
Towards Just-In-Time Software Approximations

Lucas Reis1, Lucas Wanner1, Sandro Rigo1

1Instituto de Computação – Universidade Estadual de Campinas (UNICAMP)
Campinas, SP – Brazil

{lucas.reis,lucas,sandro}@ic.unicamp.br

Abstract. Software-level approximations, such as loop perforation, function
replacement, and memoization, can significantly enhance application perfor-
mance and energy efficiency during compile time. However, approximating com-
pilers often require extensive user intervention and lack the capability for real-
time adaptation. This paper presents RAAS, a framework that integrates just-
in-time recompilation with an automated evaluation system to create a general-
purpose software approximation system with minimal user involvement. Our
framework can apply input-aware approximations without needing a separate
testing phase by continuously monitoring the target application and recompil-
ing code blocks. We evaluated the framework with a set of resilient benchmarks
while also comparing its performance with a similar framework focused on
static compilation of approximations. Our findings demonstrate speedups of up
to 6.3x with quality degradation limited to 30%, achieving competitive results to
a static compilation with a shorter convergence time.

Resumo. Aproximações em nı́vel de software, como a perforação de laços,
substituição de funções e memoização podem melhorar o desempenho e
consumo energético de uma aplicação de forma significativa em tempo de
compilação. Entretanto, aproximadores a nı́vel de compilação muitas vezes
exigem intensa intervenção do usuário e pecam na capacidade de adaptação
em tempo real. Esse trabalho apresenta RAAS, um framework que integra
recompilação just-in-time com um sistema de avaliação automática para criar
um ambiente de aproximação em nı́vel de software de propósito geral que requer
intervenção mı́nima do usuário. Nosso framework pode aplicar aproximações
adaptáveis a diferentes entradas sem necessitar de uma fase de testes ao mon-
itorar continuiamente o desempenho da aplicação alvo e recompilando trechos
do código. Avaliamos o framework com um conjunto de benchmarks resilientes
a aproximação, também comparando seu desempenho com um framework sim-
ilar focado aproximações por compilação estática. Nossos testes demonstram
speedups de até 6.3x com redução de qualidade limitado a 30%, alcançando
resultados competitivos à compilação estática com reduzido tempo de con-
vergência.

1. Introduction

Approximate computing can be applied at different levels, from circuit and hardware
design to applications and runtime systems, to improve performance by sacrificing accu-
racy in results. The goal of approximations is to accept degradation in output quality in

exchange for disproportional gains in performance. At the software level, gains are typi-
cally achieved as reductions in execution time for critical parts of applications, resulting
in lower energy consumption and negatively impacting output quality in the process.

Although potentially powerful, approximate computing is typically limited to
fault-tolerant applications. Most techniques explored in the literature aim to solve
problems that are too specific [Sidiroglou-Douskos et al. 2011, Hoffmann et al. 2011,
Rinard 2013] or require much knowledge from the programmer. Given that application
resilience is not universal, state-of-the-art often suggests compromises to avoid approx-
imations in forbidden regions, which would cause errors or crashes. These approaches
expect the developer to dive into the entrails of an application to look for ways to annotate
approximable code [Sampson et al. 2011, Sampson et al. 2015] or force the programmer
to work with approximation in mind from scratch, developing more than one version of
the functions that would be approximated [Baek and Chilimbi 2010, Ansel et al. 2009].

Resilience to approximations is also often input-dependent, such that the
same application has variable approximation resistance for different sets of inputs.
Runtime adaptation is proposed as a viable alternative to avoid these problems
[Baek and Chilimbi 2010, Kemp et al. 2021, Gadioli et al. 2019, Pervaiz et al. 2022].
Although state-of-the-art solutions can provide automatic approximation, runtime eval-
uation, and minimal user intervention, none solve all three problems simultaneously.

This paper proposes the Runtime Adaptative Approximation System (RAAS),
a framework capable of applying automatic approximations to general-use applications
while adjusting the relaxation aggressiveness at runtime and requiring minimum effort
from the user. The system intends to be completely online, recompiling sections of the
application as needed while respecting quality constraints and evaluating gains in execu-
tion time. The contributions of this work are:

• An automatic runtime system that makes approximation decisions based on qual-
ity constraints and speedup.

• Approximation techniques applied in the context of Just-In-Time (JIT) compila-
tion as the adaptation system.

• Evaluation of benchmark kernels using function replacement and loop perforation.
• Comparison with a general-purpose static-compilation framework

Our evaluation shows that, for a fixed maximum error rate, the approximations
yield speedups of up to 6.3x with no more than 30% total error on output while attaining
better convergence rates than ACCEPT, a general-purpose approximating compiler that
relies on static analysis.

2. Related Work
The literature explores software-level approximations in different ways. This section con-
textualizes state-of-the-art research on compile-time and runtime approximations, dis-
cussing the impacts and differences of our work.

The foundation for software-level approximations starts with a set
of publications that allow for compilation and runtime adjustments based
on different constraints and necessities [Ansel et al. 2009, Liu et al. 1994,
Lachenmann et al. 2007, Hoffmann et al. 2011]. Inspired by previous approaches,

Green [Baek and Chilimbi 2010] is presented as a strictly online approximation tool that
monitors and adjusts approximations at runtime based on output quality and performance
with user-required approximate versions of functions and loops. Unlike our proposal,
all previous works demand significant commitment from the user, requiring manual
implementations of approximate versions of code regions instead of automatically
detecting and applying approximations.

ACCEPT [Sampson et al. 2015] is proposed as a general-purpose framework that
generates approximations at compile time and, given inputs and Quality-of-Service (QoS)
metrics, combines different configurations and evaluates the generated binaries to find the
Pareto-optimal curve of the QoS/speedup trade-off. ACCEPT excels in the broadness
of target applications but relies on an intricate annotation system that requires applica-
tion parsing for fine-grained approximation control. [Reis and Wanner 2021] increments
ACCEPT with two new approximation techniques and experiments with the runtime sys-
tem without user-defined annotation. The lack of runtime-adjustable approximations di-
minishes the impact of the no-annotations approach as the convergence time explodes.
ApproxTuner [Sharif et al. 2021] is a three-part framework that provides a vast kit of ap-
proximations for CNNs on CPU and GPU kernels, providing an output quality system
that predicts results before executing the application. It is a complete framework with an
extensive surface to attack for approximations, but it still requires compile-time effort per
application.

GOAL [Pervaiz et al. 2022] is a robust adaptation framework that targets Swift
applications and provides runtime adaptations based on user-defined knobs but re-
quires manual in-depth parsing of source code to apply annotations. mARGOt
[Gadioli et al. 2019] proposes an autotuning framework that adjusts software knobs at
runtime to meet end-user-specified application goals. The framework can automatically
evaluate and adjust the desired knobs with minimal overhead using look-up tables in re-
sponse to input variations and environment changes. MIPAC [Kemp et al. 2021] is a de-
sign framework with a lightweight quality controller based on iterative algorithms. The
framework can predict the number of iterations required to deliver optimal performance
given an acceptable quality degradation. Both MIPAC and mARGOt differ from our ap-
proach by failing to provide automatic detection of approximation opportunities.

Our research aims to establish a unified framework that overcomes the limita-
tions of existing methods, delivering significant performance improvements in general-
purpose applications. Our framework offers a comprehensive solution by integrating the
strengths of previous approaches, including automatic detection of opportunities, fine-
grained runtime-adjustable approximations, and minimal user effort. Inspired by AC-
CEPT and its compiler-level approximation approach, we provide a similar array of tech-
niques and a standardized approach for quality evaluation. We further solidify the validity
of this approach by comparing both frameworks in section 4.4.

3. The Runtime Adaptative Approximation System

We propose the Runtime Adaptative Approximation System (RAAS) to provide dynamic
approximations at runtime. This framework includes a dynamic compiler that evaluates
application output and makes compilation decisions by adjusting approximation levels to
target lower execution times.

JIT

Kernel
ExecutionApplication Source

QoS evaluation
instructions

Quality
Evaluation

region delimitations Input
Parsing

Output
Storage

Runtime
Recompilation

User intervention

Eval

Config.
Selection

Figure 1. Overview of the runtime approximation framework

The framework is divided into two parts: an evaluation system and a JIT com-
piler. The evaluation system monitors the execution time and output of the application to
compose the error and speedup rates for the computation-intensive application sections.
Based on these metrics, a heuristic decision-making subsystem proposes a new set of ap-
proximations, called a configuration, to be provided to the application. Fig. 1 provides an
overview of the framework and its components.

3.1. Approximation Techniques

The framework uses a modular design, where approximation techniques are LLVM passes
that offer functionalities for the evaluation and recompilation systems. These passes pro-
vide an analysis segment that can parse functions to detect approximable code regions,
which the framework uses before application execution to build its list of possible approx-
imations. The approximation phase is composed of the modifications applied to LLVM
Intermediate Representation (IR), compiled and executed by the JIT when a configuration
is selected.

The framework’s modular structure makes adding new approximation techniques
straightforward. New approximations can be added as long as they provide analysis for
approximable regions and transformations for approximations with varying levels of ag-
gressiveness.

For this work in progress, we provide two techniques, the first being functional
approximation, which replaces function calls with faster and less precise counterparts. As
a proof of concept, the FastApprox [Poya 2017] library was used to replace mathemati-
cal functions, such as logarithmic and exponential computations, with a set of up to four
variations of the same function with varying degrees of approximation. The second tech-
nique is loop perforation, widely used in the literature [Sidiroglou-Douskos et al. 2011].
It consists of skipping loop iterations at a variable rate to reduce computation times.

3.2. Target Applications and Limitations

RAAS adapts at runtime to any application within the context of its proposed approxi-
mation techniques as long as it regularly updates its output during execution. We present
the tool as capable of taking control back from the application in timely frequencies,
reevaluating and reapplying approximations given changes on input or the execution en-
vironment. These changes are measured as impacts on output quality and/or execution

time variations. Adaptations can only be made when new changes occur, so the frame-
work requires updates on output results to take context back. Thus, applications must
provide constant output during execution, as the frequency at which the JIT reevaluates
approximations is the same as when the application delivers new outputs. This can be
seen in Fig. 1, where evaluation is always followed by output storing.

Following the previous requirements, we propose the tool targeting applications
that run constantly and are prone to environmental changes, such as variable inputs and/or
workload demands. High-performance computing (HPC) and server applications are key
targets of this work, similar to previous proposals for approximations at runtime in the
literature [Baek and Chilimbi 2010].

It is important to note that runtime compilation introduces overheads compared
to compile-time approximation. Furthermore, the evaluation subsystem also adds some
overhead since quality evaluation is somewhat expensive and may be a limitation for some
applications, as discussed in Section 4. The framework applies aggressive approximations
to reduce the impact of such overheads while monitoring for increased error metrics or
crashes.

3.3. User Intervention
As RAAS is proposed to require minimal intervention from the end user, it is designed
to reduce annotation constraints and significantly limit application intervention. For each
target application, the user-required interventions are twofold: a quality metric and source
code region delimitations to signal framework context changes.

Quality metric requirements are plentiful in the literature [Gadioli et al. 2019,
Reis and Wanner 2021, Parasyris et al. 2021, Mitra et al. 2017, Pervaiz et al. 2022,
Kemp et al. 2021] to allow automatic tools the ability to evaluate the quality of the
approximate output in contrast to their precise counterparts. As quality metrics are
application-dependent, the framework presented in this document requires a similar
intervention. The tool asks the user for a simple script that presents functions to denote
how to store application results in memory for precise and approximate iterations and a
function that compares these results and returns an error rate.

Given the nature of automatic runtime approximation adjustments, the framework
also requires users to apply two source code modifications: to mark sections of code to
be considered regions of interest (RoI) and specify when to give context back to the run-
time system for quality evaluation. This is done by simple function calls handled by the
compiler to trigger context changes. RoIs allow the framework to measure execution time
without input/output overhead interference and signal new output updates, which enable
context changes back to the evaluation system to decide on a new configuration. Focus-
ing the execution time on RoIs also discourages the framework from making changes to
sections of code that we would not wish to approximate, such as input processing.

This solution differs from previous systems, requiring significantly less source
code intervention. Our approach only requires signalizing when applications start and
end computation phases and when the output phase stops. Decisions for approximations
are made automatically and without user intervention. Conventional annotations, on the
other hand, require signalizing which regions are forbidden from approximations within
kernel phases of applications. This effort involves application source code parsing, fine-

grained modifications, and, thus, more in-depth knowledge of the program that is being
targeted, often resulting in extensive trial and error. Note that, as seen in Fig. 1, user
intervention stops before the execution of the framework. After the application starts
running, all decisions are automated. A concrete example of the interventions can be seen
in section 4.1.

3.4. Search space and evaluation

The number of single opportunities largely depends on the application size for general-
purpose approximations. The key advantage of software-level approximation is combin-
ing different configurations for multiple approximations to achieve better speedups while
minimizing errors [Reis and Wanner 2021]. However, ensuring a configuration set is ac-
ceptable regarding speedup and error rates is only possible at runtime. Thus, one of the
advantages of runtime approximations stems from the possibility of evaluating valid con-
figurations on the fly. Still, targeting large applications often proves impossible to test all
configurations, given that search spaces are exponential. Therefore, our approach for the
framework is a modular structure capable of accepting different heuristics for approxima-
tions, which provides a way for the runtime system to analyze the current state of affairs
and make decisions for the subsequent configurations to approximate (or not).

As a proof-of-concept, we present a simple heuristic that takes a greedy approach
to approximation. We start by testing each opportunity alone and scoring based on error
rates and speedup. Where S is the speedup in the last iteration and E is the output error,
the score is calculated as follows: score = (1− 1/S)/E . Then, we sort the list by score
and apply approximations greedily as long as the current opportunity improves speedup
without surpassing the error limit.

3.5. Crash avoidance

Section 3.2 notes that runtime approximation brings overhead from the compilation and
evaluation systems, which more aggressive approximations must compensate for. More-
over, some approximations may provide more critical problems than high error rates, such
as application crashes. Given that this is a work in progress and dealing with runtime
crashes is a difficult task, the framework currently relies on manually informing limita-
tions for opportunities that would yield fatal crashes, which adds effort on the user to
monitor application execution and signal forbidden approximations.

4. Evaluation and Results
This section presents our experimental pipeline to ensure the framework’s validity and
shows each application’s speedup and error rates.

4.1. Execution environment and benchmarks

To evaluate the efficacy of the framework, a set of benchmarks known to be resilient
to approximations was selected from the PARSEC and Mibench benchmark suites
[Bienia 2011, Guthaus et al. 2001]: blackscholes, bodytrack, FFT, ferret, fluidanimate,
and swaptions. Quality metrics were based on absolute difference and distance to precise
(non-approximated) results, normalized to fit the error range required by the framework
based on the weighted average percentage error (WAPE) metric:

...
nRuns = atoi(argv[4]);
// Read input and setup data structures
...
for (int k = 0; k < nRuns; ++k) {

JIT roi begin();
// computing kernel
bs_thread();
JIT roi end();
// store output
JIT evaluate output();

}
...

Figure 2. Changes to the blackscholes application.

E =

∑n
i=1 |pi − ai|∑n

i=1 pi
, (1)

where pi is a precise value, and ai is an approximate value for all the values pro-
vided on the output.

As presented in section 3.2, applications must follow a pattern of constant output
storage to be a target of our framework. Therefore, all benchmarks have been adapted
to follow this structure to ensure viability inside the tool. The key modifications include
instrumenting the application’s core with a repeated loop for a defined number of itera-
tions. As such, each iteration represents an entire execution of the original benchmark,
which the framework interprets as a significant interval to measure output quality and
reevaluate approximations. The code snippet in Fig. 2 provides a simplified version of
the blackscholes benchmark main function. The modifications to adapt the benchmark to
our evaluation are marked in red. In contrast, the blue lines denote the interventions the
framework requires to act on the approximations, as seen in Section 3.3. We emphasize
that user intervention stops at the main function, which requires no further application
knowledge for the user to annotate specific code regions (such as functions) inside the
application kernel. A similar approach is used for all benchmarks tested.

Given that each benchmark is executed repeatedly from the same input, each itera-
tion is equal and suffers no variability except for the changes in approximation. Although
this is not equal to a real context in which input and execution environments vary between
iterations, we argue that this fix is sufficient for a proof of concept of the capabilities of
runtime approximations and is an approach for validation similar to previous work in the
literature [Baek and Chilimbi 2010].

All benchmarks are compiled to LLVM IR and fed to LLVM’s default optimizer
using the -O3 flag for optimizations before being fed to the framework. Further inter-
ventions are done on blackscholes, in which we manually mark a key function to forbid
inlining to prevent it from inlining to the main function. This solves a native problem
from runtime frameworks: we cannot recompile the main function, as it is only called
once. Therefore, any code inside it is incapable of approximations.

The executions were also compared with a statically compiled version of the same
benchmark without intervention from the framework. The static binary is compiled in

Table 1. Testing environment overview for each benchmark

Benchmark Input Approx. Iterations Total
Size Space to Converge Iterations

blackscholes large 5 183 1000
swaptions large 45 1425 3000

ferret medium 45 1152 2000
fluidanimate medium 75 4171 5000

fft large 9 51 500
bodytrack medium 123 3830 5000

Table 2. Summary of the results.

Speedup (x) OverheadError Region of Interest
Benchmark Training Convergence Training Convergence Max. Abs (s) Rel (%)

blackscholes <0.1 0 7825 7929 6.3 11.2 8.4
swaptions 100 25 4 4 2.3 204.2 4.6
ferret 100 29.7 4.2 3.9 2.8 -1.6 <0.01
fluidanimate 3.1 1.8 115 114 4.9 -50.3 -2.6
fft 92 3.2 1.6 1.1 1.2 -0.66 -0.3
bodytrack 2.9 0.3 1.6 1.6 1.3 91.9 6.3

Clang using a standard compilation pipeline, including compiling any benchmark with
the -O3 optimization flag. All experiments use LLVM 16.0.6; every result except output
errors is displayed as the average of 10 executions.

Table 1 provides more details on the evaluation pipeline for each benchmark.
The approximation space is the number of base opportunities for approximation for each
benchmark, considering that a single opportunity approximates a region of code for a
specific technique. As noted in Section 3.4, the framework will combine opportunities
following a simple greedy approximation approach while monitoring execution times and
error rates for each iteration. The total iterations were manually selected during experi-
mentation based on the time it takes for each benchmark to converge for a final solution
for the selected input. After convergence, the evaluation process is still executed on each
iteration to simulate a possible change in environment and inputs, as output quality anal-
ysis is a considerable overhead in executing each iteration.

4.2. Results
Table 2 summarizes the results for each benchmark. Note that speedups are measured
in two contexts: region of interest (RoI) and direct comparisons with precise executions
from statically compiled binaries with Clang. The reason for this distinction is structured
in the way the framework evaluates gains in speedups. Measurement of regions of interest
is how the JIT evaluates changes in execution times (as per section 3.3), providing useful
data to understand decision-making within the framework. At the same time, measuring
speedup when compared with a static execution is how we justify the framework’s us-
ability as a general approximation tool, given that approximations must be impactful both
inside the framework and in global execution time measurements.

RoI speedups and error rates are also divided between testing and convergence
phases to better envision the decision-making done by the framework when faced with
high error rates and the impact they cause on execution time changes. Raw overhead
is measured in the last column using a simple methodology: the framework is executed

7825.8
blackscholes

bodytrack

ferret

fft

fluidanimate

swaptions

0.0 2.5 5.0 7.5 10.0

Speedup

Baseline

Precise iteration

Phase

Testing

Convergence

114.2

114.9

7929.3

(a) Region of Interest
speedup

blackscholes

bodytrack

ferret

fft

fluidanimate

swaptions

0 10 20 30 50 100

Error (%)

B
e

n
ch

m
a

rk

Phase

Testing

Convergence

Baseline

Error limit

(b) Iteration error

blackscholes

bodytrack

ferret

fft

fluidanimate

swaptions

0 2 4 6

Speedup

B
e

n
ch

m
a

rk

Baseline

Precise execution

Type

Approx

No approx.

(c) General speedup

Figure 3. Overall results for speedup and error

for the benchmark with function replacement disabled. This ensures that the entire eval-
uation/recompilation pipeline occurs, but no approximations are applied to the selected
functions. We compare the execution time for this approach with those from precise exe-
cutions, and any difference is interpreted as framework overhead.

Fig. 3 presents the table in a visual form to better visualize the results, with the
standard deviation for each bar.

4.3. Discussion

Comparing error rates and RoI speedups is vital in understanding the difference in re-
silience to approximation for each benchmark and the decisions made by the framework
to mitigate these differences. While benchmarks such as blackscholes and bodytrack
never attain significant errors and can be approximated easily, swaptions, ferret, and FFT
receive approximations that create errors way above the fixed upper limit, requiring the
evaluation system to discard such relaxations. Despite these drawbacks, RAAS was ca-
pable of achieving valid gains for most of these benchmarks after adaptation, except for
FFT.

The discrepancy between output error between applications posits a variance of
resilience between benchmarks, which is justified by the results of blackscholes and flu-
idanimate, as both applications achieve significant speedups without ever exceeding the
upper error limit. Following a different trend, bodytrack is the only application that lacks
significant speedups without surpassing our upper error limit, indicating small resilience
to the proposed techniques. Further analysis with new techniques better suited for similar
applications may show different trends.

A similar discrepancy exists between the speedups observed in regions of interest
and those in the overall application. Our data indicate that this gap is partly due to over-
head introduced by the framework, which is not captured in RoI measurements. However,
the primary cause of this discrepancy lies in the difference between the execution times
of RoIs and the full application. In some benchmarks, such as blackscholes, this effect is
particularly pronounced since the application devotes a substantial portion of its runtime
to input/output processing, especially for larger datasets. Since our approximations do
not target these regions, RoI-based speedups can sometimes present a misleading picture
of overall performance.

Lastly, we address the impact of overhead. Table 2 highlights a noticeable varia-

tion in overhead across benchmarks, which we attribute to differences in evaluation met-
rics. For instance, benchmarks like FFT and swaptions produce small outputs. In contrast,
benchmarks like blackscholes and fluidanimate require more extensive output processing
due to a large number of values to analyze, which scale with input size. Benchmarks
with minimal overhead indicate that the runtime compilation infrastructure does not hin-
der the use of approximations, shifting the burden instead to the evaluation system. We
argue that even in applications with considerable overhead, the trade-offs provided by
approximations remain advantageous, outweighing the potential drawbacks.

4.4. Comparisons with ACCEPT

To reinforce the framework’s capabilities, we compare it against ACCEPT, a static and
general-purpose approximation framework. The decision to choose ACCEPT stems from
its similarity in the methodology of approximations with a runtime evaluation subsystem
that compares output results based on a custom error metric and is targeted to sustain up-
per error limits. The framework is capable of the same approximations implemented in
our proof-of-concept, as provided by [Reis and Wanner 2021], but with a static compila-
tion approach.

Table 3. Comparison between RAAS and ACCEPT. For speedups and approxima-
tion space, higher is better. For the rest, lower is better.

Speedup (x)
Benchmark Convergence Time (x) Region of Interest Max. Error (x) Approx. Space (x)
blackscholes 1.03 49.65 1.31 0 0.83
swaptions 0.49 1.57 0.88 7.8 0.47
fluidanimate 0.27 0.15 0.43 300113 1.10
fft 1.04 1.1 1.2 0.7 1.5

Table 3 compares the results of running benchmarks from our original tests us-
ing the ACCEPT evaluation system, with ACCEPT’s values serving as a baseline. Two
benchmarks were excluded due to a bug in the LLVM version (3.2) used by ACCEPT,
which prevented their compilation. Benchmarks were also tested without the runtime
modifications for constant output delivery described in Section 4.1.

As expected, RAAS speedups generally followed a similar pattern, with a few
exceptions. The most prominent case was fluidanimate, which achieved significantly bet-
ter RoI performance with ACCEPT due to its reliance on a static compilation system,
unlike RAAS’s JIT-based approach. ACCEPT was able to leverage a highly effective
approximation in fluidanimate’s main function, leading to notable speedups and lower
error rates. In contrast, RAAS could not approximate the main function, as it is called
only once and thus cannot benefit from runtime recompilation. While adapting fluidani-
mate to fit RAAS’s framework could address this limitation, we have deliberately avoided
such modifications to ensure a fair comparison with minimal user intervention across both
frameworks.

Excluding fluidanimate, RAAS provided larger RoI speedups for all benchmarks,
even in applications with a smaller approximation space. Despite that, these gains are
not always translated into proportional maximum speedups, which we attribute to the
inherent overheads of runtime approximations. Despite these drawbacks, we believe that

the results present an optimistic view on runtime approximations, especially considering
the impact on reducing convergence time and the possibility of adaptations on the fly for
target applications.

5. Conclusions
Software-level approximation has been explored by various frameworks to provide trade-
offs between error rates and execution times in general-purpose applications. This paper
introduces RAAS, a framework that supports runtime adaptation across diverse appli-
cations with minimal user input, offering automatic evaluation and compilation using
general-purpose approximation techniques.

With minimal source code changes, the system applies various approximation
combinations while monitoring execution times and output accuracy, aiming to maxi-
mize speedups while keeping errors within acceptable limits. Our proof-of-concept eval-
uation, using two approximation techniques across six benchmarks, achieved significant
speedups while maintaining error rates within acceptable bounds.

To enhance the framework’s longevity, we propose improvements to the evaluation
system such as adaptive heuristics to account for environmental changes, reducing over-
head by using larger intervals between output evaluations. Future work includes adding
a crash-handling subsystem to eliminate user intervention and expanding techniques like
automatic parallelization and precision scaling.

We believe that ensuring user-friendly approximation paves the way for the future
of software-level approximate computing, and we argue that our framework is a step in
the right direction.

6. Acknowledgments
This work was supported in part by QuintoAndar, the National Council for Scien-
tific and Technological Development (CNPq) grants 402467/2021-3 and 405940/2022-
0, Coordination for the Improvement of Higher Education Personnel (CAPES) grant
88887.954253/2024-00 and Finance Code 001, and Unicamp FAEPEX grant 2477/23.

References
Ansel, J., Chan, C., Wong, Y. L., Olszewski, M., Zhao, Q., Edelman, A., and Amaras-

inghe, S. (2009). Petabricks: A language and compiler for algorithmic choice. In
PLDI.

Baek, W. and Chilimbi, T. M. (2010). Green: A framework for supporting energy-
conscious programming using controlled approximation. In PLDI.

Bienia, C. (2011). Benchmarking Modern Multiprocessors. PhD thesis, Princeton Uni-
versity.

Gadioli, D., Vitali, E., Palermo, G., and Silvano, C. (2019). mARGOt: A dynamic au-
totuning framework for self-aware approximate computing. IEEE Transactions on
Computers, 68:713–728.

Guthaus, M., Ringenberg, J., Ernst, D., Austin, T., Mudge, T., and Brown, R. (2001).
Mibench: A free, commercially representative embedded benchmark suite. In IEEE
WWC.

Hoffmann, H., Sidiroglou, S., Carbin, M., Misailovic, S., Agarwal, A., and Rinard, M.
(2011). Dynamic knobs for responsive power-aware computing. SIGPLAN Not.,
46(3):199–212.

Kemp, T., Yao, Y., and Kim, Y. (2021). Mipac: Dynamic input-aware accuracy control
for dynamic auto-tuning of iterative approximate computing. In ASP-DAC.

Lachenmann, A., Marrón, P. J., Minder, D., and Rothermel, K. (2007). Meeting lifetime
goals with energy levels. Proceedings of the 5th International Conference on Embed-
ded Networked Sensor Systems.

Liu, J., Shih, W.-K., Lin, K.-J., Bettati, R., and Chung, J.-Y. (1994). Imprecise computa-
tions. Proceedings of the IEEE.

Mitra, S., Gupta, M. K., Misailovic, S., and Bagchi, S. (2017). Phase-aware optimization
in approximate computing. In CGO.

Parasyris, K., Georgakoudis, G., Menon, H., Diffenderfer, J., Laguna, I., Osei-Kuffuor,
D., and Schordan, M. (2021). HPAC: evaluating approximate computing techniques
on hpc openmp applications. In SC.

Pervaiz, A., Yang, Y. H., Duracz, A., Bartha, F., Sai, R., Imes, C., Cartwright, R., Palem,
K., Lu, S., and Hoffmann, H. (2022). Goal: Supporting general and dynamic adapta-
tion in computing systems. In Onward.

Poya, R. (2017). Fast approx library. https://github.com/romeric/
fastapprox.

Reis, L. and Wanner, L. (2021). Functional approximation and approximate paralleliza-
tion with the accept compiler. In SBAC-PAD.

Rinard, M. (2013). Parallel synchronization-free approximate data structure construction.
In USENIX Wksp. on Hot Topics in Parallelism.

Sampson, A., Baixo, A., Ransford, B., Moreau, T., Yip, J., Ceze, L., and Oskin, M.
(2015). Accept: A programmer-guided compiler framework for practical approximate
computing. U. Washington UW-CSE-15-01.

Sampson, A., Dietl, W., Fortuna, E., Gnanapragasam, D., Ceze, L., and Grossman, D.
(2011). Enerj: Approximate data types for safe and general low-power computation.
SIGPLAN Not., 46(6).

Sharif, H., Zhao, Y., Kotsifakou, M., Kothari, A., Schreiber, B., Wang, E., Sarita, Y., Zhao,
N., Joshi, K., Adve, V. S., Misailovic, S., and Adve, S. (2021). Approxtuner: a com-
piler and runtime system for adaptive approximations. In PPoPP ’21, page 262–277.

Sidiroglou-Douskos, S., Misailovic, S., Hoffmann, H., and Rinard, M. (2011). Managing
performance vs. accuracy trade-offs with loop perforation. In ACM ESEC/FSE, page
124–134.

