Performance Evaluation of N-Body Simulations on AWS with
StarPU, OpenMP and MPI Runtime Systems

Nicolas Vanz', Vanderlei Munhoz'?, Marcio Castro!

! Federal University of Santa Catarina — Florian6polis — Brazil
2University of Bordeaux — Talence — France

nicolas.vaz@ufsc.br, vanderlei.munhoz-pereira-filho@inria.fr
marcio.castro@Qufsc.br

Abstract. Cloud Computing provides a cost-effective option for High Perfor-
mance Computing (HPC) workloads, but brings new challenges. This study
evaluates StarPU, a task-based runtime for heterogeneous architectures, in
cloud environments by running an N-Body simulation under different clus-
ter configurations and comparing it with traditional HPC runtime systems
(OpenMP and MPI). Results show that StarPU excels in single-node setups, es-
pecially with GPU acceleration, while scalability varies, struggling with CPU-
intensive workloads but performing well in hybrid and GPU-only scenarios.
These insights highlight the need for careful infrastructure selection and archi-
tectural strategies to ensure good performance in cloud-based HPC.

1. Introduction

Cloud Computing offers notable advantages for computational workloads, including on-
demand access to advanced resources, scalable provisioning, and a cost-efficient pay-per-
use model. However, extending these benefits to High Performance Computing (HPC)
introduces several challenges, especially in addressing the stringent demands of scientific
applications [Netto et al. 2018, Guidi et al. 2021, Dancheva et al. 2024].

To address these challenges, the HPC landscape has increasingly turned to het-
erogeneous computing architectures, integrating hardware accelerators like Graphic Pro-
cessing Units (GPUs) to enhance parallel processing capabilities. GPUs have become
central to the architecture of leading supercomputing systems, delivering significant per-
formance improvements for compute-intensive, parallelizable tasks [Zwart et al. 2007,
Nylons et al. 2007, Wei et al. 2022]. Complementing this hardware evolution, task-
based parallelism has emerged as an effective programming paradigm. By decom-
posing applications into smaller, independent tasks defined by explicit data depen-
dencies, task-based frameworks enable dynamic scheduling, allowing workloads to
be efficiently distributed across heterogeneous resources based on current system
conditions [Augonnet et al. 2011, Bueno et al. 2012, Hoque et al. 2017]. This adap-
tive approach contrasts with traditional static allocation methods [Graham et al. 2006,
Chandra 2001], improving load balancing and reducing idle time in heterogeneous HPC
environments [Pereira 2023].

In this study, we explore the practical viability of deploying a task-based HPC
application on a general-purpose public cloud platform. Focusing on a representa-
tive N-Body simulation, we compare two execution models on Amazon Web Services
(AWS): a dynamic task-scheduling approach using the StarPU [Augonnet et al. 2011]

framework to manage heterogeneous resources, and a conventional HPC setup
combining Open Multi-Processing (OpenMP) [Chandra 2001] and Message Pass-
ing Interface (MPI) [Graham et al. 2006] for parallelization. To facilitate the de-
ployment and management of these configurations, we leverage the HPC@Cloud
Toolkit [Munhoz and Castro 2024], which streamlines infrastructure handling and accel-
erates testing in the cloud.

In summary, this work contributes to the field through the following advance-
ments: (i) a comprehensive analysis of the advantages and challenges of leveraging het-
erogeneous computing in cloud HPC environments, along with strategies to effectively
harness performance from hardware heterogeneity; (i) a comparative evaluation of mod-
ern HPC frameworks, such as StarPU, highlighting their benefits and limitations in rela-
tion to traditional approaches that combine OpenMP and MPI.

The remainder of this paper is organized as follows. Section 2 introduces the
fundamental concepts of cloud HPC and the StarPU runtime system. Section 3 describes
the N-Body problem and its implementations using StarPU and OpenMP/MPI. Section 4
details the experimental setup, while Section 5 presents and analyzes the results. Section
6 reviews related work. Finally, Section 7 summarizes the main findings and concludes
the paper.

2. Background

This section provides the background to contextualize our work at the intersection of HPC
and cloud environments. We begin by discussing the fundamental characteristics of tra-
ditional HPC systems and cloud computing infrastructures (Section 2.1). Next, we intro-
duce StarPU, a runtime system designed to simplify and optimize task scheduling across
heterogeneous hardware platforms (Section 2.2). Finally, we present the HPC @Cloud
Toolkit, a lightweight, cloud-agnostic framework used in this study to automate the de-
ployment and management of HPC clusters in public cloud environments (Section 2.3).

2.1. High Performance Computing and Cloud Computing

HPC refers to the use of powerful computational systems designed to solve complex sci-
entific and engineering problems that require extensive processing power, high-speed in-
terconnects, and large-scale data handling capabilities. Traditional HPC infrastructures
are typically composed of tightly-coupled clusters or supercomputers, where nodes are
interconnected through high-bandwidth, low-latency networks, such as InfiniBand. These
environments are optimized to deliver peak performance by providing fine-grained con-
trol over resource allocation, process placement, and data locality. HPC applications often
rely on parallel programming paradigms like MPI and OpenMP to exploit the parallelism
available in these architectures, enabling efficient execution of simulations, numerical
methods, and large-scale data analyses.

In contrast, Cloud Computing has emerged as a flexible, on-demand resource pro-
visioning model, offering scalability, elasticity, and cost-efficiency through a pay-per-use
pricing model. Data centers are designed to serve a broad spectrum of workloads, prior-
itizing ease of deployment, service availability, and operational scalability for enterprise
applications, web services, and data-driven workflows [Liberman Garcia 2015]. The ab-
straction layers provided by virtualization and containerization technologies are central
to Cloud Computing, enabling resource sharing among multiple tenants and simplifying
infrastructure management.

Despite its numerous advantages, the convergence of HPC workloads with cloud
environments presents significant challenges. Scientific applications often demand low-
latency communication, high-throughput data exchanges, and deterministic execution,
which are difficult to achieve within virtualized, multi-tenant cloud architectures. Large-
scale simulations typically involve datasets that exceed the memory capacity of individual
nodes, requiring distributed data partitioning and frequent synchronization across nodes.
However, in cloud settings, the inherent variability in network performance, resource con-
tention, and limited control over hardware affinity exacerbate communication overheads
and introduce unpredictable performance fluctuations. These limitations pose critical bar-
riers to efficiently executing HPC workloads in public cloud infrastructures, especially
when compared to the tightly-coupled nature of traditional HPC clusters.

To address these challenges, the HPC community has increasingly embraced het-
erogeneous computing architectures as a strategy to enhance computational through-
put and overall efficiency. The adoption of specialized hardware accelerators, most
notably GPUs, has revolutionized performance capabilities in supercomputing sys-
tems [Zwart et al. 2007, Nylons et al. 2007, Wei et al. 2022]. GPUs, with their massively
parallel processing cores, are particularly well-suited for workloads involving dense nu-
merical computations, matrix operations, and data-parallel tasks. Heterogeneous comput-
ing holds particular significance in cloud environments, where the availability of specific
hardware resources is inherently uncertain, both within a single provider and across differ-
ent providers, especially when portability to alternative cloud platforms is a consideration.
However, efficiently harnessing the full potential of heterogeneous resources requires so-
phisticated programming models and runtime systems capable of dynamically managing
resource allocation, workload distribution, and data movement, further complicating the
convergence of HPC workloads with cloud-native environments.

2.2. StarPU

StarPU [Augonnet et al. 2011] is a runtime system designed to simplify the development
and execution of task-based parallel applications on heterogeneous architectures. It ab-
stracts the complexities of hardware heterogeneity by (i) allowing developers to provide
multiple implementations of the same task, each optimized for a different type of process-
ing unit, such as a CPU or a GPU; and (ii) enabling programmers to express applications
as task graphs, where tasks are defined with explicit data dependencies. This flexibil-
ity allows developers to describe alternative execution strategies for tasks depending on
the available hardware resources. StarPU then dynamically schedules these tasks across
CPUs and GPUs, optimizing resource utilization while minimizing idle times and unnec-
essary data movements.

One of StarPU’s key strengths lies in its ability to transparently manage the of-
floading of computational kernels, synchronization and data coherency across hetero-
geneous systems. This is particularly valuable when dealing with diverse hardware re-
sources, as statically mapping and synchronizing tasks in such environments is not only
complex but often non-portable. StarPU’s dynamic scheduling capabilities allow applica-
tions to fully exploit the specific strengths of Central Processing Units (CPUs) and GPUs
in a portable and scalable manner.

StarPU provides several schedulers. In this work, we utilize the Deque Model
Data-Aware (DMDA) scheduler [Augonnet et al. 2011], which bases its scheduling deci-
sions on estimated task execution periods and data transfer expenses. It maintains perfor-

mance models for each kernel on various processing units, refining execution time pre-
dictions as tasks finish. By accounting for both computation duration and data movement
costs, DMDA minimizes total execution time, offering significant advantages in public
cloud settings, where data transfer can be a major limitation.

2.3. HPC@Cloud

The HPC@Cloud Toolkit [Munhoz and Castro 2024] is an open-source framework that
automates the deployment and management of HPC clusters in cloud environments'. It
simplifies resource provisioning and cluster configuration, allowing users to rapidly set
up customized HPC infrastructures for various workloads.

Unlike AWS ParallelCluster, for example, which targets production-grade deploy-
ments with deep AWS integration, HPC @Cloud offers a lightweight, cloud-agnostic ap-
proach focused on ease of use and fast prototyping. It toolkit utilizes user definitions
in the form of HashiCorp Configuration Language (HCL) files, used by Terraform, an
industry-standard Infrastructure as Code (IaC) tool widely adopted in enterprise environ-
ments. The toolkit manages the entire lifecycle of cloud resources by implementing the
generated Terraform plans to provision resources at the start of an experiment, while also
ensuring comprehensive decommissioning after completion, thereby avoiding orphaned
resources and unnecessary costs. The toolkit was utilized in this study to provision the
experimental cloud environment, avoiding dependency on vendor-specific HPC solutions.

3. N-Body Simulations

The N-Body Problem is a fundamental topic in computational physics and astrophysics,
as it models the dynamics of particles interacting under mutual forces, typically governed
by Newtonian gravity or electrostatic interactions [Heggie 2005]. The core complexity of
this problem lies in the fact that every particle exerts a force on, and is simultaneously in-
fluenced by, every other particle in the system. Consequently, the computational workload
scales quadratically with the number of bodies involved for direct calculation approaches.
This inherent computational demand turns the N-Body Problem a good candidate for
evaluating the performance of HPC architectures and parallel computing frameworks.

Traditionally, solutions for the N-Body Problem involve either direct methods,
which calculate all pairwise interactions, or approximate methods like the Barnes-Hut
algorithm [Barnes and Hut 1986] and the Fast Multipole Method (FMM) [Wang 2021],
which lower computational demands by grouping distant particles and estimating their
effects. These techniques often employ parallelization with MPI or hybrid MPI and
OpenMP strategies to distribute computations over multiple nodes. For simplicity, this
work explores a direct method, which grows quadratically to the number of simulated
bodies.

The implemented solution for the N-Body problem employs a direct computation
technique, methodically determining the gravitational forces exerted on each particle by
assessing all pairwise interactions present in the system. Although the direct method pro-
duces highly accurate results, our main objective is to utilize this algorithmically intensive
workload to stress-test and evaluate different Cloud Computing setups and tools, rather
than capitalizing on its precision advantages for scientific exploration.

'"HPC @Cloud Toolkit’s repository: https://github.com/lapesd/hpcac-toolkit

In the algorithm, we apply the Equation 1 [Nylons et al. 2007, Zwart et al. 2007]
to determine the force F' between two particles ¢ and j during a simulation time-step. This
equation simplifies Newton’s law of universal gravitation by postulating that the bodies
have identical masses.

Fj=—-1_"= (1)

(175 =7 + €)™

Thus, the overall force acting on a particle 7 is determined by summing the forces
applied by all remaining particles as stated in Equation 2:

N
Fi=> F;)
=1
=t

oL,

We thus derive the acceleration for each particle, which correlates with the total
force. Subsequently, we update the velocity (Equation 3) and position (Equation 4).

Tt + Ab) = Gi(t) + @(t) - At 3)
Ti(t + At) = 7i(t) + vi(t) - At “4)

From a computational perspective, our entire system was modeled using two data
arrays: one for position vectors and the other for velocity vectors. We defined two tasks,
designed to: (i) compute the total force on each particle; and (ii) update their positions.
Figure 1 illustrates the task execution flow of the N-Body simulation. At each simulation
step, a set of tasks is launched to compute the inter-particle forces in two phases. Dur-
ing the first phase, the positions array is accessed in read-only mode (read dependency),
while the velocities array is updated by the tasks (write dependency). To enable paral-
lel execution, the velocities array is partitioned into segments and distributed across the
available compute nodes, whereas the positions array is replicated to provide the neces-
sary input for all force calculations. This data segmentation and distribution are managed
either implicitly by StarPU or explicitly via manual partitioning in the MPI+OpenMP im-
plementation. Following the force computation, a new set of tasks is generated to perform
position integration. In this second phase, however, the positions array is updated by the
tasks (write dependency), while the velocities array is accessed in read-only mode (read
dependency). As before, the arrays are partitioned and assigned to parallel tasks. Once
all tasks have completed, data synchronization is performed to ensure consistency across
nodes, thereby preparing the system state for the next simulation step.

3.1. StarPU Implementation

In the StarPU implementation, tasks are executed across a pool of heterogeneous work-
ers, comprising both CPUs and GPUs. Since each task’s input data dependencies are
determined by the specific array indices it accesses or modifies, the data arrays are asyn-
chronously partitioned and assigned to the corresponding tasks by StarPU at runtime con-
sidering current data distribution and resource usage. We define the partitioning strategy
(number and size of partitions), while StarPU dynamically determines when to partition

sync sync sync

p1 p1:}:p2
Integrate
v v14v2
p1 | p2 | p3 | p4 p1 | p2 | p3 | p4
vl [v2 | v3 | V4 o1 p3:1pd vl | v2 | v3 | v4
Integrate
initial simulation next simulation
step data v3/va step data

Write dependency D Read dependency

Figure 1. lllustration of data dependencies and task management of the imple-
mented N-Body solvers.

and transfer data based on task scheduling. Task distribution across nodes is performed
statically, with tasks evenly divided among the nodes. Within each node, scheduling de-
cisions are managed by the DMDA scheduler. The StarPU task distribution approach
adheres to its core principle of providing the same task behavior on different processing
units: the total number of tasks always matches the number of available workers in the
cluster (CPUs + GPUs), in contrast with the MPI+OpenMP approach. Additionally, one
CPU core per node is reserved for scheduling operations.

Figure 1 illustrates how positions (p;) and velocities (v;) are handled throughout
each simulation phase. The data arrays are dynamically segmented and reassembled to
align with the specific requirements of the current tasks. For example, computing the total
force on each body requires access to the entire position array, whereas updating particle
positions only necessitates a localized subset of the data. StarPU implicitly manages data
dependencies by analyzing the task graph scheduling, orchestrating data transfers and
maintaining coherence across processing units.

Parallelism in this implementation is achieved by decomposing every simulation
step into numerous fine-grained tasks, which can be scheduled for execution on any avail-
able processing unit. StarPU dynamically orchestrates task scheduling and resource allo-
cation at runtime, leveraging performance models to decide which processing unit, CPU
or GPU, should execute each task based on current workload conditions and resource
availability. This adaptive scheduling approach enables effective load balancing and re-
source utilization across heterogeneous cloud infrastructures.

3.2. OpenMP+MPI Implementation

In the implementation that combines OpenMP with MPI, parallelism is achieved through
a static data decomposition approach. At each simulation time step, the arrays are stati-
cally partitioned, distributed to the respective nodes, and later gathered to synchronize re-
sults. This segmentation process is repeated in every iteration step, imposing explicit data
management and task distribution responsibilities on the programmer. Unlike the StarPU
implementation, where task distribution is dynamic and guided by runtime scheduling
policies, the MPI+OpenMP approach enforces a fixed distribution strategy: at each time
step, large computational tasks are spawned and assigned to each node. Within a node,
these tasks are executed using a fork-join model with multiple CPU threads or offloaded
to GPUs through OpenMP target offloading directives.

In the multi-node implementation, the number of tasks depends on the target pro-
cessing unit. GPU workloads are handled by spawning one task per available GPU, while
CPU workloads are done by spawning one task per physical core in the cluster. Paral-
lelism in this model is thus realized by generating coarse-grained tasks per node, which
are further processed locally. On the CPU side, tasks are subdivided into smaller chunks
for execution by OpenMP threads, while for GPU execution, the entire workload segment
is offloaded to the accelerator using the target directive.

4. Experimental Setup

We designed an experimental setup leveraging the HPC@Cloud Toolkit for automated
provisioning and configuration. The experimental infrastructure was structured into two
configurations: (i) single node, where each experiment was executed on a standalone
instance; and (i1) homogeneous multi-node clusters, comprising 2, 4, and 8 nodes, with all
nodes utilizing identical instance types. This experimental design facilitated an evaluation
of performance across different hardware configurations, enabling the assessment of both
raw computational efficiency and scalability as the number of nodes increased.

All experiments were conducted using the g6 .1 6x1arge instance type, featur-
ing 64 vCPUS (32 physical cores), a NVIDIA L4 GPU with 24 GiB of memory, and
256 GiB of RAM. To ensure consistency and reduce variability across runs, simultaneous
multithreading (e.g., Hyper-Threading) was disabled on all nodes. The software stack em-
ployed in the experiments included StarPU 1.4.7, OpenMP 5.0, and OpenMPI 5.0.7, with
all system images based on the official release of Amazon Linux 2023.6.20250218. For
the OpenMP implementation, the number of threads was restricted to match the number
of physical CPU cores, ensuring a fair comparison with the StarPU configuration, which
is designed to schedule tasks exclusively on physical cores.

5. Results and Discussion

We begin our analysis by evaluating performance in three distinct single-node scenarios:
CPU-only execution, GPU-only execution, and hybrid execution leveraging both the CPU
and GPU. These experiments establish a baseline for assessing computational efficiency
on a single instance. We then extend the study to multi-node (cluster) configurations to
investigate the scalability of the implementation and evaluate the efficiency of horizontal
scaling across distributed cloud resources.

We evaluated execution times for two input sizes: a “small” input consisting of
219 bodies and a “large” input with 2%2° bodies. Each experiment was executed ten times,
and the reported results represent the average execution time. Performance was com-
pared between the StarPU-based implementation and an alternative approach that com-
bines OpenMP and MPI.

5.1. Single-node Results

Figure 2 presents the execution times (in seconds) of the N-Body simulation on a single
node, comparing the performance of CPU-only, GPU-only, and hybrid CPU-GPU con-
figurations. Across all configurations and input sizes, the StarPU-based implementation
consistently outperformed the OpenMP-based approach. Notably, configurations lever-
aging GPU acceleration with StarPU achieved substantial performance improvements.
The experiments revealed that using the GPU for force computation led to significant

Tool Problem Size

I StarPU [OpenMP rZ4 2719 bodies [2720 bodies
1400 -)
S
Y
1200 A $’ - o Y
Q Q
~ ~
1000
%]
2 800
o
|9}
& 600+
400 4
200 -
0.
Hybrid
Figure 2. Execution time (in seconds) on a single node.
Tool Problem Size
I StarPU [MPI+OpenMP 74 2719 bodies [2720 bodies
1600 - o)
o
1400 1 ~
1200 4
5 1000
C
S 8001
L}
Y 600
400 4
200 -

4
Nodes

Figure 3. Execution times (in seconds) on clusters with only CPU tasks.

speedups, reducing execution time by approximately 80% to 85% compared to a 32-core
CPU-only configuration. This highlights the effectiveness of GPU acceleration for the
computationally intensive phases of the simulation.

In the hybrid execution strategy, workloads were divided between CPU and GPU
resources. In the StarPU implementation, this distribution was handled dynamically at
runtime, based on StarPU’s internal scheduling and performance models. In contrast,
we employed the OpenMP’s target directive to offload the most computationally de-
manding tasks (force calculations) to the GPU, while delegating lighter tasks to the CPU.
Interestingly, the hybrid configuration did not yield significant performance gains in ei-
ther implementation. This result suggests that the overhead associated with executing
fine-grained tasks on the GPU (such as data transfer and synchronization costs) offset any
potential speedup. Consequently, the overall performance of the hybrid configuration re-
mained comparable to that of the GPU-only setup, indicating that the granularity of the
lighter tasks was insufficient to benefit from GPU offloading.

5.2. Multi-node Results

Figure 3 presents the execution times for the CPU-only configuration in a multi-node en-
vironment. In this scenario, the MPI+OpenMP implementation demonstrated excellent

Tool Problem Size
I StarPU [MPI+OpenMP vZ4 2719 bodies =3 2720 bodies

3
©

Seconds

Nodes

Figure 4. Execution times (in seconds) on clusters with only GPU tasks.

scalability. Conversely, StarPU encountered difficulties in managing the large number of
CPU tasks spread across multiple nodes, leading to diminished scalability and increased
execution times. Notably, the two-node StarPU configuration exhibited higher execution
times than the single-node setup, suggesting that the overhead associated with task distri-
bution and inter-node communication outweighed the benefits of parallelism at this scale.

Figure 4 illustrates the execution times in a multi-node configuration with GPU-
only execution. The results highlight that StarPU manages GPU tasks significantly more
efficiently than the MPI+OpenMP implementation for the given setup, achieving lower
execution times and demonstrating excellent scalability as the number of nodes increases.
Notably, the CUDA-based implementation further reduces execution time in the StarPU
configuration, leveraging fine-grained kernel optimizations and efficient data manage-
ment, an advantage not observed in the MPI+OpenMP approach, where the overhead of
managing offload directives and data transfers limits performance gains.

Figure 5 presents the execution times in a multi-node configuration with hybrid
CPU+GPU execution. The results demonstrate that StarPU was able to reduce in 2% to
10% the execution time by balancing workloads between CPUs and GPUs, dynamically
exploiting available resources when possible. In contrast, the MPI+OpenMP implemen-
tation showed 1% to 5% higher execution times. This outcome highlights StarPU’s ability
to determine when and how to utilize CPU resources to minimize execution time when
data movement and synchronization become more expensive, such as in multi-node se-
tups, while the rigid task distribution strategy of MPI+OpenMP limits its efficiency in
these environments.

6. Related Work

Npylons et al. proposed a CUDA-based implementation of the All-Pairs N-Body algorithm,
tackling the inherent O(/N?) computational complexity through a tiling strategy that pro-
motes data locality and minimizes memory bandwidth constraints [Nylons et al. 2007].
Furthermore, they employed loop unrolling and fine-grained control over thread synchro-
nization to further enhance throughput, achieving significant performance gains. Building
upon some of the algorithmic techniques, our work extends these concepts to heteroge-
neous computing environments by employing a task-based dynamic scheduling model
that integrates both CPU and GPU resources.

Tool Problem Size
I StarPU — MPI+OpenMP 724 2719 bodies £ 2720 bodies

600 -

Seconds
w D (9,1
o o o
o o o

N

o

o
L

100 o

6

Nodes

Figure 5. Execution times (in seconds) on clusters with CPUs+GPUs.

Teylo et al. investigated the use of ephemeral public cloud infrastructures to ex-
ecute bag-of-tasks applications, offering valuable insights into leveraging cost-effective
and flexible resources for HPC workloads [Teylo et al. 2023]. Their work primarily ad-
dresses embarrassingly parallel applications, which inherently align with the cloud’s elas-
tic resource provisioning and exhibit minimal inter-task communication overheads. In a
complementary direction, our study also examines an embarrassingly parallel problem,
the N-Body simulation, but in a distinct computational context. Specifically, we focus on
on-demand cloud instances and employ StarPU, a runtime system that orchestrates com-
putations using a task graph-based model. This approach introduces dynamic scheduling
mechanisms to manage task execution across CPU and GPU resources.

Zhuang et al. demonstrated that large-scale Earth science simulations on public
cloud platforms can achieve performance and cost metrics comparable to traditional su-
percomputing environments [Zhuang et al. 2020]. By optimizing MPI configurations and
using reproducible workflows with AWS ParallelCluster and Spack, they showcased effi-
cient scaling of the GEOS-Chem model. Their work addresses prior concerns about cloud
inefficiency in HPC, focusing on specialized, high-performance configurations.

This research deviates from prior studies by comparing explicitly the dynamic
scheduling offered by StarPU to traditional HPC tools in on-demand cloud instances,
while avoiding the use of HPC marketed solutions. By isolating the runtime and schedul-
ing behavior of StarPU under these conditions, the research provides a novel perspective
on its adaptability and efficiency in on-demand cloud environments, thus contributing to
the understanding of task-based parallelism in cloud-based HPC contexts.

7. Conclusion

This work evaluated the effectiveness of task-based dynamic scheduling using StarPU
for executing N-Body simulations on AWS, and compared its performance to a tradi-
tional MPI+OpenMP implementation. The results showed that StarPU consistently out-
performed the MPI+OpenMP approach on a single node, especially when GPU accelera-
tion was utilized for force computations. However, in hybrid CPU+GPU configurations,

neither approach yielded additional performance benefits. The overhead associated with
offloading fine-grained tasks, such as particle position updates, to the GPU offset any
potential gains, resulting in performance comparable to GPU-only execution.

In multi-node CPU-only executions, MPI+OpenMP exhibited excellent scalabil-
ity, while StarPU faced challenges managing a large volume of distributed CPU tasks,
leading to performance degradation. Conversely, in GPU-only and hybrid multi-node
scenarios, StarPU outperformed MPI+OpenMP. These results underscore the importance
of dynamic scheduling frameworks for hybrid cloud HPC workloads.

Overall, this study demonstrates that task-based parallelism plays a crucial role in
effectively utilizing the heterogeneous resources available in public cloud environments.
However, it is important to recognize a key trade-off associated with StarPU: while per-
formance model calibration is essential for optimizing task scheduling and improving
application efficiency, the calibration process itself incurs computational overhead and ad-
ditional costs. A practical approach would be to conduct calibration during development
phase, store the resulting performance models, and update them only when substantial
changes occur in workload characteristics or the underlying cloud infrastructure.

As future work, we plan to expand our performance evaluation to in-
clude alternative solutions to the N-Body problem, such as the Barnes-Hut algo-
rithm [Barnes and Hut 1986] and FMM [Wang 2021], which introduce hierarchical ap-
proximations to reduce computational complexity and offer new opportunities for paral-
lelization.

Acknowledgements

This work was partially funded by Conselho Nacional de Desenvolvimento Cientifico e
Tecnologico (CNPq), Fundag¢do de Amparo a Pesquisa e Inovag¢do do Estado de Santa
Catarina (FAPESC) through the call N° 18/2024 and Amazon Web Services (AWS)
through the CNPq/AWS call N° 64/2022 (Cloud Credits for Research).

References

Augonnet, C., Thibault, S., Namyst, R., and Wacrenier, P.-A. (2011). StarPU: a unified
platform for task scheduling on heterogeneous multicore architectures. Concurrency
and Computation: Practice and Experience, 23(2):187-198.

Barnes, J. and Hut, P. (1986). A hierarchical o(n log n) force-calculation algorithm.
Nature, 324(6096):446-449.

Bueno, J., Planas, J., Duran, A., Martorell, X., Ayguadé, E., Badia, R. M., and Labarta,
J. (2012). Productive programming of gpu clusters with ompss. In Parallel and Dis-
tributed Processing Symposium (IPDPS).

Chandra, R. (2001). Parallel programming in OpenMP. Morgan kaufmann.

Dancheva, T., Alonso, U., and Barton, M. (2024). Cloud benchmarking and performance
analysis of an HPC application in Amazon EC2. Cluster Computing, 27(2):2273-2290.

Graham, R. L., Woodall, T. S., and Squyres, J. M. (2006). Open mpi: A flexible high
performance mpi. In Parallel Processing and Applied Mathematics: 6th International
Conference, PPAM 2005, Poznan, Poland, September 11-14, 2005, Revised Selected
Papers 6, pages 228-239. Springer.

Guidi, G., Ellis, M., Bulug, A., Yelick, K., and Culler, D. (2021). 10 years later: Cloud
computing is closing the performance gap. In Companion of the ACM/SPEC Inter-
national Conference on Performance Engineering, ICPE *21, page 41-48, New York,
NY, USA. Association for Computing Machinery.

Heggie, D. (2005). The classical gravitational n-body problem. Encyclopedia of Mathe-
matical Physics.

Hoque, R., Hérault, T., Bosilca, G., and Dongarra, J. (2017). Dynamic task discovery in
PaRSEC: a data-flow task-based runtime. In ScalA ’17: The 8th Workshop on Latest
Advances in Scalable Algorithms for Large-Scale Systems.

Liberman Garcia, A. (2015). The evolution of the Cloud: the work, progress and outlook
of cloud infrastructure. PhD thesis, Massachusetts Institute of Technology.

Munhoz, V. and Castro, M. (2024). Enabling the execution of hpc applications on public
clouds with hpc@cloud toolkit. Concurrency and Computation: Practice and Experi-
ence, 36(8):€7976.

Netto, M. A. S., Calheiros, R. N., Rodrigues, E. R., Cunha, R. L. F,, and Buyya, R.
(2018). HPC cloud for scientific and business applications: Taxonomy, vision, and
research challenges. ACM Comput. Surv., 51(1).

Nylons, L., Harris, M., and Prins, J. (2007). Fast n-body simulation with cuda. GPU
gems, 3:62—66.

Pereira, R. (2023). Efficient Use of Task-based Parallelism in HPC Parallel Applications.
Theses, Ecole normale supérieure de lyon - ENS LYON.

Teylo, L., Arantes, L., Sens, P., and Drummond, L. M. d. A. (2023). Scheduling Bag-
of-Tasks in Clouds using Spot and Burstable Virtual Machines. IEEE Transactions on
Cloud Computing, 11(1):984-996.

Wang, Q. (2021). A hybrid fast multipole method for cosmological n-body simulations.
Research in Astronomy and Astrophysics, 21(1):003.

Wei, J., Chen, M., Wang, L., Ren, P., Lei, Y., Qu, Y., Jiang, Q., Dong, X., Wu, W., Wang,
Q., Zhang, K., and Zhang, X. (2022). Status, challenges and trends of data-intensive
supercomputing. CCF Transactions on High Performance Computing, 4(2):211-230.

Zhuang, J., Jacob, D. J., Lin, H., Lundgren, E. W., Yantosca, R. M., Gaya, J. F., Sul-
prizio, M. P., and Eastham, S. D. (2020). Enabling high-performance cloud comput-
ing for earth science modeling on over a thousand cores: Application to the geos-

chem atmospheric chemistry model. Journal of Advances in Modeling Earth Systems,
12(5):€2020MS002064. €2020MS002064 2020MS002064.

Zwart, S. F. P., Belleman, R. G., and Geldof, P. M. (2007). High-performance direct grav-
itational n-body simulations on graphics processing units. New Astronomy, 12(8):641-
650.

