
An Analysis of Performance Variability in AWS Virtual
Machines

Miguel de Lima1, Luan Teylo2, Lúcia Drummond1

1Instituto de Computação – Universidade Federal Fluminense (UFF)

2Centre Inria de l’université de Bordeaux - INRIA Bordeaux

Abstract. Cloud computing platforms are essential for a wide range of applica-
tions, including High-Performance Computing (HPC) and artificial intelligence.
However, the performance variability of virtual machines (VMs) in these shared
environments presents significant challenges. This paper provides an extensive
month-long analysis of the performance variability of C family VMs on Amazon
Web Services (AWS) across two regions (us-east-1 and sa-east-1), vari-
ous instance generations, and market types. Our findings indicate that Graviton
processors (c6g.12xlarge and c7g.12xlarge) exhibit minimal performance vari-
ability and high cost-effectiveness, with the c7g.12xlarge instance, in particular,
offering significantly reduced execution times and lower costs. Intel and AMD
instances, while showing performance improvements from generation c6 to c7,
exhibited up to 20% variability.

1. Introduction
Cloud computing platforms have become a viable option for numerous domains and ap-
plications, ranging from web hosting and e-commerce platforms to big data and analy-
tics applications. Recently, cloud providers have intensified efforts to attract the High-
Performance Computing (HPC) community, with major players like Amazon Web Servi-
ces (AWS) demonstrating successful executions of large and complex simulations in the
cloud. Concurrently, with the increasing popularity of AI applications, cloud platforms
have become the top choice for executing these workloads, both during the training phase
and model inference.

A critical distinction between the HPC and AI workloads compared to other ap-
plications is the necessity for guaranteed performance capabilities throughout execution.
These applications demand substantial computational resources, including processing
power and memory, and typically run for extended periods, ranging from hours to days. In
the cloud model, physical resources are shared among Virtual Machines (VMs) from dif-
ferent clients, running various applications. This sharing can lead to potential interference
due to host resource contention. Given the recent trend of adopting cloud resources for
increasingly demanding applications, an important question arises: ”Is the performance
always consistent in the cloud?”

To address this question, we conducted a series of evaluations on Amazon Elastic
Compute Cloud (EC2), a platform that provides scalable computing capacity in the form
of VMs. In EC2, these VMs, or instances, are categorized into families, each suited for
different usage purposes. For example, Compute Optimized instances (family C) are ideal
for compute-bound applications, while instances from family M are Memory Optimized,
making them perfect for workloads that process large datasets in memory. Each family



of instances includes various types1, which determine the instance generation and CPU
architecture. Besides the type, an instance also comes in different sizes, which define
the computational resources such as the number of CPUs and the amount of memory. For
instance, requesting a c7g.12xlarge instance means selecting the latest generation (version
7) of compute-optimized instances, powered by the AWS Graviton3 processor, which has
48 Virtual CPUs (VCPUs) and 96 GiB of memory.

In AWS, a VM can be allocated based on different markets, which determine not
only their price but also their reliability. AWS has three main markets: the on-demand
market, where users are guaranteed that the instance will be available for the entire re-
quested duration; the spot market, where instances are offered at a steep discount (up to
90% cheaper compared to an on-demand instance of the same type) but can be terminated
by the provider at any time; and the Reserved and Savings Plans, which offer lower prices
in exchange for a commitment to a consistent amount of usage (measured in $/hour) for a
one- or three-year term. In this work, one of our focuses is on the performance variability
between the on-demand and spot markets. According to AWS, spot instances emerged as
a solution to handle idle resources in the cloud. Instead of letting resources remain idle,
they can be offered to users at a cheaper price. However, if demand in the on-demand
market increases, these spot resources may be reclaimed by the provider.

While much of the related literature has evaluated the performance of EC2 VMs,
to the best of our knowledge, no one has investigated performance variability considering
the factors we present in this paper. Specifically, we conducted a study to verify and
answer the following questions:

Q1: Considering the same VM types, is the performance consistent across different
regions?

Q2: How does the evolution of VM generations impact performance? Is there a consi-
derable gain in terms of performance and price with new generations compared to
older ones?

Q3: Is the performance of the Spot market consistent with that observed in the on-
demand market?

Q4: Is there significant performance variability throughout the days?

In this study, we considered eight distinct VM types from the C family, selec-
ted based on the criteria presented in Section 3. To measure performance, we used a
benchmark application available in the NAS benchmark toolkit [Bailey et al. 1991]: the
Embarrassingly Parallel (EP) application (more details in Section 3.2). All tests were
executed in two distinct EC2 regions, us-east-1 (USA) and sa-east-1 (Brazil). In
total, 16.117 executions were conducted over a period of one month (from June 23rd to
July 23rd). The main contributions of the paper are:

• A study on the performance of a set of EC2 VMs from the Compute Optimized
family, focusing on understanding their performance variability across two distinct
regions, different processor architectures, and their evolution over generations.

• A set of observations, or lessons learned, extracted from the performance evalua-
tion that can guide cloud users in the VM selection process.

1The complete list of instances offered by AWS can be seen at https://aws.amazon.com/ec2/
instance-types/.



• A codebase that includes tools for collecting and analyzing the performance of
VMs in AWS.

2. Related Works

Several works in the related literature have evaluated the performance variability of
major cloud providers, focusing not only on VMs and CPU performance but also
on other services, such as I/O and databases [Iosup et al. 2011, Jackson et al. 2010,
Ericson et al. 2017]. However, when examining machine performance in general, the
related literature often looks at VMs with low resources and does not focus on heavy
workloads. For instance, in [Iosup et al. 2011], the authors presented a large study com-
prising two months of observations that considered several components of AWS, such as
Amazon SimpleDB, S3, and EC2. For the VMs, only the deployment time, i.e., the time
it takes to start an instance in EC2, was considered, and only for the instance m1.small,
which has 1 vCPU and 1.7 GB of memory. While this metric is important for some
categories of applications, such as auto-scaling systems, disaster recovery, and develop-
ment/testing environments, it is less critical for long-running computational tasks.

In [Ericson et al. 2017], the authors compared the performance variability of CPU,
RAM, and disk. They conducted a series of tests (the quantity and period of tests are not
cited) considering five cloud providers, including AWS, and compared the variability to a
baseline case executed in an on-premise cluster. One of their results shows that AWS had
the highest performance variability in comparison to the other cloud providers. However,
it is not clear in the paper what type of machine was used in AWS (or in the other cloud
providers). Moreover, the authors focused on machines running Microsoft Server, which
is usually not the operating system selected for heavy workload applications. Nonetheless,
they show that when looking at the VMs’ subsystems (memory, CPU, and disk), the CPU
and memory account for a significant part of the variability seen in performance.

Although these works present an interesting comparison between cloud provi-
ders, they do not focus on heavy workloads. On the other hand, some studies focus
exclusively on HPC workloads. This is the case in [Jackson et al. 2010], where the
authors evaluated on-premise environments and EC2 using the NESC benchmarking fra-
mework [Oliker et al. 2004]. According to the authors, this benchmarking represents the
workload of typical HPC applications. Their main focus in this evaluation was on MPI
applications and the impact of virtualization on the communication patterns of the ap-
plications. Their results show that EC2 had the worst performance in terms of latency
and execution time when compared to other on-premise environments (up to 20x slower).
However, unlike the study presented in this paper, their main focus was not on the vari-
ability of VM performance but on the absolute performance when executing this set of
applications compared to on-premise systems. Additionally, unlike our work, the authors
studied an EC2 instance that was not optimized for computationally heavy applications:
they used only m1.large VMs, which have 2 vCPUs and 7.5 GB of memory.

Applications from the NPB suite have been used to evaluate public cloud perfor-
mance in several works [Munhoz et al. 2023, Ferrari et al. 2024, Dancheva et al. 2024].
In [Munhoz et al. 2023], the authors presented a study where three kernels of the NPB
benchmark were used to compare the performance of a cluster of VMs running in EC2
with the performance of an on-premise cluster of Grid5000. Similar to our work, the



authors in [Munhoz et al. 2023] also used the EP kernel. They demonstrated that, in com-
parison to the on-premise cluster, this kernel showed 4% less performance, which the
authors attributed to the multi-tenant usage in the cloud. However, they focused only on
one type of instance (c5n.4xlarge), and their comparison mainly addressed the perfor-
mance impact when running MPI applications using different numbers of processors. In
[Ferrari et al. 2024], the NPB kernel was used to compare the performance of burstable
and non-burstable VMs. Their tests covered a period of 24 hours and focused on small-
size VMs from the T and M families. Finally, in [Dancheva et al. 2024], the authors used
the OSU benchmark and several kernels of the NAS to compare the performance of ins-
tances in EC2 to an on-premise cluster called Beskow. To manage the EC2 instances,
they used Parallel Cluster, and their tests focused on the performance of collective MPI
functions and the scaling of distributed applications when running in the cloud. As in our
work, the authors also focused on C family instances; specifically, they conducted their
tests using 40 VMs of c5n.18xlarge and concluded that the performance was very similar
to the on-premise cluster.

To the best of our knowledge, in the HPC context, no previous work has focused
on evaluating the performance of EC2 instances considering the factors we are studying.
Notably, the variability of performance across different regions and markets. Moreover,
we also evaluate the performance of the VMs in relation to their generation.

3. Methodology
In this section, we describe the experimental methodology we applied for this study and
present the main components related to this study: the platform (Section 3.1), the bench-
mark tools and used parameters (Section 3.2), and the execution protocol (Section 3.3).
Note that all scripts used for our tests, as well as the results, are available and documented
at https://github.com/migueluff/awsbench.

3.1. Experimental Environment
For the performance evaluation in this paper, we established specific criteria to select ins-
tances, ensuring their similarity in computational characteristics, particularly in terms of
the number of cores and memory. The focus was on instances suitable for medium-scale
CPU-bound applications, with an aim to include the latest three generations of instances
(v5, v6, and v7) featuring Intel, AMD, and Graviton CPUs. Based on these criteria, eight
instance types were selected, and their main characteristics are summarized in Table 1.

As shown in Table 1, the VMs with Graviton processors are not available in ge-
neration v5 (only v6 and v7). This is because Amazon only introduced this processor
in 2018, while the v5 instances date back to 2017. Another important consideration re-
lated to the selection of instances was their availability in different markets and regions.
Specifically, it was considered those VMs available in the two regions regarded in this
study (us-east-1 and sa-east-1), which also be allocated either in the spot or on-
demand markets. However, we faced some difficulties meeting this last criterion since
instance c7a.12xlarge were not available in the sa-east-1 region at the time we con-
ducted our tests. Nonetheless, we decided to keep them on the list as it would allow us to
evaluate the evolution in terms of performance between the AMD generations.

Finally, it is important to note that while Intel and AMD instances use hyper-
threading, Graviton instances do not, meaning each vCPU corresponds to a physical core.



Therefore, for Intel and AMD instances, 24 physical cores are presented, while Gravi-
ton instances have 48 physical cores. As it will be detail in Section 3.3, to make a fair
comparison between these instances, 24 threads are used in all our tests.

Tabela 1. Set of instances used in this study. All instances have 48 vCPUs and
96 GiB of memory.

Instance Type CPU Model On-demand Price USD
us-east-1 sa-east-1

c5.12xlarge 2nd Intel Xeon (Cascade Lake
8275CL)

2.04 3.14

c6i.12xlarge 3rd Intel Xeon (Ice Lake 8375C) 2.04 3.14
c7i.12xlarge 4th Intel Xeon (Sapphire Rapids

8488C)
2.14 3.30

c5a.12xlarge 2nd AMD EPYC (7R32) 1.84 2.83
c6a.12xlarge 3rd AMD EPYC (7R13) 1.83 2.82
c7a.12xlarge 4th AMD EPYC (9R14) 2.46 –
c6g.12xlarge AWS Graviton2 (Arm) 1.63 2.51
c7g.12xlarge AWS Graviton3 (Arm) 1.74 2.66

3.2. Benchmark Tools
For the evaluation, we used the NAS Parallel Benchmarks toolkit. NAS is a well-known
set of programs that have been used in several works to evaluate the performance of paral-
lel supercomputers [Hosseini et al. 2024, Subhlok et al. 2002, Bakhtiarifard et al. 2024].
The toolkit includes five kernels that mimic real applications derived from the computati-
onal fluid dynamics domain. Each application is associated with different problem classes
that determine how computationally heavy the application is, with the smallest tests being
from class S (small for quick test purposes) and the largest tests being from classes D, E,
and F. For this work, we selected the Embarrassingly Parallel (EP) kernel (class D).

According to [Bailey et al. 1991], the EP Kernel ”[...] provides an estimate of the
upper achievable limits for floating point performance without significant inter-processor
communication”. The benchmark is a CPU-bound application and uses OpenMP for pa-
rallelism. For our tests, this application (considering class D) presents a good trade-off
between execution time and problem complexity. Moreover, it has been used in several
works on the evaluation of cloud instances [Ferrari et al. 2024, Dancheva et al. 2024].

For the execution, we used an EC2 image with GNU Linux (Ubuntu 24.04
distribution). In this image, all applications were compiled using GFORTRAN ver-
sion 13.2.0. For the EP Kernel, we used OpenMP version 4.5 and bound the thre-
ads to the cores using the following environment variables: OMP PLACES=cores and
OMP PROC BIND=spread. Thread binding is important because it ensures that threads
are pinned to specific cores, reducing context switching and cache misses, thus improving
performance consistency and minimizing variability. As mentioned before, we used 24
threads in all EP executions. This, combined with thread binding, guarantees a fair com-
parison among the distinct VMs since the selected instances have between 24 and 48 phy-
sical cores. To achieve this, we set up the environment variable OMP NUM THREADS=24
before each EP execution.



3.3. Execution Protocol

To collect data consistently, we defined an execution protocol where tests were dispatched
at fixed time intervals. Each test was executed sequentially, meaning there were no pa-
rallel executions. Once an execution finished, the benchmark metrics, execution time and
Millions of Operations Per Second (MOPs), were saved in a CSV file alongside the VM
type, region, market, and the timestamps when the test started and finished. To avoid bias
from repeating the same test sequences, the order of tests in a sequence was randomly
defined.

To execute this protocol, we developed a tool called AWSBENCH. The tool recei-
ves a list of VMs to be evaluated (described in Table 1), the benchmark tool, and the time
interval, and then creates a list of all the tests that need to be executed. In this context,
a test is defined as a tuple comprising the region, instance type, market, and Benchmark
Kernel. The tool then starts to execute the tests at each time interval, one by one in se-
quence and non-concurrently. For each test case, AWSBENCH allocates the VM in the
specified region and market, executes the benchmark n consecutive times (on the same
VM), turns off the machine, and then moves to the next randomly selected test case in the
list. This process is repeated for all tests in the list, which consist of all possible combi-
nations for both markets and regions. In total, 1.400 test cases are executed in each time
interval. For the results presented in this paper, we selected an interval of 2 hours, with
five consecutive executions per test (n = 5). In this way, our test analysis covers a wide
range of time periods throughout the day, across different days and weeks.

4. Results

In this section, we present the results and describe the data analyses conducted with the
collected performance metrics to answer the research questions of this study. All the
analyses are available in the repository2, as well as the dataset collected throughout this
work.

4.1. Performance Across the Different Regions

c6g
.12

xla
rge

c7g
.12

xla
rge

c5a
.12

xla
rge

c6a
.12

xla
rge

c7a
.12

xla
rge

c5.
12

xla
rge

c6i
.12

xla
rge

c7i
.12

xla
rge

30

40

50

60

70

80

Ti
m

e 
(s

)

us-east-1

c6g
.12

xla
rge

c7g
.12

xla
rge

c5a
.12

xla
rge

c6a
.12

xla
rge

c5.
12

xla
rge

c6i
.12

xla
rge

c7i
.12

xla
rge

sa-east-1

Figura 1. Boxplot of execution times for the evaluated instances across
us-east-1 and sa-east-1. Note that the c7a.12xlarge instance is not
available in sa-east-1.

2https://github.com/migueluff/awsbench



To address question Q1, we first analyzed the distribution of the execution time
of the tests. This distribution is presented as a boxplot in Figure 1, where we can ob-
serve some interesting performance trends. Firstly, the boxplot reveals that the overall
performance of the evaluated VMs is consistent across both regions. In other words,
the median, and interquartile range are nearly identical, which indicates that there is no
significant difference in performance between these regions.

Secondly, we see that the Graviton processors (c6g.12xlarge and c7g.12xlarge)
show no outliers in the boxplot, while Intel and AMD machines have several outliers
throughout the evaluation. Moreover, the instance c7g.12xlarge demonstrated better per-
formance, with an average execution time 22.4% and 19.55% shorter compared to the
AMD and Intel machines of the same generation, respectively. This performance gain
becomes even more interesting when we add the cost dimension to our analysis: as pre-
sented in Table 1, the c7g.12xlarge has the lowest monetary cost compared to the VMs of
its generation in both regions.

c6g
.12

xla
rge

c7g
.12

xla
rge

c5a
.12

xla
rge

c6a
.12

xla
rge

c5.
12

xla
rge

c6i
.12

xla
rge

c7i
.12

xla
rge

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Co
ef

fic
ie

nt
 o

f V
ar

ia
tio

n 
(C

V)
 [%

]

0.16% 0.20% 0.10% 0.18%

5.22% 5.40%

7.17%
6.88%

9.68% 9.65%

13.66%
13.38%

19.92%

19.05%sa-east-1
us-east-1

Figura 2. Coefficient of Variation (CV) for each VM instance type in sa-east-1
and us-east-1 regions.

These results indicate that the performance variability is directly related to the
architecture of the processor used in the VMs and that the region has no impact on it. To
assess this, we calculated the Coefficient of Variation (CV) for both performance metrics
(Execution Time and MOPs). The CV is a statistical measure that quantifies the relative
variability of data, defined as the ratio of the standard deviation to the mean and expressed
as a percentage. Lower CV values indicate more consistent performance, while higher
values suggest greater variability.

For this analysis, we computed the mean and standard deviation by grouping the
executions per region and instance type, without distinguishing between markets. Figure 2
presents the CV values for the evaluated VMs in both regions, considering the Execution
Time metric. The results for the MOPs are similar to those presented in Figure 2. Thus,
due to space limitations, these results are supplemented and can be viewed in the Git
repository.

As we can see, Graviton processors in fact demonstrate almost no performance



variability (less than 0.3% variability for both regions), while Intel machines had the
highest CV values (up to 20%). When comparing the variation between regions, we
observe that the performance variability across the studied instance types is nearly the
same in the us-east-1 and sa-east-1 regions. Therefore, for these two regions, we
saw no impact on the degree of variability of the instances for the conducted tests.

The performance variability of VMs appears to be primarily influenced by their
processor architecture. Graviton processors (Arm) show almost no variability,
while Intel processors exhibit the highest variability. No significant impact was
observed from regional differences.

4.2. Performance Across Instance Generations
Next, we evaluate the variability of VM performance across different generations (Q2).
The objective of this analysis is to determine if there are always gains in terms of perfor-
mance and cost when a new generation of VM is released. For this analysis, we focus
on the data collected in the us-east-1 region, as it contains data for all eight instance
types we considered. To study the relationship between price and performance, we used
the prices of the On-demand market, which did not change throughout our tests, and for
the performance metrics, we used the average Mops.

2000 2200 2400 2600 2800 3000
Average Mops

1.6

1.8

2.0

2.2

2.4

Pr
ice

 (U
SD

/h
ou

r)

c6g.12xlarge

c7g.12xlarge

c5a.12xlargec6a.12xlarge

c7a.12xlarge

c5.12xlargec6i.12xlarge

c7i.12xlarge

Intel
AMD
Graviton

Figura 3. Comparison of VM prices (y-axis) and their average performance (x-
axis) across different generations. On the x-axis, higher values indicate
better performance.

Figure 3 shows the relationship between the price of the VMs (y-axis) and their
average performance (x-axis). As we can see, from generation c5 to c6 of the Intel and
AMD machines, there is no increase in performance and almost no difference in price.
However, from generation c6 to c7, we observe an increase of 12.83% and 8.30% in
the average performance of these instances, respectively. Nevertheless, for both archi-
tectures, there is an increase in the price of the latest generation machines: an 24.66%
increment from c6a.12xlarge to c7a.12xlarge and an 7.89% increment from c6i.12xlarge
to c7i.12xlarge.

The Graviton machines show the best performance improvement from one gene-
ration to another: from c6g.12xlarge to c7g.12xlarge, there is an increment of 33.39%



in average Mops, and an increase of only 7.16% in monetary cost. Moreover, the
c7g.12xlarge presents the best tradeoff between cost and performance when compared
to the other VMs. For instance, in comparison to the c7i.12xlarge, this machine presen-
ted 15.12% more Mops (3065.92 Mops against 2602.39), at a cost 30.08% lower (1.26$
against 1.64$).

For applications with similar characteristics to the EP Kernel, the latest genera-
tion Graviton machines offer the best performance-to-cost ratio, while the latest
generation AMD machines provide the worst.

4.3. The Variability Across Markets

In this analysis, we investigate whether there is a performance difference between VMs
running in the Spot market and those running in the On-demand market (Q3). We focus
the analysis on the data collected from us-east-1, which contains all VMs we study,
and we divide the dataset into Spot and On-demand VMs. The bar chart in Figure 4
presents the CV, considering the Mops metric, for each type of VM.

c6g
.12

xla
rge

c7g
.12

xla
rge

c5a
.12

xla
rge

c6a
.12

xla
rge

c7a
.12

xla
rge

c5.
12

xla
rge

c6i
.12

xla
rge

c7i
.12

xla
rge

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Co
ef

fic
ie

nt
 o

f V
ar

ia
tio

n 
(C

V)
 [%

]

0.19%0.21% 0.19%0.16%

5.14%5.68%

6.87%6.89%

17.73%
17.41%

9.72%9.58%

12.93%
13.87%

20.48%

17.09%

ondemand
spot

Figura 4. Coefficient of Variation (CV) of performance (measured in Mops) for
each type of VM in the Spot and On-demand markets in the us-east-1
region.

As seen, in general, the variability of the performance of the machines is similar
regardless of the market and follows the same trends presented in Section 4.1. The big-
gest difference between markets was reported for instance c7i.12xlarge, where we saw
3.39% more variability in the On-demand market compared to the Spot one. However,
that difference can be explained by the number of tests executed successfully in the On-
demand market for this VM, 4971 tests in total, compared to only 4359 tests executed
successfully in the Spot market. This happens because while in the On-demand market
the VM c7i.12xlarge was always available, in the Spot market that was not the case: a
total of 11.47% of requests to VM spots were denied during our tests due to the lack of
availability in the Spot market.

Apart from the variability, Figure 4 also demonstrates that the evaluated VMs
have similar performance in both markets. These results confirm the guarantees offered
by AWS for the Spot market. According to the company, the only differences between



the markets are the availability of the Spot VMs and the price, but not the performance of
the machines. Note that, Figure 4 also includes VM c7a.12xlarge, as it is available in the
us-east-1 but not in sa-east-1. Once again, it confirms that the latest generations
of Intel and AMD VMs presented high variability in performance throughout our tests.

In terms of price, we see in Figure 5 that the VMs offered in the Spot market are
significantly cheaper than those in the On-demand market: the VM c5.12xlarge shows
the biggest difference (60.80% cheaper compared to the On-demand one), while the VM
c7i.12xlarge shows the smallest difference (53.60% ).

c5.
12

xla
rge

c5a
.12

xla
rge

c6a
.12

xla
rge

c6g
.12

xla
rge

c6i
.12

xla
rge

c7a
.12

xla
rge

c7g
.12

xla
rge

c7i
.12

xla
rge

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Pr
ice

 (U
SD

/h
ou

r)

On-demand
Spot

Figura 5. Average price comparison between On-demand and Spot VMs in the
us-east-1 region.

For applications that can tolerate faults, using Spot VMs offers significant cost sa-
vings without compromising performance. However, it is necessary to consider the
availability of VMs in the Spot market, as some instances may experience higher
denial rates than others.

4.4. The Variability Throughout the Day
Next, we analyzed the performance variability of the VMs throughout the days (Q4). Fi-
gure 6 presents a heatmap showing the performance of the VMs over the evaluated days
in us-east-1. To generate this heatmap, the average Mops per day of each instance
type was computed and normalized. Thus, the color shift to 1.0 represents the peak per-
formance of the instance throughout the tests. The same graph for sa-east-1 can be
seen in the supplementary material.

As can be seen, there is no performance trend per day. In other words, we do not
see a column in the heatmap where all VMs presented either low or high performance. On
the other hand, we see trends per instance type. For instance, we can see that the Graviton
instances (c6a.12xlarge and c7a.12xlarge) showed no variation in performance over the
days during our tests. Once again, the most variation in performance throughout the days
can be seen in instances c6i.12xlarge, c7a.12xlarge, and c7i.12xlarge.

These results suggest that, during our tests, the resources in AWS did not face
any event that would globally affect the performance of the VMs in a region. Moreo-
ver, since the AMD and Intel instances presented the highest variation in performance in



all our previous analyses, the behavior seen in Figure 6 can once again be attributed to
characteristics of the VMs themselves (such as their CPU architecture).

20
24

-06
-22

20
24

-06
-27

20
24

-07
-10

20
24

-07
-15

20
24

-07
-20

20
24

-07
-25

Day

c5.12xlarge

c5a.12xlarge

c6a.12xlarge

c6g.12xlarge

c6i.12xlarge

c7a.12xlarge

c7g.12xlarge

c7i.12xlarge

In
st

an
ce

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Figura 6. Heatmap showing the average Mops per day for each instance type in
us-east-1

The absence of a daily performance trend suggests stable resource availability in
AWS. However, specific instance types, particularly AMD and Intel instances,
showed notable performance variation throughout the days, likely due to inherent
characteristics of their CPU architectures rather than external factors affecting the
entire region.

5. Conclusion and Future Work

This study provides a comprehensive analysis of one month of performance variabi-
lity of virtual machines in the C family on AWS across two regions (us-east-1 and
sa-east-1), different instance generations, and markets. Our data reveal that VM per-
formance is consistent between us-east-1 and sa-east-1, with Graviton processors
(c6g.12xlarge and c7g.12xlarge) demonstrating almost no variability in their performance
compared to Intel and AMD machines. The c7g.12xlarge instance, in particular, showed
significantly shorter execution times and lower costs, making it the most cost-effective
option for applications with characteristics similar to the NAS EP kernel. While Intel and
AMD machines showed performance improvements from generation c6 to c7, these gains
were accompanied by increased costs and higher performance variability. Additionally,
performance in Spot and On-demand markets was found to be similar, with Spot instances
offering substantial cost savings, making them an attractive option for applications that
can tolerate failures.

In addition to our findings, we developed AWSBENCH, a tool that automatically
manages the execution of performance probes in AWS. All data presented in this paper, as
well as supplementary material with all graphs that were suppressed due to space limita-
tions, are made publicly available. In the near future, we will extend this analysis to other
instance families and regions, further exploring the impact of different workload types,
such as distributed and I/O-bound applications, on performance variability. Moreover,
we aim to extend our investigation to examine the impact of communication overhead in
cloud environments by using MPI kernels available in the NAS benchmark. Additionally,
we will extend this study to instances that are optimized for network-intensive workloads,
such as the c6gn and c7gn VMs.



Acknowledgments
This research is supported by project CNPq/AWS 421828/2022-6, Brazil.

Referências
Bailey, D. H., Barszcz, E., Barton, J. T., Browning, D. S., Carter, R. L., Dagum, L.,

Fatoohi, R. A., Frederickson, P. O., Lasinski, T. A., Schreiber, R. S., et al. (1991). The
nas parallel benchmarks. The International Journal of Supercomputing Applications,
5(3):63–73.

Bakhtiarifard, P., Igel, C., and Selvan, R. (2024). Ec-nas: Energy consumption aware
tabular benchmarks for neural architecture search. In ICASSP 2024-2024 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
5660–5664. IEEE.

Dancheva, T., Alonso, U., and Barton, M. (2024). Cloud benchmarking and performance
analysis of an hpc application in amazon ec2. Cluster Computing, 27(2):2273–2290.

Ericson, J., Mohammadian, M., and Santana, F. (2017). Analysis of performance variabi-
lity in public cloud computing. In 2017 IEEE International Conference on Information
Reuse and Integration (IRI), pages 308–314. IEEE.

Ferrari, G. C. F., Castro, M., et al. (2024). Comparing burstable and on-demand aws ec2
instances using nas parallel benchmarks. In Anais da XXIV Escola Regional de Alto
Desempenho da Região Sul, pages 61–64. SBC.

Hosseini, S. S., Chuen, A. M., and Chan, W. M. (2024). Computational aerodynamics
study of the lift+ cruise vtol concept vehicle components. In Transformative Vertical
Flight (TVF) Meeting.

Iosup, A., Yigitbasi, N., and Epema, D. (2011). On the performance variability of pro-
duction cloud services. In 2011 11th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, pages 104–113. IEEE.

Jackson, K. R., Ramakrishnan, L., Muriki, K., Canon, S., Cholia, S., Shalf, J., Wasserman,
H. J., and Wright, N. J. (2010). Performance analysis of high performance computing
applications on the amazon web services cloud. In 2010 IEEE second international
conference on cloud computing technology and science, pages 159–168. IEEE.

Munhoz, V., Bonfils, A., Castro, M., and Mendizabal, O. (2023). A performance compari-
son of hpc workloads on traditional and cloud-based hpc clusters. In 2023 International
Symposium on Computer Architecture and High Performance Computing Workshops
(SBAC-PADW), pages 108–114. IEEE.

Oliker, L., Canning, A., Carter, J., Shalf, J., and Ethier, S. (2004). Scientific computations
on modern parallel vector systems. In SC’04: Proceedings of the 2004 ACM/IEEE
Conference on Supercomputing, pages 10–10. IEEE.

Subhlok, J., Venkataramaiah, S., and Singh, A. (2002). Characterizing nas benchmark
performance on shared heterogeneous networks. In Proceedings 16th International
Parallel and Distributed Processing Symposium, pages 9–pp. IEEE.


