operate on contiguous memory tiles to reduce cache penalty and increase perfor-
mance. However, this representation comes at the price of rigidity in the further
decomposition of tiles that could not be made without copy or other matrix repre-
sentation as in PaRSEC [Wu et al. 2015]. Gautier and Lima [Gautier and Lima 2020,
Gautier and Lima 2021] showed that the execution of BLAS-3 kernels on multi-GPU sys-
tems can be improved by allowing asynchronous function calls to compose BLAS kernels
and providing an explicit operator that decreases data movements on the composition
of BLAS kernels to avoid unnecessary synchronizations. Performance can be further
improved if an optimistic heuristic for topology-aware device-to-device data transfer is
used. Their BLAS-3 tiled algorithms were based on PLASMA [Buttari et al. 2009] and
Chameleon, replacing tile data layout with the LAPACK matrix representation, which
allows dynamic and recursive sub-partitions.

Recent works explored the use of Cloud Computing platforms and their of-
fer of recent hardware to improve dense linear algebra applications. Thomas and Ku-
mar [Thomas and Kumar 2018] analyzed the major scalable distributed systems that pro-
vide high-level bulk linear algebra (LA) primitives for machine learning application de-
velopers (MADlib, ML-lib, SystemML, ScaLAPACK, SciDB, and TensorFlow). They
evaluated the scalability, efficiency, and effectiveness of such systems on the Cloud using
servers with different memory and CPU profiles but without using any type of acceler-
ator (including GPUs). Shankar et al. [Shankar et al. 2020] proposed a serverless-based
approach and showed that the disaggregated serverless computing model could be used
for computationally intensive programs with complex communication routines such as
dense linear algebra. Lewis et al. [Lewis et al. 2022] showed that modern hardware from



cloud providers such as Google’s TPUs can efficiently perform distributed dense linear
algebra at a massive scale. The use of Cloud Computing to run scientific applications
depending on dense linear algebra was also studied as an opportunity to achieve energy
efficiency [Astsatryan et al. 2017, Chen et al. 2016].

6. Conclusion
As computer resources become increasingly accessible through the emergence of cloud
computing as a tool for HPC, the utilization of task-based programming interfaces is also
on the rise. HPC developers and users often seek runtime systems, tools (such as StarPU
and Chameleon), and libraries to facilitate development in heterogeneous computing envi-
ronments. In contrast to on-premise HPC clusters, cloud environments offer the flexibility
to select diverse computing configurations and incur different monetary costs.

This paper describes and analyzes the use of Cloud Computing for solving linear
algebra-based problems. To this end, we created two distinct computing environments
using AWS EC2 instances and assessed the performance and monetary cost of these so-
lutions using a standard linear algebra benchmark. Our experimental results showed that
a single high-powered (yet costly) VM instance equipped with 4 NVIDIA GPUs out-
performs a cluster configuration consisting of five less potent (but more economical) in-
stances, each equipped with a single NVIDIA GPU in both performance and monetary
costs in most cases due to the overhead associated with parallelization and communica-
tion between cluster nodes.

In future work, we intend to consider communication metrics and execution traces
to better understand the bottenecks of running the benchmarks in different cluster config-
urations. Moreover, we intend to evaluate other VM configurations on AWS and to assess
whether our conclusions hold true across different cloud providers. We also intend to eval-
uate the use of AWS spot and burstable instances, which have different pricing models
than on-demand instances. In particular, the monetary costs of running communication-
bound parallel applications on burstable instances could be lower than on on-demand
instances because the CPU utilization is impacted by the communication overhead.

7. Acknowledgments
This work was partially funded by the National Council for Scientific and Technolog-
ical Development (CNPq) and Amazon Web Services (AWS) through the CNPq/AWS
call No 64/2022 (Cloud Credits for Research) and grants #2019/26702-8, #2021/06867-2,
#2023/00811-0, and #2024/01115-0, São Paulo Research Foundation (FAPESP).

References
Agullo, E., Augonnet, C., Dongarra, J., Faverge, M., Ltaief, H., Thibault, S., and Tomov,

S. (2011). QR factorization on a multicore node enhanced with multiple GPU accel-
erators. In IEEE International Parallel & Distributed Processing Symposium, pages
932–943. IEEE.

Agullo, E., Augonnet, C., Dongarra, J., Ltaief, H., Namyst, R., Thibault, S., and Tomov,
S. (2012). A hybridization methodology for high-performance linear algebra software
for GPUs. In GPU Computing Gems Jade Edition, pages 473–484. Elsevier.



Astsatryan, H., Narsisian, W., and Costa, G. D. (2017). SaaS for energy efficient utiliza-
tion of HPC resources of linear algebra calculations. Scalable Computing: Practice
and Experience, 18(2):145–150.

Augonnet, C., Thibault, S., Namyst, R., and Wacrenier, P. (2010). StarPU: a unified
platform for task scheduling on heterogeneous multicore architectures. Concurrency
and Computation: Practice and Experience, 23(2):187–198.

Beaumont, O., Collin, J.-A., Eyraud-Dubois, L., and Vérité, M. (2023). Data distribution
schemes for dense linear algebra factorizations on any number of nodes. In IEEE
International Parallel and Distributed Processing Symposium, pages 390–401. IEEE.

Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Haidar, A., Herault, T., Kurzak,
J., Langou, J., Lemarinier, P., Ltaief, H., et al. (2011). Flexible development of dense
linear algebra algorithms on massively parallel architectures with DPLASMA. In IEEE
International Symposium on Parallel and Distributed Processing Workshops and Phd
Forum, pages 1432–1441. IEEE.

Buttari, A., Langou, J., Kurzak, J., and Dongarra, J. (2009). A class of parallel tiled linear
algebra algorithms for multicore architectures. Parallel Computing, 35(1):38–53.

Chen, J., Tan, L., Wu, P., Tao, D., Li, H., Liang, X., Li, S., Ge, R., Bhuyan, L., and
Chen, Z. (2016). GreenLA: green linear algebra software for GPU-accelerated hetero-
geneous computing. In International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 667–677. IEEE.

Choi, J., Dongarra, J. J., Ostrouchov, L. S., Petitet, A. P., Walker, D. W., and Whaley,
R. C. (1996). Design and implementation of the ScaLAPACK LU, QR, and Cholesky
factorization routines. Scientific Programming, 5(3):173–184.

Choi, J., Dongarra, J. J., Pozo, R., and Walker, D. W. (1992). ScaLAPACK: A scalable
linear algebra library for distributed memory concurrent computers. In Symposium
on the Frontiers of Massively Parallel Computation, pages 120–121. IEEE Computer
Society.

Demmel, J. (1989). LAPACK: A portable linear algebra library for supercomputers. In
IEEE Control Systems Society Workshop on Computer-Aided Control System Design,
pages 1–7. IEEE.

Gamblin, T., LeGendre, M., Collette, M. R., Lee, G. L., Moody, A., de Supinski, B. R.,
and Futral, S. (2015). The Spack package manager: bringing order to HPC software
chaos. In Proceedings of the International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, pages 1–12.

Garcia Pinto, V., Mello Schnorr, L., Stanisic, L., Legrand, A., Thibault, S., and Dan-
jean, V. (2018). A visual performance analysis framework for task-based parallel ap-
plications running on hybrid clusters. Concurrency and Computation: Practice and
Experience, 30(18):e4472.

Gautier, T. and Lima, J. V. F. (2020). XKBlas: a high performance implementation of
BLAS-3 kernels on multi-GPU server. In Euromicro International Conference on Par-
allel, Distributed and Network-Based Processing (PDP), pages 1–8.



Gautier, T. and Lima, J. V. F. (2021). Evaluation of two topology-aware heuristics on
level- 3 blas library for multi-gpu platforms. In SC Workshops Supplementary Pro-
ceedings (SCWS), pages 12–22.

Igual, F. D., Chan, E., Quintana-Orti, E. S., Quintana-Orti, G., van de Geijn, R. A., and
Zee, F. G. V. (2012). The FLAME approach: From dense linear algebra algorithms
to high-performance multi-accelerator implementations. Journal of Parallel and Dis-
tributed Computing, 72(9):1134–1143. Accelerators for High-Performance Comput-
ing.

Lewis, A. G., Beall, J., Ganahl, M., Hauru, M., Mallick, S. B., and Vidal, G. (2022).
Large-scale distributed linear algebra with tensor processing units. Proceedings of the
National Academy of Sciences, 119(33):e2122762119.

Luszczek, P., Kurzak, J., and Dongarra, J. (2014). Looking back at dense linear algebra
software. Journal of Parallel and Distributed Computing, 74(7):2548–2560.

Munhoz, V., Bonfils, A., Castro, M., and Mendizabal, O. (2023). A performance com-
parison of HPC workloads on traditional and cloud-based HPC clusters. In Workshop
on Cloud Computing - IEEE International Symposium on Computer Architecture and
High Performance Computing Workshops, pages 108–114, Porto Alegre, Brazil. IEEE
Computer Society.

Munhoz, V. and Castro, M. (2024). Enabling the execution of HPC applications on pub-
lic clouds with HPC@Cloud toolkit. Concurrency and Computation: Practice and
Experience, 36(8):e7976.

Munhoz, V., Castro, M., and Mendizabal, O. (2022). Strategies for fault-tolerant tightly-
coupled HPC workloads running on low-budget spot cloud infrastructures. In Interna-
tional Symposium on Computer Architecture and High Performance Computing, pages
263–272. IEEE Computer Society.

Netto, M. A. S., Calheiros, R. N., Rodrigues, E. R., Cunha, R. L. F., and Buyya, R.
(2018). HPC cloud for scientific and business applications: Taxonomy, vision, and
research challenges. ACM Comput. Surv., 51(1).

Poulson, J., Marker, B., Van de Geijn, R. A., Hammond, J. R., and Romero, N. A.
(2013). Elemental: A new framework for distributed memory dense matrix compu-
tations. ACM Transactions on Mathematical Software, 39(2):1–24.

Shankar, V., Krauth, K., Vodrahalli, K., Pu, Q., Recht, B., Stoica, I., Ragan-Kelley, J.,
Jonas, E., and Venkataraman, S. (2020). Serverless linear algebra. In ACM Symposium
on Cloud Computing, pages 281–295.

Thomas, A. and Kumar, A. (2018). A comparative evaluation of systems for scalable
linear algebra-based analytics. VLDB Endowment, 11(13):2168–2182.

Tomov, S., Dongarra, J., and Baboulin, M. (2010). Towards dense linear algebra for
hybrid GPU accelerated manycore systems. Parallel Computing, 36(5-6):232–240.

Wu, W., Bouteiller, A., Bosilca, G., Faverge, M., and Dongarra, J. (2015). Hierarchical
DAG scheduling for hybrid distributed systems. In IEEE International Parallel and
Distributed Processing Symposium, pages 156–165. IEEE.


	Introduction
	Background
	StarPU and Chameleon
	Amazon Web Services (AWS)

	Experimental Methodology
	Applications
	Cloud Infrastructure
	Evaluated Scenarios

	Experimental Results
	Evaluation of Chameleon's Static Distribution
	Performance Evaluation
	Monetary Costs
	GEMM Peak Performance

	Related Work
	Conclusion
	Acknowledgments

