Estimating CO; emissions of distributed applications and
platforms with SimGrid/Batsim

Gabriella Saraiva', Miguel Vasconcelos?, Sarita Mazzini Bruschi?,
Danilo Carastan-Santos*, Daniel Cordeiro!

'Escola de Artes, Ciéncias e Humanidades — Universidade de Sdo Paulo (EACH-USP) —
Sao Paulo, SP — Brasil

2University of Toulouse, CNRS, Toulouse INP, UT3 — Toulouse, France

3Instituto de Ciéncias Matematicas e de Computa¢iio — Universidade de Sdo Paulo
(ICMC-USP) — Sao Carlos, SP — Brasil

4University Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG
Grenoble — France

gabriella saraiva@usp.br, miguel-felipe.silva-vasconcelos@irit.fr
sarita@icmc.usp.br, danilo.carastan-dos-santos@univ-grenoble-alpes.fr
daniel.cordeiro@usp.br

Abstract. This work presents a carbon footprint plugin designed to extend the
capabilities of the Batsim simulator by allowing the calculation of CO; emis-
sions during simulation runs. The goal is to assess the environmental impact
associated with task and resource management strategies in simulated envi-
ronments. The plugin is developed within SimGrid—the underlying simulation
framework of Batsim—and computes carbon emissions based on the simulated
platform’s energy consumption and carbon intensity factor of the simulated ma-
chines. Once implemented, it is integrated into Batsim, ensuring compatibility
with existing simulation workflows and enabling researchers to assess the car-
bon efficiency of their scheduling strategies.

1. Introduction

The rapid growth of digitalization across various sectors has increasingly demanded com-
putational infrastructure, turning data centers into major electricity consumers. Accord-
ing to the International Energy Agency, these facilities account for approximately 2%
of global energy consumption [International Energy Agency (IEA) 2024]. This is mainly
due to the intensification of internet data traffic and the expansion of workloads and stor-
age capacity. In the United States, for example, the energy consumption of data centers
increased from 91 billion kWh in 2013 to almost double by 2020, highlighting the impact
of this evolution [Abbas et al. 2021].

This increase has raised significant environmental concerns. In response to the
energy and climate crisis, countries like China have established sustainability goals, in-
cluding the commitment to peak carbon emissions by 2030 and achieve carbon neutrality
by 2060 [Zhang et al. 2025]. Meanwhile, the industry has been striving to improve the
energy efficiency of data centers. Despite increasing demand, global energy consumption
by data centers increased only 6% between 2010 and 2018, as a result of efforts such as

technological modernization, improvements in cooling systems, and advances in work-
load management algorithms [Masanet et al. 2020].

However, the environmental impact of distributed computing infrastructures goes
beyond energy consumption. The carbon footprint of data centers is determined not only
by the amount of energy used but also by the carbon intensity of the electricity consumed,
which varies significantly by region and over time. For example, Google’s 2025 Envi-
ronmental Report shows that while some of its data centers operate with almost 100%
renewable energy, others, such as those in Japan, rely on grids with only 4% renewable
share [Google 2025]. Microsoft’s sustainability reports also highlight that, as the share of
renewables increases, indirect emissions from manufacturing I'T equipment become more
relevant [Microsoft 2025].

Various strategies can be applied to reduce energy consumption in these environ-
ments. At the infrastructure level, adopting more efficient components, such as optimized
CPUs or specialized accelerators (e.g., GPGPUs), already represents progress. Intelligent
task and resource management play a key role at the software level. Among the most
effective measures are to reduce task execution times, use available resources efficiently,
and even turn off idle machines [Poquet 2017]. These decisions are guided mainly by
scheduling algorithms that analyze usage patterns to strategically determine where, when,
and how each task should be executed, to balance energy efficiency and performance.

Simulators are essential tools in this context, enabling researchers to evaluate the
performance and energy consumption of scheduling strategies in controlled and repro-
ducible environments before deployment. While several simulation frameworks model
energy consumption, few offer native support for quantifying the resulting carbon foot-
print, which depends on the carbon intensity of the local energy grid. This gap makes it
difficult to assess the complete environmental impact of computational workloads, as a
strategy that is energy-efficient in one location may not be carbon-efficient in another.

The main objective of this work is to address this gap by proposing a carbon
footprint plugin for the Batsim simulator, built upon SimGrid. The paper presents its
design, implementation, and validation. The structure is as follows: Section 2 reviews
related work, Section 3 describes the implementation, and Section 4 reports the validation
results.

2. Background and Related Work

The optimization of energy consumption and the pursuit of sustainability in large-scale
computational systems constitute an active and increasingly important area of research.
One approach to address these challenges is simulation, which allows for the evaluation
of resource management strategies in controlled and reproducible environments before
their costly practical implementation.

Recent literature argues that an effective sustainability analysis must go beyond
mere energy consumption, incorporating carbon emissions as a central metric. Com-
prehensive works, such as the theses of Orgerie (2020) [Orgerie 2020] and Vasconcelos
(2023) [Vasconcelos et al. 2023], investigate strategies to make distributed systems more
environmentally friendly, reinforcing the critical importance of considering both the en-
ergy source and the variation in carbon footprint by location.

In this context, several simulators have been proposed to model energy con-
sumption in data centers. Tools such as CloudSim [Calheiros et al. 2011] and Green-
Cloud [Kliazovich et al. 2012] are widely used to study the efficiency of resource alloca-
tion algorithms. SimGrid [Casanova et al. 2014], in turn, is a well-established simulator
in the scientific community, offering support for various distributed environments and
already incorporating models for energy consumption and renewable energy generation.
However, despite its capabilities, SimGrid lacks native support for calculating CO, emis-
sions based on the carbon intensity of the electricity mix used by the infrastructure—a
gap this work aims to fill.

This work introduces a carbon footprint plugin developed in SimGrid and inte-
grated in Batsim [Dutot et al. 2016], with the objective of enabling a more comprehen-
sive analysis of the environmental impact of different management strategies in distributed
applications and platforms. Our plugin allows estimating CO, emissions associated with
energy consumption during simulated executions in Batsim, considering variables such as
the carbon intensity of the energy source used. Our plugin may be useful for researchers
and practitioners to assess not only the energy efficiency of their solutions but also their
environmental impacts, contributing to the development of more sustainable technologies
in the context of high-performance computing. The source code for the plugin, as well as
the documentation and tutorials, is openly available!

3. Carbon Footprint plugin

The carbon footprint plugin® for SimGrid was designed to enable simulation and moni-
toring of CO, emissions associated with the energy consumption of computational hosts
in distributed systems. The plugin provides a flexible and extensible framework that in-
tegrates seamlessly with SimGrid’s energy plugin, allowing users to quantify the envi-
ronmental impact of their simulated workloads based on customizable carbon emission
intensities.

3.1. Mathematical Model

An incremental model based on the energy consumption of each host was implemented to
estimate the carbon footprint associated with computational workloads. This work applies
the model exclusively to the machines (hosts) in the simulated environment. The energy
consumption of network equipment and cooling systems is not considered at this stage
and may be addressed in future work.

The model accounts for both the static component (energy consumed when the
machine is idle) and the dynamic component (additional energy consumed when the ma-
chine executes tasks). Carbon emissions are periodically updated during the simulation,
using the host’s instantaneous power consumption and the environment’s carbon intensity.

Let ¢y be the time of the last update and ¢; the current simulation time. At each
update, the instantaneous power consumption of the host, P, is measured at time ¢, and is

'Plugin Home Page: https://github.com/saraiva03/carbon-footprint-simgrid
—batsim

2Carbon footprint plugin repository: https://github.com/saraiva03/simgrid/tree/ca
rbon-footprint-calc

https://github.com/saraiva03/carbon-footprint-simgrid-batsim
https://github.com/saraiva03/carbon-footprint-simgrid-batsim
https://github.com/saraiva03/simgrid/tree/carbon-footprint-calc
https://github.com/saraiva03/simgrid/tree/carbon-footprint-calc

assumed to remain constant during the interval [to, ¢;]. Therefore, the energy consumed
is given by:

Estep =P (tl - tO) (1)
E
B = ——F 2
S 3.6 x 106 @
C'step = Esktggh : CY[step (3)
Ctotal(tl) = Ctotal (t()) + C(step (4)

Where:

* FEgep: energy consumed in the interval (in joules);
. E;;Xgh: energy in kilowatt-hours;

P: instantaneous power consumption of the host at the time ¢, (in watts)
* (Clep: carbon intensity of the environment in the interval (in g/kW h);
Cstep: carbon emitted in the interval (in grams);

Clotar: total carbon footprint up to time ;.

This model is implemented in the HostCarbonFootprint: :update ()
function, ensuring that the estimated carbon emissions reflect the host’s dynamic behavior
during the simulation. The carbon intensity C'I can be configured according to the energy
profile of the simulated environment.

3.2. Overview of the Plugin Functionality

The carbon footprint plugin was developed to extend SimGrid’s host model, enabling the
quantification of carbon emissions associated with energy consumption during simulation.
An extension is attached to each Host object, responsible for monitoring and updating
the accumulated emissions according to the host’s activity to achieve this.

The plugin operates by intercepting host key simulation events, such as initial-
ization (creation), shutdown (destruction), state transitions (power on/off), and changes
in execution profile (task execution or updates to carbon intensity). Whenever one of
these events occurs, the plugin updates the host’s carbon footprint, considering the energy
consumed since the last update and the current carbon intensity at that moment.

The carbon intensity, defined as the amount of CO, emitted per unit of energy
consumed (g/kW h), can be individually configured for each host via properties in the
platform XML file, as illustrated in Listing 1. Furthermore, the plugin allows for the
dynamic adjustment of this parameter during simulation, reflecting possible changes in
the energy profile of the simulated environment.

SimGrid was modified to include callbacks on the main host events to enable this
functionality, ensuring that the carbon footprint extension is notified and can perform
the necessary updates. As a result, the original SimGrid model is enhanced to consider

not only energy consumption but also the environmental impact of simulated executions,
providing detailed metrics on carbon emissions over time. The overall workflow of the

plugin is illustrated in Figure 1.
Attach Carbon Footprint
Extension

Simulation Events

T

Job Start Job End Host Power On/Off Carbon Intensity Change

Update Energy & Carbon
Footprint

Relevant for Output?

Yes

No Record Entry in Output File

Continue Simulation

Figure 1. Flowchart illustrating the main steps of the carbon footprint plugin and
its integration with Batsim.

|<_

3.2.1. Validation

The plugin was validated using different test case scenarios to explore the different states
in SimGrid regarding the energy consumption of machines: 1) when the machine is off; ii)
when the machine is idle (the machine is powered on but not running any computations);
and iii) when the machine performs computations, using one or more of its CPU cores.

Two main scenarios were considered for the validation regarding the carbon emis-
sions. First, we use a static value for the carbon emissions of the electricity grid, which
can represent countries for which we only have the annual value of the carbon intensity.
The second scenario considers values of carbon intensity that change over time, for ex-
ample, to represent countries with intermittent renewable sources in their mix.

Figure 2 illustrates the variability over a single day for the different carbon inten-
sities in the different countries we considered: i) the USA, which shows a high carbon
intensity because it uses high-carbon sources such as coal; ii) France, which shows a low
carbon intensity given the high presence of nuclear power; and iii) Brazil, which also
shows a low carbon intensity, given the presence of renewable sources such as hydroelec-
tric power.

Grid carbon emissions per country

=

=

4

5400

&

le) Country
@] 300 — France
o Brazil
« 200 USA
5

‘% 100

)

g i N
w 0 5 10 15 20

Time (hour)

Figure 2. Grid emissions values for the different electricity mixes considered.

The validation step is important to ensure that the plugin remains working in the
future when new code is incorporated into the SimGrid framework, such as including
new functionalities or fixes to other problems in the code. Further details about the test
scenarios and the inputs used can be found in the plugin’s GitHub repository.

3.3. Integration with Batsim

The carbon footprint plugin was developed to monitor carbon emissions during simula-
tions in Batsim. To use it, add the “~C” or “~-carbon-footprint” option when
running Batsim, along with the platform and workload files. This activates the plugin,
which then begins tracking each host’s energy consumption and carbon emissions in the
simulation.

During execution, Batsim monitors key events such as the start and end of jobs,
as well as changes in the power state of the hosts. Whenever one of these events occurs,
the updated carbon emission value is retrieved for each host and recorded in an output
file. This file contains information such as the event timestamp, the energy consumed,
the total carbon emissions, the type of event, and the average emissions since the last
recorded entry. The source code for the version of Batsim with the integrated carbon
footprint plugin is available at https://github.com/saraiva03/batsim/tr
ee/carbon-footprint-calc.

Once integrated into Batsim, an output file is generated that logs the environ-
mental impact upon key events, such as job start and completion, and host power state
changes. Each entry in this output file includes a timestamp, the cumulative energy and
carbon emissions, the event type, and the average emission since the last record. This
structured output allows for detailed temporal analysis of both energy consumption and
carbon emissions throughout the simulation.

4. Evaluation and Comparison

The experiments aimed to compare the energy consumption and carbon emissions data
between two distinct approaches: the actual execution of the inference benchmarks using
machine learning models and the simulation of these same applications using Batsim. The
implementation developed for the experiments can be accessed at https://github
.com/saraival03/carbon-plugin—-tests.

The real executions involved 100 inferences for each model: ResNetl18, BERT
large (fine-tuned on the SQuAD dataset), and Deep Learning Recommendation Model

https://github.com/saraiva03/batsim/tree/carbon-footprint-calc
https://github.com/saraiva03/batsim/tree/carbon-footprint-calc
https://github.com/saraiva03/carbon-plugin-tests
https://github.com/saraiva03/carbon-plugin-tests

(DLRM). These tests were performed on a Dell G15 laptop with an 11th Gen Intel Core
15-11400H processor, featuring six physical cores and a base frequency of 2.70 GHz. The
CodeCarbon® tool was used to monitor energy consumption, hardware usage, and envi-
ronmental impact. The simulated versions of these applications were executed in Batsim,
using a configuration model designed to represent the same hardware environment as the
real executions. For both approaches—real and simulated—10 runs were performed. The
following sections detail the experimental setup and analyze the results.

4.1. Experimental Setup

The experiments included several important considerations and assumptions. First,
the carbon_intensity value was calculated as the ratio between carbon emissions
(emissions) and energy consumed (energy_consumed), both extracted from the
output file generated by CodeCarbon. This calculation yielded a value of 98.348 g /kW h,
consistent with the default value defined in the official CodeCarbon documentation. This
value reflects the global average carbon intensity of electricity, as presented in the Code-
Carbon repository, while considering country-specific variations. In this study, Brazil was
used as the reference country.

To ensure accuracy in estimating energy consumption, the cpu_energy metric
was used instead of energy_consumed, since the real benchmarks were executed ex-
clusively on the CPU of the designated machine. CodeCarbon enables a breakdown of
energy usage by hardware components (such as CPU and GPU); therefore, only CPU-
specific consumption was considered. Consequently, the Batsim simulation environment
was configured to reflect the exact CPU specifications, as it was the only component in-
volved in performing the inference tasks.

Throughout real executions, CodeCarbon recorded CPU power consumption rang-
ing from 30 W to 40 W, with occasional peaks reaching 50 W. This consumption range
corresponds to the values reported in the official processor documentation* and was used
to define the different CPU power states in Batsim.

The number of floating point operations (FLOP) per inference was estimated using
the THOP (PyTorch-OpCounter)’ library, which is built on PyTorch. This library calcu-
lates the theoretical computational cost of a model’s architecture based on input dimen-
sions and model structure, independent of the actual input data. Therefore, the number of
FLOP per inference remained constant across all runs, resulting in minimal variation in
energy consumption and carbon emissions recorded during the 10 Batsim simulations.

For comparative analysis between real and simulated executions, standard statisti-
cal metrics were used, including the R? score, Mean Absolute Percentage Error (MAPE),
and Root Mean Square Error (RMSE).

Machine Description and Simulator Parameters

3CodeCarbon repository: https://github.com/mlco2/codecarbon

“Intel’s official specification for the processor used (Intel® Core™ i5-11400H): https://www.in
tel.com.br/content/www/br/pt/products/sku/213805/intel-core-1511400h-p
rocessor-12m-cache-up-to-4-50-ghz/specifications.html

STHOP (PyTorch-OpCounter) repository: https://github.com/Lykenl7/pytorch-0pCou
nter

https://github.com/mlco2/codecarbon
https://www.intel.com.br/content/www/br/pt/products/sku/213805/intel-core-i511400h-processor-12m-cache-up-to-4-50-ghz/specifications.html
https://www.intel.com.br/content/www/br/pt/products/sku/213805/intel-core-i511400h-processor-12m-cache-up-to-4-50-ghz/specifications.html
https://www.intel.com.br/content/www/br/pt/products/sku/213805/intel-core-i511400h-processor-12m-cache-up-to-4-50-ghz/specifications.html
https://github.com/Lyken17/pytorch-OpCounter
https://github.com/Lyken17/pytorch-OpCounter

In the Batsim simulator, the Intel Core i15-11400H processor was represented as a
host with the following parameters:

<!-—- Intel 15 11400H —-—>

<host id="Intel 1i5_11400H" speed="4.5Gf" pstate="0" core="6">
<prop id="wattage_per_state" value="10:25:40" />
<prop id="wattage_off" value="1.0" />
<prop id="carbon_intensity" value="98.348" />

</host>

Listing 1. XML Configuration of Host used in the experiments

Host ID (id): Intel i5_11400H
Speed (speed): Represents the processing capacity per core (in GigaFLOP per sec-
ond).
Number of cores (core): 6
Power states (wattage per _state): Indicates energy consumption (in watts) at dif-
ferent usage levels:
* Idle: When the processor is idle or under minimal activity, it consumes
little energy.
* Epsilon: Represents an intermediate load, where some cores are in use or
there is moderate activity.
* AllCores: Maximum usage state, with all cores active simultaneously,
resulting in the highest energy consumption.
Power consumption in off state (wattage off): 1.0W
Carbon intensity (carbon_intensity): 98.348 g/kW h, the same value used in the
real experiment, as specified in the CodeCarbon documentation.

The speed parameter was estimated individually for each benchmark by dividing
the total FLOP required by the average execution time, resulting in a performance rate in
GFLOP per second per core, the value shown in Listing 1 (4.5Gf) is a representative ex-
ample corresponding to the BERT Large benchmark. Meanwhile, the values assigned to
wattage_per_state were defined based on measurements of CPU energy consump-
tion, obtained using the Intel Power Gadget software.

4.2. Results and Analysis

This section presents the results of the experiments, comparing the energy consumption
and carbon emissions data obtained from real executions with the values generated by
the Batsim simulation. The results, extracted from the collected_results.csv
dataset, are analyzed using the previously mentioned metrics. The discussion is further
supported by a visual analysis of the boxplots, illustrating the distribution and variability
of the data for each benchmark.

ResNet18: The ResNet18 benchmark involved a total of 182 GFLOP across 100
inferences. With a total execution time of approximately 2.5 seconds, the CPU’s effective
processing rate was 72.8 GFLOP/s, or 12 GFLOP/s per core (72.8+-6), which was used as
the speed value for the Batsim simulation. The simulation results for this model showed
an R? score of -0.580, an RMSE of 0.001, and a MAPE of 23.11%.

BERT Large (fine-tuned for SQuAD): The BERT Large benchmark involved a
total of 1,250 GFLOP across 100 inferences, completed in about 46 seconds. The CPU
demonstrated an effective processing rate of 27 GFLOP/s, or approximately 4.5 GFLOP/s
per core (27 + 6), the speed value used in the simulator. The simulation of this model
produced an R? score of -0.146, an RMSE of 0.004, and a notably lower MAPE of 8.32%.

Deep Learning Recommendation Model (DLRM): The DLRM benchmark, the
lightest model tested, required 13 GFLOP for 100 inferences, completed in approximately
0.45 seconds. The effective processing rate was 28.8 GFLOP/s, or 4.8 GFLOP/s per core
(28.8 = 6). The simulation metrics for DLRM were an R? score of -0.019, an RMSE of
0.000, and a MAPE of 16.13%, an intermediate error value.

Analyzing the results obtained in the experiments allows us to assess the accu-
racy of the simulation performed in Batsim compared to the real executions monitored
by CodeCarbon. Overall, the simulation was able to estimate the average energy con-
sumption and carbon emissions reasonably close to the real values, especially for heavier
models such as BERT Large. However, there are important differences in the variation of
the results, reflected in the statistical metrics calculated.

For the ResNet18 model, the mean absolute percentage error (MAPE) was approx-
imately 23.11%, indicating a significant deviation between the real and simulated values.
However, it is important to note that the power consumption of processors of the same
model can vary up to 20% due to variability in manufacturing [Chasapis et al. 2019]. A
MAPE of 23.11% is therefore close to an acceptable range. Furthermore, the coefficient
of determination (R?) showed a negative value (-0.580), revealing that the simulation
could not reproduce the fluctuations observed in real executions. This behavior can be
explained by the fact that the model is relatively lightweight and runs quickly, making it
more susceptible to consumption variations caused by background processes and dynamic
frequency adjustments in the processor. In contrast, the Batsim simulation maintained sta-
ble values that did not reflect these occasional consumption peaks.

In the case of BERT Large, the results were more consistent. The MAPE was only
8.32%, demonstrating a reasonable proximity between the simulated and experimentally
measured values. Although it remained negative (-0.146), indicating a low correlation
with the variations in different runs, the average consumption and emissions estimated
by Batsim were quite accurate. This suggests that for heavier applications with longer
execution times, the simulation model represents the energy behavior of the system in a
more reliable way.

Finally, for the DLRM model, the MAPE recorded was 16.13%, an intermediate
error compared to the other two benchmarks. Like ResNetl8, R* was practically zero
(-0.019), again evidencing the difficulty in capturing variations in fast executions. This
result is consistent considering that execution times less than one second are more sensi-
tive to measurement inaccuracies and fluctuations in the real system, which reduces the
correlation with the simulated values.

The boxplots in Figure 3 and Figure 4 visually illustrate the patterns observed in
the quantitative metrics (MAPE and R?). It is observed that, for all models, the simulated
values show low variability, with boxes that are nearly collapsed and no presence of out-
liers. This reflects the deterministic nature of the Batsim simulation, which, by assuming

Energy Consumption by Model

Source
[Real
I Simulated

1044

—

Energy (kWh)

105 4

'L|

L

T T T T T T
Resnet (Real) Resnet (Simulated) Dirm (Real) Dirm (Simulated) Bert (Real) Bert (Simulated)
Model

Figure 3. Energy consumption (kWh) by model, comparing real and simulated
data. Log scale in the y axis.

constant consumption per power state, generates very stable results across executions.

In the case of ResNetl8, there is a marked difference between the dispersion of
real and simulated data, both in terms of energy consumption and carbon emissions. The
real data present a wider interquartile range, indicating greater variation between exe-
cutions, which aligns with its short runtime and susceptibility to system noise (such as
frequency fluctuations and background processes). The median of the simulated values is
also visibly lower than the real median, suggesting an underestimation of the energy load
by the simulation model.

For DLRM, a behavior similar to that of ResNet18 is observed. Although overall
consumption is even lower, the dispersion in real data remains evident, and the gap be-
tween the real and simulated medians is slightly smaller than in ResNet18, which is con-
sistent with the intermediate mean absolute percentage error previously reported (MAPE
~ 16%). The presence of outliers in the real data further reinforces the influence of exter-
nal factors in short executions.

In the case of BERT Large, the boxplots reveal a closer match between real and
simulated values. Both the medians and interquartile ranges are similar, especially in the
energy consumption graph. Although there is still some variation in the real data, it is
significantly smaller in relative terms, given the larger magnitude of the consumption.
These visual results support the low MAPE (8.32%) and reinforce that the simulation
model is more reliable for heavy workloads and longer durations, in which the impact of
system noise is mitigated.

The results indicate that the simulation-based approach is suitable for estimat-
ing average energy consumption and carbon emissions, especially for more intensive
and longer-running workloads such as BERT Large. However, there are limitations for
lightweight and fast models, since small variations in the real environment significantly
affect measurements, while the simulation keeps values constant. More refined adjust-
ments to the power states (wvattage_per_state) or the introduction of dynamic load

Carbon Emissions by Model

Source
[Real
I Simulated

=

o
|

N

—

Carbon Emissions (kgCO2)

._.
1Sy
&

'L|

L

T T T T T T
Resnet (Real) Resnet (Simulated) Dirm (Real) Dirm (Simulated) Bert (Real) Bert (Simulated)
Model

Figure 4. Carbon emissions (kg CO;) by model, comparing real and simulated
data. Log scale in the y axis.

models could improve the accuracy of the simulation, bringing it even closer to real exe-
cution.

5. Conclusion

This work introduced a carbon footprint plugin developed in SimGrid and integrated into
Batsim, enabling the simulation and monitoring of CO, emissions based on the energy
consumption of computing hosts. By allowing per-host configuration of carbon intensity
and logging emissions during key scheduling events, the plugin extends Batsim’s capa-
bilities to support more environmentally aware simulations.

A validation study was conducted by comparing simulated executions of three ma-
chine learning workloads against experimental results on a single machine. The findings
show the plugin’s ability to reproduce average energy and carbon emission profiles with
reasonable accuracy, particularly for heavier, longer-running workloads. The study also
highlighted limitations in capturing the variability of short-running tasks, where system
noise has a greater impact on experimental measurements.

These results establish the plugin as a valuable tool for researchers to evaluate
the environmental impact of scheduling strategies in a controlled environment. Future
work includes refining the plugin to improve simulation accuracy for lighter workloads
and using Grid’5000 testbed to evaluate distributed large-scale scenarios. Furthermore,
efforts will be directed toward making this plugin an official SimGrid extension, fostering
long-term maintenance, and encouraging broader adoption by the research community.

6. Acknowledgments

This project was partially funded by FAPESP (procs. 19/26702-8, 23/00811-0, 24/09487-
4, and 24/23163-7), by the Science for Development Center (CCD) ‘Carbon Neutral
Cities’ (FAPESP 24/01115-0), and by the CNRS International Research Center (IRC)
“Transitions’.

References

Abbas, A., Huzayyin, A., Mouneer, T., and Nada, S. (2021). Effect of data center servers’
power density on the decision of using in-row cooling or perimeter cooling. Alexandria
Engineering Journal, 60(4):3855-3867.

Calheiros, R. N., Ranjan, R., Beloglazov, A., Rose, C. A. FE. D., and Buyya, R. (2011).
Cloudsim: A toolkit for modeling and simulation of cloud computing environments
and evaluation of resource provisioning algorithms. Software: Practice and Experi-
ence, 41(1):23-50.

Casanova, H., Giersch, A., Legrand, A., Quinson, M., and Suter, F. (2014). Versatile,
scalable, and accurate simulation of distributed applications and platforms. Journal of
Farallel and Distributed Computing, 74(10):2899-2917.

Chasapis, D., Moret6, M., Schulz, M., Rountree, B., Valero, M., and Casas, M. (2019).
Power efficient job scheduling by predicting the impact of processor manufacturing
variability. In Proceedings of the ACM International Conference on Supercomputing,
pages 296-307.

Dutot, P.-F., Mercier, M., Poquet, M., and Richard, O. (2016). Batsim: a Realistic
Language-Independent Resources and Jobs Management Systems Simulator. In 20th
Workshop on Job Scheduling Strategies for Parallel Processing.

Google (2025). Google environmental report 2025.

International Energy Agency (IEA) (2024). Analysis and forecast to 2026. Technical
report, IEA, France.

Kliazovich, D., Bouvry, P., and Khan, S. U. (2012). Greencloud: A packet-level simu-
lator of energy-aware cloud computing data centers. The Journal of Supercomputing,
62(3):1263-1283.

Masanet, E., Shehabi, A., Lei, N., Smith, S., and Koomey, J. (2020). Recalibrating global
data center energy-use estimates. Science, 367(6481):984-986.

Microsoft (2025). Microsoft sustainability report.

Orgerie, A.-C. (2020). From Understanding to Greening the Energy Consumption of
Distributed Systems. Habilitation a diriger des recherches (HDR), Ecole Normale
Supérieure de Rennes.

Poquet, M. (2017). Simulation approach for resource management. Data structures and
algorithms, Université Grenoble Alpes.

Vasconcelos, M., Cordeiro, D., da Costa, G., Dufossé, F., Nicod, J.-M., and Rehn-Sonigo,
V. (2023). Optimal sizing of a globally distributed low carbon cloud federation. In 2023
IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing
(CCGrid), pages 203-215.

Zhang, X., Zhong, J., Zhang, X., Zhang, D., Miao, C., Wang, D., and Guo, L. (2025).
China can achieve carbon neutrality in line with the Paris agreement’s 2°C target:
Navigating global emissions scenarios, warming levels, and extreme event projections.
Engineering, 44:207-214.

	Introduction
	Background and Related Work
	Carbon Footprint plugin
	Mathematical Model
	Overview of the Plugin Functionality
	Validation

	Integration with Batsim

	Evaluation and Comparison
	Experimental Setup
	Results and Analysis

	Conclusion
	Acknowledgments

