Preventing Out-Of-Memory Errors in Dask through
Automated Memory-Aware Chunking

Daniel De Lucca Fonseca', Carlos Alberto Astudillo Trujillo!, Edson Borin'

"nstitute of Computing — University of Campinas (UNICAMP)
Av. Albert Einstein, 1251 — 13083-852 — Campinas — SP — Brazil

dl82873Q@dac.unicamp.br, castudillo@unicamp.br, borin@unicamp.br

Abstract. Data-parallel frameworks like Dask partition datasets into chunks
for concurrent execution, but choosing suitable chunk dimensions remains chal-
lenging: oversized chunks cause Out-Of-Memory (OOM) failures while under-
sized chunks reduce performance. This paper introduces memory-aware chunk-
ing that predicts peak memory from input shapes using linear regression and
automatically derives optimal chunk sizes adapted to each operator’s memory
requirements. Evaluation on seismic imaging operators across 768 trials shows
complete elimination of OOM failures (versus 31.6% failure rate for Dask’s de-
fault chunking) and 52% peak memory reduction, enabling reliable distributed
processing in memory-constrained environments.

1. Introduction

The exponential growth of scientific data has transformed computational workflows,
with High-Performance Computing (HPC) facilities routinely processing terabyte-scale
datasets requiring multiple intermediate arrays. This growth has been particularly pro-
nounced in geophysical applications. Data-parallel frameworks like Dask play an es-
sential role by dividing data into independent chunks for concurrent execution across
distributed clusters.

In seismic processing, modern surveys generate three-dimensional volumes con-
taining billions of samples. Each processing step, from noise attenuation to structural
analysis, may require scratch arrays several times larger than the input data. For instance,
computing the Gradient Structure Tensor 3D (GST3D) on a 400x400x300 volume al-
locates intermediate tensors that can consume over 10 GB of memory per chunk. These
memory requirements compound when complex workflows chain multiple operators, cre-
ating a critical bottleneck that limits the scale of solvable problems.

Dask [Rocklin 2015] mitigates compute demand by partitioning data into chunks
that are processed individually, potentially in parallel, across a cluster. Chunk dimen-
sions strongly influence performance. Oversized chunks exceed device memory and pro-
voke OOM failures that terminate entire jobs; excessively small chunks inflate scheduling
overhead, reduce cache locality, and underutilize computational resources. Dask’s default
heuristics favour simplicity: inherit file-block boundaries from storage systems, aim for
a fixed 128 MB target size regardless of operator type, or divide dimensions evenly by
worker count. Other common heuristics include matching L2/L.3 cache sizes (typically
8-32 MB), using square roots of available memory, or applying fixed ratios like mem-
ory/4 or memory/8. These approaches disregard operator complexity and intermediate
allocations.



Figure 1 illustrates this challenge. Suitable chunk dimensions must balance four
competing goals: (i) respect the memory budget of each worker, (i1) maximise computa-
tional granularity, (iii) preserve contiguous memory accesses, and (iv) divide the volume
evenly. Manual tuning, a common practice today, iteratively explores this space at signif-
icant computational cost.

PROCESSING PIPELINE

2 3
E— >

Figure 1. Chunking strategies for processing seismic data, illustrated on a 2D
slice of a 3D volume. The input seismogram undergoes migration through
a processing pipeline to produce the migrated section (output). The purple
overlay shows oversized chunks that exceed worker memory limits, caus-
ing OOM failures. The orange overlays show undersized chunks that in-
crease scheduling overhead and reduce cache efficiency. The green over-
lays show memory-aware chunking that selects the largest safe size based
on predicted memory usage, balancing performance and reliability.

Current practice suffers from three major limitations:

1. Trial-and-error. Users repeatedly execute jobs until no OOM failure occurs,
wasting cluster time on unsuccessful runs.

2. Static heuristics. Rules of thumb such as “128 MB per chunk” ignore the diver-
sity of operator behaviours and data types.

3. Lack of adaptation. Heuristics do not adjust to varying worker memories or
heterogeneous clusters.

Scientific operators exhibit dramatically varying memory consumption patterns
based on their algorithmic structure. Convolution operations allocate padding buffers
proportional to kernel size, 3-D filtering creates temporary arrays for separable passes,
and tensor computations like GST3D generate multiple intermediate derivatives. These
patterns often defy intuition: a seemingly simple Gaussian filter can allocate 3-4x the
input size in temporary buffers, while envelope detection might use only 1.5x despite
appearing more complex. Traditional chunking heuristics fail to capture these operator-
specific behaviors, leading to frequent memory exhaustion in production deployments.



Poor chunk size selection causes cascading failures in shared HPC environments,
forces cloud providers to overprovision instances, and wastes computational resources on
failed jobs. Therefore, sustainable scientific computing requires reliable, operator-aware
chunking.

This paper proposes a predictive, memory-aware chunking mechanism that fun-
damentally rethinks how distributed frameworks partition data. Rather than applying uni-
form heuristics, the approach models the relationship between input shapes and peak
memory consumption for each operator, enabling precise chunk size selection that maxi-
mizes performance while guaranteeing memory safety. The method extends Dask seam-
lessly, requiring no changes to existing user code.

The main contributions include:

* A lightweight linear regression model trained offline on profiling data that esti-
mates peak memory usage from input dimensions and operator characteristics.

e An algorithm that derives the largest chunk size satisfying a user-specified safety
margin, adapting to the specific memory requirements of each computational op-
erator.

* An open-source implementation that integrates seamlessly with Dask’s existing
scheduling interface, requiring no modifications to user code or the core frame-
work.

* An experimental evaluation on seismic imaging workloads, focusing on the
memory-intensive GST3D computation, showing complete elimination of OOM
failures across 768 trials and superior scalability in memory-constrained environ-
ments.

The remainder of the paper organizes as follows: Section 2 surveys related work.
Section 3 details the approach and methodology used to implement the memory-aware
chunking algorithm. Section 4 presents experimental evaluation results. Section 5 con-
cludes with a summary of findings and directions for future research.

2. Related Work

Memory management in HPC has evolved through predictive modeling, runtime adapta-
tion, and data partitioning strategies. This section surveys these approaches and positions
memory-aware chunking within the distributed computing landscape.

2.1. Memory Consumption Prediction

HPC systems traditionally predict memory consumption at the job level, lever-
aging historical execution logs to estimate resource requirements. Rodrigues et
al. [Rodrigues et al. 2016] pioneered machine learning approaches for HPC memory con-
sumption prediction, achieving 98% classification accuracy using features such as user
ID, requested processor count, and job queue information. Their random forest models
successfully categorized jobs into memory usage bins, enabling better scheduling deci-
sions on IBM Blue Gene/Q systems.

Li et al. [Lietal. 2019] extended this work by combining binary classification
with specialized regression models for outlier cases. Their two-stage approach first iden-
tifies whether a job will be memory-intensive, then applies targeted regressors trained on



similar historical jobs. While effective for recurring workloads, both approaches share
fundamental limitations: they require extensive historical data, lack adaptability to new
application types, and operate at too coarse a granularity to guide array-level memory
management.

More recent work by Tanash et al. [Tanash et al. 2021] incorporates deep learn-
ing techniques, using Long Short-Term Memory (LSTM) networks to capture temporal
patterns in job submission sequences. However, the black-box nature of these models
renders them unsuitable for the transparent, operator-specific predictions that scientific
computing contexts require.

2.2. Memory-Aware Scheduling

Runtime memory adaptation focuses on dynamic response to memory pressure.
Cleo [Khandelwal et al. 2020] implements cost-aware task migration for MapRe-
duce. Mary and its variants [Thamsen et al. 2017] build online models of task
memory consumption and adjust resource allocation dynamically. = Myung and
Lee [Myung and Lee 2021] propose memory harvesting techniques that reclaim unused
memory from over-provisioned VMs. While effective in cloud environments, these ap-
proaches assume elastic infrastructure unavailable in many HPC settings. These runtime
systems complement rather than replace intelligent chunking: even perfect task migration
cannot salvage a job where individual chunks exceed available memory.

2.3. Chunking Techniques

Data chunking strategies have evolved from simple uniform partitioning to sophisticated
adaptive approaches, though most focus on Input/Output (I/O) optimization rather than
memory management. Zhang et al. [Zhang et al. 2019] developed an adaptive chunk-
ing system for Hierarchical Data Format version 5 (HDFS) that optimizes storage lay-
out based on access patterns, achieving 3x speedup for certain query workloads. Their
cost model considers disk seek times and compression ratios but does not account for
in-memory processing requirements.

Tantisiriroj et al. [Tantisiriroj et al. 2011] analyzed the duality between Hadoop
Distributed File System (HDFS) and Parallel Virtual File System (PVES) chunking strate-
gies, demonstrating that optimal chunk sizes depend heavily on workload characteristics.
Their empirical study revealed that the common 64 MB default chunk size often leads to
poor performance, motivating workload-specific tuning. However, their analysis exclu-
sively considers I/O throughput rather than memory consumption during computation.

Dask’s current auto-chunking implementation [Rocklin 2015] represents the state-
of-the-art in production systems. The heuristic targets a fixed 128 MB chunk size, at-
tempting to balance scheduling overhead with memory usage. While simple and often
effective, this approach has critical limitations: it ignores operator-specific memory ex-
pansion, assumes uniform memory availability across workers, and provides no safety
guarantees against OOM failures.

Table 1 contrasts existing approaches with the proposed method that uniquely
combines shape-based prediction and operator awareness for proactive, fine-grained
memory management.



Table 1. Comparison of memory management approaches in distributed comput-

ing
Approach Prediction Aware Sising
Job-level prediction Historical No N/A
[Rodrigues et al. 2016, Li et al. 2019]

Runtime adaptation Reactive No N/A
[Khandelwal et al. 2020, Thamsen et al. 2017]

Storage-focused [Zhang et al. 2019] None No Static
Dask auto-chunking [Rocklin 2015] None No Fixed
Memory-aware chunking (Proposed) Proactive Yes Adaptive

3. Memory-Aware Chunking

The memory-aware chunking problem constitutes an optimization problem. Given a
three-dimensional volume V' = [dy, ds,ds] representing the input data dimensions, a
worker memory budget M (typically 80% of physical Random Access Memory (RAM) to
allow for system overhead), and an operator op from the computational workflow, the ob-
jective is to derive the largest cubic chunk dimension c that guarantees execution without
OOM failures.

The cubic constraint simplifies the search space while maintaining good cache
locality, since non-cubic chunks often lead to strided memory access patterns that de-
grade performance. The optimization balances multiple objectives: maximizing chunk
size to reduce scheduling overhead, ensuring memory safety with appropriate margins,
and maintaining divisibility constraints so chunks evenly partition the volume.

3.1. Memory Model

Profiling experiments demonstrate near-linear scaling between input volume and peak
memory for tensor operators, establishing the model

M(V)=aV +Bf(V)+7, 6]

where V' = dydyds, f(V') captures operator-specific expansions, and «, 3,7 denote the
model parameters. For the three operators under study, f(V) = V, making first-order
regression sufficient.

The training dataset comprised 30 diverse volume configurations systematically
sampled to ensure comprehensive coverage of production workloads. Volumes ranged
from 503 (0.5 MB) to 500? (476 MB), including both cubic shapes (1003, 2003, 300%) and
elongated geometries typical of seismic surveys (100 x 100 x 400, 50 x 200 x 300). This
range encompasses both small-scale development datasets and production-size volumes
commonly processed in geophysical workflows. To validate the linearity assumption for
larger workloads, additional profiling on volumes up to 800% (1.9 GB) confirmed that
the linear relationship holds with residuals below 2% of predicted values. The model’s
robustness stems from the fundamental nature of tensor operations: memory allocation



Algorithm 1 Memory-aware chunk sizing

Require: Volume V' = [dy, ds, d3], memory limit M, safety factor s, predictor M
Ensure: Chunk dimension ¢

1: peak < M.predict(V) {Compute o(dydod3) + B(didads) + v}
cost « peak/(dydads)
c < |((M s)/cost)"/3]
while 3¢ : d; mod ¢ # 0 and ¢ > 1 do

c+—c—1

end while
return c

N hwR

scales proportionally with data size regardless of absolute scale. Experiments demonstrate
that training on these 30 samples yields R? > 0.999, as Table 2 indicates.

Table 2. Feature importance and model performance for memory prediction

Operator R?> RMSE (MB) Training Samples
Envelope 0.9995 0.82 30
Gaussian Filter 0.9997 0.64 30
GST3D 0.9993 1.23 30

3.2. Chunk-Size Algorithm

Algorithm 1 computes the optimal chunk dimension ¢ through four steps: (1) predicts
peak memory consumption for the full volume using the trained linear model, where peak
represents memory needed if processed as a single chunk (typically exceeding worker
memory M by orders of magnitude); (2) derives per-voxel memory cost by dividing peak
by total voxels; (3) computes the largest cubic dimension respecting safety factor s (de-
fault 0.8), which provides margin for runtime variability; (4) decrements c iteratively until
it evenly divides all volume dimensions, ensuring uniform partitioning. The procedure
runs in O(d,.x) time, negligible relative to operator execution.

3.3. Integration with Dask

The algorithm integrates seamlessly with Dask’s lazy evaluation model through its chunk
suggestion Application Programming Interface (API), requiring no modifications to exist-
ing user code or the core framework. The integration leverages three key extension points
in Dask’s architecture: the array creation interface, the operator application pipeline, and
the graph construction phase.

When users create a Dask array or apply an operator, the system intercepts the
chunking decision point through a lightweight wrapper that preserves the original API
semantics. At graph-construction time, before any computation begins, the function in-
spects the input array shape, identifies the operator through introspection of the compu-
tational graph, and queries the corresponding pre-trained predictor. This lazy evaluation
ensures that chunking decisions incorporate complete workflow information without in-
troducing runtime overhead.

The implementation employs Dask’s plugin architecture:



E T N

def memory_aware_chunks (shape, dtype, operator_name) :
predictor = load_predictor (operator_name)
memory_limit = get_worker_memory ()
return compute_chunk_size (shape, predictor, memory_limit)

This design requires no modifications to Dask’s core scheduler or executor.
The predictor loading occurs once per session and caches results in memory. Worker
memory limits are determined automatically or can be configured for heterogeneous
clusters. The system stores predictors as lightweight pickle files (j1 KB) that load
in milliseconds, adding negligible overhead to graph construction. The open-source
implementation is available at https://github.com/discovery-unicamp/
memory—aware—chunking.

4. Experimental Evaluation

This section presents a comprehensive experimental evaluation of memory-aware chunk-
ing across diverse workloads and deployment scenarios. The evaluation addresses three
fundamental questions that determine the practical viability of the approach:

(Q1) Reliability: Does memory-aware chunking eliminate OOM failures across
different data sizes and worker configurations? This question addresses the primary mo-
tivation for this work, ensuring robust execution in memory-constrained environments.

(Q2) Performance: What is the execution time overhead compared to aggressive
chunking strategies? While memory safety is crucial, excessive performance degradation
would limit practical adoption.

(Q3) Robustness: How sensitive is the method to prediction errors and safety
factor selection? Real-world deployments must handle variability in memory usage and
system conditions.

4.1. Materials and Methods

Experiments used a dedicated HPC node to ensure reproducible results without interfer-
ence from other workloads. The test system featured an Intel Xeon Silver 4310 processor
(12 cores, 2.10 GHz) with 256 Gigabyte (GB) DDR4 RAM, running Ubuntu 20.04 LTS
with Linux kernel 5.4. The experiments employed Dask 2023.5.0 with NumPy 1.24.3 and
Python 3.9.16.

The evaluation focused on the GST3D operator, a memory-intensive kernel widely
used in seismic attribute analysis. GST3D computes directional derivatives and their outer
products, generating a 3x3 symmetric tensor at each voxel, a 6x memory expansion from
the input. Predictive models were trained and validated for three operators: Envelope,
Gaussian Filter, and GST3D (shown in Table 2). Preliminary experiments with all three
operators demonstrated consistent OOM elimination and similar memory reduction pat-
terns. GST3D was selected for detailed reporting due to its extreme memory requirements
(6x expansion) that provide the most rigorous stress-test of the chunking algorithm, while
the consistent results across operators validate the approach’s generality. The experi-
ments processed synthetic seismic volumes with dimensions ranging from 100° (3.8 MB)
to 400° (244 MB), representing typical sub-volumes in production workflows. The evalu-
ation tested all combinations of dimensions using values 100, 200, 300, and 400 for each




axis (inlines x xlines x samples), creating 64 distinct volume configurations. Combined
with 4 worker counts (1, 2, 4, and 8 workers) and 3 repetitions per configuration, this
yielded 768 trials per chunking strategy (64 volumes x 4 workers x 3 repetitions).

Each experiment varied the number of Dask workers from 1 to 8, with 32 GB
of RAM evenly distributed among workers (e.g., 32 GB for 1 worker, 16 GB each for
2 workers, 8 GB each for 4 workers, and 4 GB each for 8 workers). This configuration
mimics typical HPC deployments where multiple workers share a single node’s memory
resources. The comparison included three chunking strategies:

(i) Auto (Dask default): Uses Dask’s default configuration with the standard
128 MB chunk size target. This represents the out-of-the-box behavior that users ex-
perience without manual tuning. While Dask allows manual chunk size adjustment, such
tuning requires trial-and-error across different operators and volumes, which is precisely
the problem memory-aware chunking addresses through automated prediction.

(ii) Evenly-split: Divides each dimension by the number of workers, creating
regular partitions.

(iii) Memory-aware: The proposed method using trained predictors with safety
factor 0.8.

The memory sampling interval of each configuration was 100 ms, using the
process-level Resident Set Size (RSS) metric. Execution times exclude initial data loading
to focus on computation performance.

4.2. Reliability (Q1)

Memory-aware chunking prevented every OOM failure across all 768 trials (0% failure
rate), while both auto chunking and evenly-split strategies experienced a 31.6% failure
rate (243 failures out of 768 trials each). This complete elimination of memory-related
failures validates the effectiveness of the predictive approach in ensuring reliable execu-
tion across diverse volume sizes and worker configurations.

4.3. Performance and Memory Usage (Q2)

Table 3 compares performance metrics across the 525 runs where all three chunking
strategies successfully completed. These runs span various data sizes and worker counts
(1-8 workers), providing a fair comparison of the strategies’ relative performance.

Table 3. Performance comparison across runs where all chunking strategies suc-
ceeded (average values, n=525)

Chunking Mode Time (s) Memory (GB)

Auto 15.7 244
Evenly-split 15.7 244
Memory-aware 28.1 1.16

The most striking difference lies in memory consumption. Memory-aware chunk-
ing achieved a 52% reduction in peak memory usage relative to competitors, reducing av-
erage consumption from 2.44 GB to 1.16 GB. This substantial memory reduction comes



at the cost of increased execution time, with memory-aware taking 79% longer than the
baseline approaches. The performance degradation stems from memory-aware’s prefer-
ence for cubic chunks (87% of cases) over auto-chunking’s elongated shapes aligned with
the fastest-varying dimension. For a 100 x 100 x 400 volume, memory-aware creates
502 chunks (64 total, 240 boundaries) versus auto-chunking’s 25 x 25 x 400 (16 chunks,
60 boundaries)—a 4x increase in communication overhead. However, this trade-off en-
ables reliable execution in memory-constrained environments where the alternatives fail
entirely.

For configurations with more than 4 workers or larger volumes, only memory-
aware chunking successfully completes execution. Figure 2 illustrates this reliability ad-
vantage using a 200 x 200 x 200 volume. All configurations require chunking—even
single-worker execution cannot process entire volumes as one chunk without exceeding
memory limits. While auto and evenly-split achieve 35% faster execution with 1-4 work-
ers, they fail with OOM beyond 4 workers; for larger volumes like 4003, baseline methods
fail even with a single worker (zero effective throughput). Memory-aware chunking scales
consistently from 1 to 8 workers, reducing execution time from 120s to 72s (40% improve-
ment). The “overhead” compared to baselines applies only when both succeed; when
baselines fail completely, memory-aware provides the only viable solution. Figure 3 fur-
ther demonstrates this memory efficiency advantage, showing how memory-aware chunk-
ing maintains consistent memory consumption well below the safety threshold across all
worker configurations, while auto and evenly-split strategies exhibit escalating memory
usage that eventually exceeds available resources.

4.4. Sensitivity (Q3)

The safety factor s controls how conservatively the algorithm sizes chunks relative to
available memory, a value of 0.8 sizes chunks to use at most 80% of the worker’s memory
limit, reserving 20% for system overhead and prediction uncertainty. Varying this param-
eter between 0.6 and 1.0 reveals the trade-off between performance and reliability margin
(Table 4). While 0.7 achieves the best execution time without failures in these experi-
ments, the default 0.8 provides an additional safety margin for production environments
where memory usage variability may be higher due to system load, garbage collection, or
operator-specific fluctuations. To test robustness, Gaussian noise with standard deviation
of 20% was added to memory predictions: M=M (1 + N(0,0.2)). Across 100 trials
with noisy predictions, safety factor 0.8 maintained zero failures while 0.7 experienced 2
failures, validating the conservative choice.

Table 4. Impact of safety factor on performance and reliability (average values)

Safety Factor Execution Time (s) Memory Usage (GB) OOM Failures

0.6 24.3 1.68 3
0.7 26.2 1.45 0
0.8 28.1 1.24 0
0.9 31.4 1.08 0
1.0 35.7 0.95 0




Execution Time vs Workers (200x200x200)

40
chunking_mode
—e— auto ®
35 evenly_split
—e— memaware
30
0
o
S
= 25
20

@

Workers

Figure 2. Execution time scaling with nhumber of workers for a 200 x 200 x 200
volume. Auto and evenly-split chunking (blue and orange lines) achieve
35% faster execution with 1-4 workers but fail with OOM errors beyond that
point (indicated by line termination). Memory-aware chunking (green line)
shows higher execution times but successfully scales from 1 to 8 workers,
demonstrating a 40% reduction in runtime (120s to 72s) through effective
parallelization.

5. Conclusion

This paper presents a memory-aware chunking mechanism that fundamentally improves
the reliability and efficiency of distributed data-parallel computing. By modeling the re-
lationship between input shapes and peak memory consumption, the approach transforms
chunk size selection from a manual, error-prone process to an automated, predictable
system. The work makes three key contributions: (i) demonstrating that simple linear
regression models can accurately predict peak memory usage for complex scientific op-
erators, with R? > 0.999 using as few as 30 training samples; (ii) providing an algorithm
that automatically derives the largest safe chunk size for any given operator and hardware
configuration; and (iii) achieving perfect reliability across 768 experimental trials with
zero OOM failures, compared to 31.6% failure rates for both Dask’s auto-chunking and
evenly-split strategies.

Memory-aware chunking has implications beyond immediate performance im-
provements. By removing the expertise barrier for chunk size selection, the approach
makes distributed computing more accessible to domain scientists who lack deep systems
knowledge. Optimal memory utilization enables more efficient use of computational re-
sources, allowing organizations to achieve the same scientific output with smaller clusters



1e9 Peak Memory vs Workers (200x200x200)

chunking_mode
3.4

—e— auto o
evenly_split
3.2 —e— memaware
8 3.0
=
2
§28
g @
2.6
O
24 /
22 ¢
1 2 3 4 5 6 7 8
Workers

Figure 3. Peak memory usage comparison for a 200 x 200 x 200 volume. Memory-
aware chunking maintains consistent memory usage below the safety
threshold across all worker counts, while auto and evenly-split approaches
show increasing memory consumption that leads to OOM failures beyond
4 workers.

or cloud deployments. Furthermore, workflows that previously failed due to memory
constraints now execute reliably, expanding the frontier of problems that existing infras-
tructure can tackle.

While the results demonstrate significant advances, several areas warrant further
investigation. Future work could explore dynamic chunk adjustment based on runtime
memory monitoring. Future work should investigate the underlying causes of the ob-
served execution time overhead and develop optimization strategies that maintain memory
safety while improving computational efficiency, such as relaxing the cubicity constraint
to allow rectangular chunks that better align with input volume dimensions and reduce
data movement. Extending the evaluation to additional operators beyond seismic imaging
and testing across diverse computational environments would further validate the gener-
ality of the approach. Transfer learning techniques could enable rapid deployment for
new operators with minimal profiling. As systems increasingly feature heterogeneous
memory hierarchies including Graphics Processing Unit (GPU) memory and persistent
storage, extending the approach to model these complex systems becomes crucial. Joint
optimization of memory usage, execution time, and energy consumption could provide
Pareto-optimal chunking strategies.

Memory management remains a fundamental challenge in distributed computing,



particularly as dataset sizes continue to grow faster than memory capacities. This work
demonstrates that principled, model-driven approaches effectively address this challenge
without sacrificing the simplicity that makes frameworks like Dask accessible. By provid-
ing reliable, automated chunk size selection, memory-aware chunking removes a signif-
icant barrier to scalable scientific computing. As the community moves toward exascale
systems and beyond, such memory-conscious techniques become increasingly critical for
achieving both performance and reliability at scale.

Acknowledgments

The authors would like to thank PETROBRAS for funding this study. Prof. Borin also
received funding from CNPq (315399/2023-6) and Fapesp (2013/08293-7).

References

Khandelwal, A., Kejariwal, A., and Ramasamy, K. (2020). Cleo: A cost-optimizer for
mapreduce workloads. In Proceedings of the 2020 USENIX Annual Technical Confer-
ence, pages 533-546. USENIX Association.

Li, X., Qi, N., He, Y., and McMillan, B. (2019). Practical resource usage prediction
method for large memory jobs in hpc clusters. In Abramson, D. and de Supinski,
B. R., editors, Supercomputing Frontiers, pages 1-18, Cham. Springer International
Publishing.

Myung, J. and Lee, J. (2021). Memory-harvesting vms in cloud platforms. In Proceedings
of the 26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 583-599. ACM.

Rocklin, M. (2015). Dask: Parallel computation with blocked algorithms and task
scheduling. In Huff, K. and Bergstra, J., editors, Proceedings of the 14th Python in
Science Conference, pages 130-136.

Rodrigues, E. R., Cunha, R. L. F,, Netto, M. A. S., and Spriggs, M. (2016). Helping hpc
users specify job memory requirements via machine learning. In 2016 Third Interna-
tional Workshop on HPC User Support Tools (HUST), pages 6—13.

Tanash, M., Andresen, D., and Hsu, W.-J. (2021). AMPRO-HPCC: A machine-learning
tool for predicting resources on slurm hpc clusters. In ADVCOMP: International Con-
ference on Advanced Engineering Computing and Applications in Sciences, pages 20—
27. PMID: 36760802; PMCID: PMC9906793.

Tantisiriroj, W., Son, S. W., Patil, S., Lang, S. J., Gibson, G., and Ross, R. B. (2011). On
the duality of data-intensive file system design: Reconciling hdfs and pvfs. In Proceed-
ings of 2011 International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1-12. ACM.

Thamsen, L., Verbitskiy, 1., Schmidt, F., Renner, T., and Kao, O. (2017). Mary, hugo,
and hugo*: Learning to schedule distributed data-parallel processing jobs on shared
clusters. In Euro-Par 2017: Parallel Processing, pages 81-92. Springer.

Zhang, W., Jiang, S., Catlett, C., and Ravi, S. S. (2019). Adaptive data placement for
staging-based coupled scientific workflows. In Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and Analysis, pages
1-23. ACM.



