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Abstract. This study presents a new construct in OpenMP designed to facilitate
the implementation of approximate computing techniques within parallel pro-
gramming environments. By integrating approximation methods such as task
dropping, loop perforation, and floating-point relaxation, the proposed con-
struct aims to enhance performance and energy efficiency while maintaining
acceptable accuracy levels. Experimental results on benchmark applications
demonstrate a trade-off of up to 490.83%, with 55.1% of quality loss, highlight-
ing the potential and limitations of approximate computing in parallel contexts.

1. Introduction

Approximate Computing (AC) explores acceptable margins of error in application results
in exchange for performance and energy efficiency [Mittal 2016]. Domains such as data
analysis, pattern recognition, image processing, and signal processing in general require
results that accept some degree of imprecision [Kugler 2015]]. This imprecision is deter-
mined by the application context and its perception limitations, involving quality metrics
and noise present in the data [Xu et al. 2016].

AC techniques relax precision across computing layers from circuits to algo-
rithms [[Que et al. 2023]]. Techniques that explore approximation in hardware, although
general-purpose, require modifications that add cost to system design. Software modifi-
cations offer benefits with less implementation cost. In the software layer, modifications
that can be generalized from different types of computations include approximation tech-
niques in the compiler [Reis and Wanner 2021]].

Approximations through function memoization [Iziantzioulis et al. 2018]], loop
perforation [Li et al. 2018a], or floating-point relaxation [Schkufza et al. 2014] are some
compiler-implemented techniques that achieve performance and energy efficiency. How-
ever, implementing these techniques individually requires significant changes to the ap-
plication’s source code. Conversely, techniques employing pragmas and programming
interfaces, like OpenMP [omp ], streamline the process of incorporating these methods
into applications.

This work explores compiler approximation techniques for performance gains
through code annotations using the OpenMP interface.  Based on previous re-
sults [Oliveira et al. 2024]], we implement constructs that allow the application of loop
perforation and memoization with just the addition of pragmas to the code. In this way,
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the code requires minimal changes to use AC techniques while benefiting from the exist-
ing gains in the OpenMP interface, including code parallelization.

Our results demonstrate performance improvements of up to 490.83%, with only
a 55.1% reduction in quality. On average, the quality of the applications is 62.63% com-
pared to the original versions. These findings highlight the potential of using AC tech-
niques in compilers, requiring minimal changes to the application source code while still
achieving significant performance gains.

In the following sections, we provide further details on the techniques used and
the experiments conducted. Section 2 discusses the specific approximation techniques ap-
plied in the compiler. Section 3 reviews related works in the field of approximation com-
puting (AC) within parallel programming. Section 4 introduces our proposed OpenMP
constructs. Section 5 outlines the methodology employed in our experiments. Section 6
analyzes the experimental results. Section 7 offers core insights into the use and imple-
mentation of these constructs. Finally, Section 8 presents conclusions and future direc-
tions for optimizing approximation computing in OpenMP environments.

2. Approximation Techniques into Compiler

Task Dropping is a technique where a portion of the computational work is
skipped. It involves specifying a region and a parameter that represents the dropping
rate. During the scheduling of the task, the runtime dynamically adjusts the workloads,
deciding which portions should be executed and which can be dropped.

Loop Perforation, similar to task dropping, is a technique that skips some work-
loads to gain performance or energy efficiency. Loops are among the most frequently
executed parts of code, making them prime targets for optimizations [Bacon et al. 1994]].
The basic implementation of this algorithm involves modifying the loop’s induction vari-
able so that some iterations are simply not executed [Hoffmann et al. [].

Floating-point Relaxation numbers involve an approximation in their representa-
tion due to the impossibility of representing continuous, infinite numbers with a finite
number of bits. Consequently, floating-point representations can introduce errors during
arithmetic operations due to rounding and truncation when the result cannot be repre-
sented within the limited precision of the floating-point format [Monniaux 2008]. To mit-
igate some imprecision introduced during these operations, compilers often avoid apply-
ing certain optimizations that could otherwise enhance software performance. However,
some compilers, such as Clang and GCC, allow the user to enable these optimizations,
even if it could lead to inaccuracies, through the flag ——fast-math, which activates
aggressive optimizations by compilation unit [gcc, icla ]. Additional, MSVC supports the
use of the pragma float_control, enabling these optimizations within a specified
region of code [msv].

Temporal Memoization is an approximate memoization technique that leverages
the temporal order of a function’s invocation to optimize its performance. Traditionally,
memoization focus on caching results based on inputs, ensuring that repeated inputs result
in instant output retrieval [Michie 1968]. However, a distinctive feature of memoization
with temporal locality is that it primarily focuses on the output. This strategy hinges on the



observation that many calculations performed within a specific context and temporal lo-
cality are either identical or closely related. To harness this potential, these computations
are stashed in a cache, available for quick access to improve overall performance. More-
over, this technique allows for various levels of granularity in caching, such as global, per
call site, or context-aware strategies. Not all functions are suitable for this memoization
context. Only functions that return a scalar type, lack side effects, and maintain consis-
tency with these principles within the same function can be effectively incorporated into
the memoization process. [[Tziantzioulis et al. 2018]]

3. Related Work

Lashgar [Lashgar et al. 2018]] brings the concept of loop perforation to OpenACC, which
is a standard that works similarly as OpenMP. Based on some annotations in the code, the
compiler generates code that applies the dropping of iterations.

Sculptor [Lietal. 2018b] proposed compiler optimizations and a runtime that
could perform the loop perforation, based on the dynamic instructions and the iterations
of a loop. SampleMine [Jiang et al. 2022]] is a framework that implements the loop per-
foration techniques to gain performance on subgraph data mining.

Vassiliadis [Vassiliadis et al. 20141, propose an approximated task approach to
gain energy efficiency, in which some operation where some tasks were substitutes by
approximated ones or simple not executed at all.

ApproxHadoop [Goirt et al. 2015], distributed systems can also benefit from this
paradigm by using the idea of task dropping, where part of the computations is simply not
executed. Rinard [Rinard 2006] has also studied part of this idea of dropping tasks and
brings some discussions about when and why this technique can be applied.

HPCA [Parasyris et al. 2021]] is a framework that uses different approximation
techniques to provide an easy way to apply this paradigm to the code. Like OpenMP and
OpenACC, it works by using annotations in the code and providing a runtime that applies
the techniques of memoization or loop perforation.

In contrast with these other works, our work builds upon the established founda-
tion of OpenMP and leverages its parallel programming model to integrate approximate
computing techniques. This not only simplifies the use of approximation within parallel
computing but also opens doors for wider adoption and exploration of this field.

4. Proposal

The current proposal introduces a new construct in OpenMP designed to facilitate the
implementation of approximate algorithms. Similar to other OpenMP constructs, this
implementation relies on pragma annotations to identify regions of code that can be
approximated. Integrating these annotations with the existing framework ensures that
the approximation techniques are portable and easily adaptable to different code regions
without disrupting existing codebases.

The pragma approx [I] annotation identifies a code region for approximation
and specifies the technique to be applied within that region. More than one clause can be
used within the construct, allowing for the use of combined clauses. However, the current



implementation does not support more than one approximated algorithm at a time within
the specified clauses.

Caodigo 1. Syntax of the approx constructor.

#pragma omp approx [clause[[,] clause]]

Floating point relaxation, defined as fastmath [2] is a clause that introduce a
mechanism for applying relaxation and optimizations, as specified in the fast-math
flag of the C1ang compiler [cla ||, to designated regions of code.

Cadigo 2. Syntax of the fastmath clause.

#pragma omp approx fastmath

Loop perforation, defined as the perfo [3| clause, is instrumental in implement-
ing the loop perforation algorithm [Hoffmann et al. []. This clause needs to be used in
combination with the for clause. A perforation modifier specify the type of perforation,
offering choices such as init, fini, small and large, along with a value to specify
the range of iterations that can be discarded.

Cddigo 3. Syntax of the perfo clause.

#pragma omp approx for perfo(modifier ,drop—rate)

Task dropping, defined as the drop [ clause, implements the algorithm for drop-
ping some iterations. This clause needs to be used in combination with taskloop. As
in the loop perforation, this clause is going to drop some iterations of the loop, based on
the drop rate passed as a parameter to drop.

Codigo 4. Syntax of the drop clause.

#pragma omp approx taskloop drop(drop-rate)

Temporal memoization, defined as the memo [5| clause, implements the algorithm
for memoization. The clause needs to be used in conjunction with the shared clause,
so that the variables address can be saved to its results be later verified, other important
aspect of this clause is the use of the threshold modifier that if not specified will
assume that all values can be memoized without verifying the output loss.

Codigo 5. Syntax of the memo clause.

#pragma omp approx memo shared ([ variables])
[threshold (error—-limit)]

S. Methodology

The experiments were made in the Intel® Core™ 17-4790 CPU @ 3.60GHz with 4 physi-
cal cores and support for 8 threads, 32GB of RAM. All the tests were made in the Ubuntu
22.04.4 LTS.

Most of the applications used for the benchmark come from the Rodinia bench-
mark suite, which represents a wide variety of computationally and memory-intensive
tasks. The applications chosen cover different problem domains, including finance, fluid




dynamics, clustering, and molecular dynamics. A brief description of the ones chosen can

be found on Table

Benchmarks

Definition

Blackscholes [ Yazdanbakhsh et al. 2017]]

A mathematical model that estimates the price
of options by solving a partial differential equa-
tion

CFD [Che et al. 2009]

An unstructured grid solver for 3D Euler equa-
tions in compressible flow

K-means [|Che et al. 2009]

A clustering algorithm that divides data into K
sub-clusters based on features

Particle Filter [[Che et al. 2009]]

A statistical estimator that tracks a target’s lo-
cation using noisy measurements and predicted
paths

LavaMD [Che et al. 2009]]

Calculates particle potential and relocation due

to mutual forces in 3D space

Table 1. List of applications used.

For most applications, the new annotations were used alongside existing OpenMP
annotations to manage parallelism effectively. In cases where multiple annotations were
required, they were applied strategically to different sections of the code, typically tar-
geting the main computational function where the majority of the workload occurs. Both
the baseline (non-approximated) and the approximated versions of the applications were
compiled using the -O3 flag, which enables aggressive optimizations such as function
inlining, loop unrolling, and vectorization. This ensures that both versions are fully op-
timized for performance, allowing for a fair comparison of the impact of approximation
techniques.

To compare the accuracy loss of the applications, two metrics were used, the Mean
Absolute Percentage Error (MAPE) (1| and the Miss-Classification-Rate (MCR) |2 Both
used the n as the number of elements in the data array, A, is the t-th element in the accurate
array and F} is the t-th element in the approximate array. In the MCR, the « was used as
an operator that returns 1 when the condition is true.

The MAPE was selected to analyze the applications, because it provides a
percentage-based measure of deviation from the accurate results, making it useful for
understanding the relative error across different benchmarks. MCR was used specifically
to evaluate the K-means application, as it’s a metric that measures the rate of incorrect
classifications.
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The applications were tested with different entries of sizes that vary from a tiny
to a large entry, and each one of the applications were tested with a different number of
threads (1, 2, 4, 6, and 8). All applications were executed 10 times to minimize environ-
mental variations. Random perforations in the perfo and drop clauses used a fixed seed
for consistency. Speed-up was measured by comparing the number of cycles between the
original and approximated versions of the applications.

6. Results

The evaluation focused on performance improvements and accuracy trade-offs when ap-
plying approximate computing techniques to the chosen benchmarks. Speedup measure-
ments were based on the number of cycles in each application.
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Figure 1. Speedup vs. Quality Loss of Blackscholes.

Blackscholes: Annotations were added to the bs_thread function, which al-
ready contained pragma annotations from the Rodinia benchmark suite. As shown in
Figure m the technique memo, perfo small, perfo init, perfo fini, and
achieved speedups of 13.35%, 10% 7.07% and 4.69%, respectively. In terms of out-
put quality, memo and perfo small experienced significant degradation. Specifically,
memo that resulted in a loss of 100%, and perfo small that had a 97.36% loss.
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Figure 2. Speedup vs. Quality Loss of CFD.

CFD: In this application, several functions already had annotations, so only the
compute_flux function was annotated with approximation techniques due to its high
computational intensity. Figure 2]displays the speedup and accuracy loss associated with
these annotations. The results show that memo achieved a speedup of 10.91%, while
perfo large provided the most significant speedup at 53.19%. Other techniques re-
sulted in some degradation in speedup. Unlike other applications, CFD generally sup-
ported approximation techniques with minimal quality loss. The highest quality loss was
observed with perfo large, which had a loss of 54.26%.
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Figure 3. Speedup vs. Quality, Loss of LavaMD.

LavaMD: Annotations were applied to the kernel _cpu function in this pro-
gram. As depicted in Figure [3) LavaMD showed the poorest performance among all the
tested applications, with substantial speedup losses across all techniques. The quality



degradation was also among the worst, with memo and perfo large resulting in a
complete loss of 100% in quality.
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Figure 4. Speedup vs. Quality Loss of Particle Filter.

Particle Filter: Like the CFD application, this application also features multiple
annotations, all within the particleFilter function. Except for the fastmath an-
notation, which does not alter the code structure, other annotations were applied solely to
the loop handling the motion model and particle filter likelihood. The results are presented
in Figure [d] In this application, perfo fini achieved a speedup of 36.62%, perfo
large achieved 19.13% and perfo init achieved 4.74%. In terms of quality loss,
none of the techniques resulted in more than 50% loss, with memo showing the highest
loss at 46.65%.
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Figure 5. Speedup vs. Quality Loss of K-means.

K-means: Annotations were applied to the main loop of the



kmeans_clustering function in this program. Figure [5] presents the results for
this application. Overall, it achieved the best performance among the tested applications,
with a speedup gain of up to 4 times the original application. Specifically, the perfo
small technique delivered a remarkable speedup of 490.83%, while drop achieved
248.65%, fastmath 249.95%, perfo init 407.67%, and perfo fini 423.31%.
Despite these gains, the quality loss was significant, averaging 50%, with the highest
degradation observed with drop, which resulted in a quality loss of 61.62%.

The results also highlight the limitations of using approximation techniques in par-
allel programming, primarily due to issues with quality and execution overhead. Without
runtime result checks, approximation techniques often lead to suboptimal quality out-
comes. Additionally, the overhead from OpenMP calls in these techniques can be sub-
stantial, especially in iterations where approximation is unnecessary.

The applications tested exhibited some variability in results, but an overall analysis
of the techniques is as follows:

e fastmath: This clause introduced minimal friction, showing neither notable
speedup nor quality loss.

* drop: This clause also failed to deliver significant speedup and did not achieve a
balanced quality loss.

* memo: This clause caused the most substantial quality loss in the final results.

* perfo: Results varied across different implementations, but overall, the perfo
large version provided the best speedup, though with poor quality outputs.

The results varied significantly between applications. Among the tested applica-
tions, kmeans emerged as the most effective for using these techniques, achieving the
best balance between speedup and quality.

7. Core Insights

As a final insight, techniques such as loop perforation and memoization have demon-
strated significant performance improvements, although this often comes with a trade-off
in result accuracy. Applications already employing some form of approximation, like
K-means and Particle Filter, show better outcomes in both performance and speedup,
indicating that while not all applications benefit from these techniques, those that do can
achieve substantial gains. For example, K-means, which depends on distance calculations
for cluster assignment, can see marked performance enhancements by skipping some of
these calculations through loop perforation, without drastically compromising accuracy.
Similarly, other applications that do not require strict sequential consistency can also gain
from these approximation methods

Regarding OpenMP, the complexity of its codebase, driven by its role in paral-
lel computing across various platforms, poses additional challenges. Much of the per-
formance overhead observed arises from internal checks and computations necessary to
ensure correct execution, contributing to the overall inefficiency. Part of the performance
issues seen, particularly with the per fo technique, could be mitigated by using Clang’s
optimization passes to restructure loops instead of relying on runtime calls. Another way
to reduce overhead is by implementing runtime checkers that monitor result quality. If a
result falls below the expected quality threshold, the application could revert to its normal



execution flow. While this would introduce some initial overhead, performance would
stabilize after a few executions, reducing overhead and improving output quality overall.
This approach could help optimize both performance and accuracy without sacrificing too
much on either front.

8. Conclusion

The main goal of this work was to integrate the paradigm of approximate computation
into the OpenMP infrastructure, combining it with parallel computations to explore new
optimization opportunities. This research contributes significantly by providing a de-
tailed evaluation of various approximation techniques within the OpenMP framework,
highlighting their potential benefits and limitations.

This study extends existing work by applying approximation techniques, such as
loop perforation and memoization, in a parallel computing context using OpenMP. While
previous research has explored these techniques individually or in different contexts, our
work comprehensively analyzes their performance and quality trade-offs when combined
with OpenMP. We implemented and evaluated five different approximation algorithms,
uncovering significant limitations in their application within this framework. Key issues
included quality degradation and execution overhead, primarily due to the overhead asso-
ciated with calling runtime functions and the absence of runtime result checks to improve
output quality and reduce overhead.

As future work, we plan to optimize the implementation further and introduce a
runtime checker to verify application results. The runtime checker will support addressing
the current limitations by enhancing output quality and mitigating execution overhead.
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