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Abstract. In recent years, RISC-V ISA has gained popularity and research on
RISC-V processor verification has increased. However, most studies focus on
a small number of cores and rely on implementation-dependent characteristics.
To address this limitation, we propose a generic verification framework that
monitors high-level processor states through the fetch interface and the register
file write port. The execution traces are compared against a reference model.
Our framework leverages a Large Language Model to collect the necessary files
and signals of new processors, allowing manual code reductions of 85%. We
evaluated the framework by testing 21 LLMs in the inspection task and simulat-
ing a custom benchmark on 21 processors, identifying 16 bugs across 8 different
cores.

1. Introduction
Before the 2000s, processor design was predominantly controlled by a handful of compa-
nies and their Instruction Set Architectures (ISAs). This scenario significantly influenced
processor development, including the verification flow. Because access to ISAs was re-
stricted, verification methodologies became specialized to the few implementations that
were under development. For example, the development of the Power9 processor by IBM
[Schubert et al. 2018] required verification tools focused on the unique components and
interconnections of the processor.

The creation and popularization of RISC-V has allowed the release of a wide range
of processors designed according to the same ISA. The common architecture has facili-
tated the creation of reusable verification tools, but ensuring compatibility across numer-
ous microarchitectures remains a significant challenge. In response to this context, ver-
ification efforts of RISC-V have increased [Yosys 2025, Synopsys 2025], but most tools
are still specialized for their target processors [Kabylkas et al. 2021, Joannou et al. 2024,
Herdt et al. 2020]. The abundance of distinct implementations also makes it difficult to
select an appropriate processor from the many available options.

Another challenge for large-scale verification is reducing the time to set up the
verification environment, which can be achieved through automation. Large Language
Models (LLMs) have shown promising results in the analysis of source code and the
generation of Hardware Description Language (HDL) code [Thakur et al. 2023], which
can assist with repetitive tasks such as module instantiations.

To address these challenges, we propose an agile and general solution based on
two key components. The first component leverages an LLM to automatically identify
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the relevant source files for the simulation and extract the necessary signals to the verifi-
cation infrastructure, thereby reducing the amount of manually written code. The second
component uses simulation trace comparison, in which the PC flow and the register file
commits of the processor under test and a reference model are compared for each program
in a custom benchmark. This method is highly reusable, as it requires no modifications to
the processor code.

2. Related Work
2.1. Reference Model Comparison
Reference model comparison is a verification technique in which the processor under
test is compared to a reference –or golden –model that is typically a high-level language
description of the ISA. To apply the method, both implementations run the same test
program and generate execution traces containing information regarding each instruction.
If the traces differ, the cause must be investigated as it may indicate a bug.

Many studies leverage reference model comparison for RISC-V processor verifi-
cation, but most approaches target a single core or a small set of cores. They usually re-
quire HDL files modifications that are tightly coupled to microarchitectural details, which
makes it difficult to reuse or generate the code, and ultimately hinders automation.

Dromajo is an Instruction Set Simulator (ISS) introduced in
[Kabylkas et al. 2021]. It is used as the golden model in a co-simulation setup to
verify three RISC-V processors, relying on Direct Programming Interface (DPI) calls
to synchronize the implementations. The authors describe the instruction completion
detection mechanism used for one of the cores: the processor code is modified to monitor
the reorder buffer and to invoke the ISS at each commit.

An additional five processors were verified in [Joannou et al. 2024]. The pro-
posed simulation setup compares the RTL implementation against the golden model us-
ing an extended version of the RISC-V Formal Interface (RVFI) [Yosys 2025], known as
RVFI-Direct Instruction Injection (RVFI-DII). DII is a technique in which instructions
are injected directly into the processor’s fetch interface, enabling the simulation to exe-
cute specific instructions rather than the entire program, which makes debugging more
efficient. This technique requires highly processor-specific code. For instance, Flute, an
in-order scalar core, used an instruction ID attached to the program counter which was
propagated through each stage of the pipeline.

Table 1 summarizes different RISC-V processor verification works, highlighting
the base technique used and the number of cores verified. It can be seen that it is a
common practice to verify only one or a few processors. An exception is the Fabscalar
[Choudhary et al. 2011] tool, that verifies 12 cores. However, these cores are merely vari-
ations automatically generated by the same tool and share similar, well-defined structures.

2.2. Verification Tool Generalization
The RISC-V Formal Framework [Yosys 2025] is an open-source tool comprising a formal
specification of the RISC-V ISA and formal testbenches for supported processors. It
defines a generic interface, the RVFI, which can be used not only in formal methods but
also in alternative ones. In particular, some designers have adopted the RVFI as a standard
trace format for verifying their cores via co-simulation [Joannou et al. 2024].



Table 1. RISC-V Processor Verification Work with number of verified processors.

Work Base Method Processors
[Kabylkas et al. 2021] Ref. Model Comp. 3
[Joannou et al. 2024] Ref. Model Comp. 5
[Herdt et al. 2020] Ref. Model Comp. 1
[Wang et al. 2020] RTL-level Simulation 1
[Choudhary et al. 2011] Ref. Model Comp. 12*
[Orenes-Vera et al. 2021] Formal Verification 1
[Weingarten et al. 2024] Formal Verification 1
[Bruns et al. 2023] Ref. Model Comp. 1
[Cui et al. 2023] RTL-level Simulation 1
[Rokicki et al. 2019] Ref. Model Comp. 1
[Jiang et al. 2024] Ref. Model Comp. 1
[Bruns et al. 2022] Ref. Model Comp. 1
[Xu et al. 2022] Ref. Model Comp. 2
*Automatically generated processors
Formal Verification: proves design correctness using mathematical principles
RTL-level Simulation: compares signals and low-level details

Synopsys ImperasDV [Synopsys 2025] is a commercial verification suite for
RISC-V processors. It provides a variety of tools, including reference model comparison
and coverage analysis. Similar to the RISC-V Formal Framework, ImperasDV defines a
generic interface called the RISC-V Verification Interface (RVVI).

Even though these two tools represent significant advances toward generalization,
their verification interfaces require deep changes to the processor, posing a challenge to
achieving rapid, large-scale applicability.

Finally, the RISC-V Certification Steering Committee [RISC-V Foundation 2025]
deserves mention. It is currently evaluating the most suitable test suite to ensure compli-
ance with the RISC-V ISA. Although the tests are intended for large-scale use, they rely
on directed testing, which is generally less effective than reference model comparison
verification methods.

2.3. LLM Automated RTL Code Generation

LLMs have demonstrated strong capabilities in natural language processing as well as
in generating high-level programming code [Nijkamp et al. 2023]. More recently, their
potential for generating RTL code has also begun to be explored.

Thakur et al. [Thakur et al. 2023] aimed to improve the generation of Verilog
code by LLM by fine-tuning an existing model with a new dataset composed of Verilog
code collected from GitHub and textbooks. The fine-tuned model was then evaluated
in a range of tasks, including: (1) describing the module’s functionality, and (2) solving
Verilog coding problems such as designing sequential logic circuits. The fine-tuned model
outperformed its pre-trained counterpart, demonstrating that LLMs can improve their RTL
generation capabilities and be effectively used in hardware design.

RTLCoder is an open source LLM introduced by Liu et al [Liu et al. 2025] that



automatically generates RTL code. It is presented as a promising tool to support agile
hardware development. RTLCoder can be applied to a variety of tasks, including the
creation of security assertions, bug fixing, and the generation of repetitive code structures
such as arithmetic units and decoders.

After presenting the current scenario, it is evident that robust models for automated
RTL code generation are rapidly emerging and becoming valuable tools in computer ar-
chitecture development.

3. System Architecture

3.1. Overview

Our verification methodology is presented in Figure 1. An RTL wrapper that translates the
processor’s interface to the standard Wishbone [OpenCores 2010] is used to connect the
design under test to the Generic Simulation Testbench. In some cases, a protocol adapter
is instantiated to carry out this translation. The testbench is implemented using Cocotb
[The FOSSi Foundation 2025], which uses the configuration files automatically generated
by the LLM. The simulation then receives an arbitrary ELF file, which is executed by the
processor to generate a trace. Finally, the trace is compared with that of the reference
model (Spike1 simulator). Figure 2 summarizes the verification steps.
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Figure 1. Diagram of the pro-
posed tool. The wrapper* and
the configuration files* were
automatically created. The
adapter module is optional.
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Figure 2. Proposed verification
framework flow for one pro-
cessor. Steps marked with *
were automatically executed
with the use of an LLM.

3.2. Automated Design Inspection and Wrapper Generation

The wrapper generation process has five steps that are either executed by scripts, by LLM,
or manually.

1. Since the LLM’s context window is not large enough to handle all the source code,
a script preprocesses the files and creates a list containing the modules instantiated
by each file.

2. The LLM receives a prompt with the created list and determines the top module
along with the necessary files for a core-only system.

3. The LLM instantiates the top module in the wrapper’s template.

1https://github.com/riscv-software-src/riscv-isa-sim



4. The processor’s interface is automatically identified by the LLM to determine
whether an adapter is needed. If so, the model either instantiates one of the stan-
dard adapters, which were handcrafted, or notifies the user to manually insert a
custom adapter module into the template.

5. Finally, the user completes the wrapper by connecting the modules through their
ports.

In summary, the wrapper consists of an HDL file containing the external interface,
along with the instantiations of the processor and the optional adapter. The list of files
required for a core-only system is used to generate the configuration files.

3.3. Simulation Setup
The generic simulation testbench was developed using the Cocotb Python verification
framework [The FOSSi Foundation 2025]. In Cocotb, the design under test is instantiated
as a Python object, allowing the user to control the simulation and integrate high-level
models that interact with the design.

The testbench consists of an instance of the processor under test, a memory model
that supplies instructions and data, a monitoring probe, and an execution trace generator.
During execution, two interfaces are monitored: the instruction memory interface and the
register file interface.

When an instruction-memory request occurs, the processor is executing a fetch.
The requested address corresponds to the next program counter (PC) value, and the re-
turned data correspond to the next instruction. Since the instruction memory interfaces
were very similar across processors, the Wishbone interface could be used with little
modifications.

The register file interface was highly consistent across processors, with all verified
designs including signals equivalent to (1) write-enable, (2) write address, and (3) write
data. When the write enable signal is asserted, the other two signals can be used to identify
the current commit. To monitor the register file, the user must indicate the corresponding
signals to the framework, which incorporates them into a small core-specific section of
the testbench.

3.4. Challenges and Implementation Strategy
Relationship between trace events: Each commit of a register file must be associated
with its corresponding instruction to generate a correct execution trace. Related work
usually achieves this by monitoring the instruction execution along the pipeline or by
checking the multi-cycle processor’s state machine. Since the verification method must
be processor-agnostic, it cannot rely on such microarchitectural details.

The adopted strategy to address this challenge was to monitor instruction fetches
and register file commits separately, and subsequently merging them into a final execution
trace. Two trace fragments are constructed as ordered lists: one containing all instruction
fetches (program counter and instruction) and the other containing all register file com-
mits (target register and written value). The lists are combined according to a general
behavior: both sequences maintain the same order. Thus, the first instruction that writes
to the register file (arithmetic instructions write to the register file but branches do not) is
associated with the first entry in the commit list, and so on.



PC-flow monitoring: In most verified processor simulations, we observed flushed
instructions (fetched but not fully executed). When jumps and branches are fetched, sub-
sequent instructions at the next sequential PC addresses are speculatively fetched, similar
to the behavior of a static “not-taken” branch predictor.

The chosen approach to address this challenge involves filtering the control-flow
fragment of the processor’s execution trace. If the core fetches an instruction that does not
follow the reference flow, it is discarded from the trace under the assumption that it was a
speculative fetch. After all assumed speculative (canceled) instructions are removed, the
filtered processor flow must match the reference flow. Figure 3 illustrates an example of
canceled instructions being removed from the final control flow.

Nevertheless, it is still necessary to verify whether the assumed canceled instruc-
tions were indeed canceled. This challenge is addressed during the merging of the fetch
and register file commit traces, as explained next.

PC = 0x00: addi x1, x0, 0

PC = 0x04: beq x1, x0, skip

function:

PC = 0x08: addi x1, x1, 1

PC = 0x0C: addi x2, x0, 2
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Figure 3. Control flow monitor-
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from the execution trace.
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In Figure 4, two examples of the trace generation process are shown. On the
left, the normal case is illustrated, where the commits are correctly associated with their
respective instructions: x1 = 0 is associated with the addi at PC=0x00, x11 = 1
with the addi at PC=0x1C, and so on. On the right, an unexpected commit x1 = 1 is
shown, made by the addi x1, x1, 1 instruction (in red). Since the trace generator
assumed that this instruction was canceled, the unexpected commit is incorrectly associ-
ated with the next valid instruction, causing all subsequent associations to be incorrect as
well, resulting in a misaligned trace. This behavior will trigger a mismatch in the trace
comparison, which can be used to detect the bug.

Memory write monitoring: We decided not to include memory write operations
in the execution trace. This exclusion is due to the difficulty of correctly monitoring byte
and halfword store operations across all processors using the memory interface signals.
Most processors feature a write strobe or byte-enable signal that indicates which bytes
are being written to memory, signals that are typical of cache interface. However, some
processors (refer to Table 2) instead implement stores using read-modify-write (RMW),



common of memory interfaces. So far, our infrastructure does not detect those distinct
patterns, but we found that errors in these instructions are later detected by a subsequent
load from the same address. The test benchmarks include programs that account for this
behavior, with load instructions immediately following write operations.

4. Evaluation

4.1. Automated Design Inspection and Wrapper Generation

We executed an experiment to identify the most suitable LLM for automation tasks de-
scribed in section 3.2. Nine different model families were included: Qwen 1, Gemma 2,
StarCoder 3, DeepSeek 4, Phi 5 , Codestral 6, Llama 7, Llava 8, and Granite 9. Each family
comprises subsets of different sizes and other variants (e.g. general, coder), totaling 21
models. The 21 processor projects listed in Table 2 were used as input for the LLMs, as
well as ten other open-source cores available on GitHub and GitLab.
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Figure 5 presents the experimental results for the LLMs tested. If an LLM fails to
complete any of the tasks described in section 3.2, the entire flow for the corresponding
processor is considered a failure. The behaviors that lead to a failure were (1) the LLM
providing a script to solve the problem instead of the actual solution or (2) the LLM
generating the output with incorrect formatting, making it unparseable. The high failure
rate of some models may be explained by the fact that hardware description languages
(HDLs) were underrepresented in their training data. For example, in the development
of one of the worst-performing LLMs, StarCoder2 [Lozhkov et al. 2024], no HDLs are
mentioned.

1https://github.com/QwenLM/Qwen
2https://ai.google.dev/gemma
3https://github.com/bigcode-project/starcoder
4https://github.com/deepseek-ai/DeepSeek-Coder
5https://azure.microsoft.com/en-us/products/phi
6https://mistral.ai/news/introducing-codestral/
7https://arxiv.org/abs/2302.13971
8https://arxiv.org/abs/2304.08485
9https://arxiv.org/abs/2304.08485



We then evaluated the quality of the generated results by comparing the LLM out-
puts with manually created solutions for step 2 in section 3.2, which involves the creation
of configuration files. These configuration files consist on makefiles with a list of the nec-
essary source files for the simulation, the top module, and some configuration flags for the
simulator. To perform the comparison, we populated Python sets with the names of the
source files along with the top module name. The Jaccard coefficient was then calculated
using the LLM and manual sets, resulting in the similarity metric.

Figure 6 shows that approximately half of the LLM achieved an average similarity
greater than 60%. It can be seen that the model family had a significant influence on the
results. Also, that the size of the model (measured in billions of parameters, such as 32b
and 14b), on the other hand, showed less influence on the similarity. The presented au-
tomation significantly improved productivity, as the qwen2.5 model was used to generate
70% correct configuration files and reduce manual effort.

To evaluate the reduction in manual effort by steps 3 and 4 in section 3.2, we mea-
sured the proportion of structural elements generated automatically by our framework.
We counted syntactic elements extracted from the Verilog Abstract Syntax Tree (AST)
using the PyVerilog parser [Takamaeda-Yamazaki 2015]. Each module instantiation, port
declaration, signal declaration, and port connection was treated as an individual element.
Our automatically generated code provides module instantiations and port declarations,
while the user is responsible for completing the signal connections. By comparing the
number of elements generated by the framework with the total number of elements in the
final design, we obtained the automation coverage. After applying the methodology for
19 of the 21 processors in Table 2 (RPU and Leaf are written in VHDL and could not be
analyzed with PyVerilog), an average of 85% coverage was obtained.

One last metric must be analyzed in this section, which is the total effort to setup
the testbench. The lines of code required to apply the verification method, including
configuration files and source files, were compared. The CVA6 core was verified in
[Kabylkas et al. 2021] and required 280 lines of code. The Ibex core required more than
450 lines of code when verified using the RVFI-DII proposed in [Joannou et al. 2024].
The solution proposed in this work required 270 lines of code to verify Hazard3, a similar-
sized core.

Even though the line counts have around the same magnitude, the code reusability
differs significantly. Both cited studies depend on modifying structures that are unique
to the cores: Ibex had its pipeline stages modified in order to implement the RVFI-DII
interface and CVA6 had its reorder buffer modified. Our solution, on the other hand, deals
only with interfaces that are typically similar or standardized. Another important aspect is
that our testbench is potentially easier to generate using LLMs. It only requires interface
detection and module instantiations, while related work depends on more advanced code
structures and more context such as interactions between pipeline stages.

4.2. Generic Simulation Method
The applicability of the simulation method was evaluated by applying it to a diverse set
of processors. Table 2 lists all the simulated cores together with details of their interfaces
and the number of bugs identified after running a set of benchmark tests.

The Structure and Byte/Half Writes columns of Table 2 describe the processor



Table 2. List of simulated processors and their relevant characteristics

Processor Structure Extensions Byte/Half Writes Required Adapter Bugs Found
RVX1 Multi-cycle RV32I Write Strobe Yes 0
Hazard32 3-stage pipeline RV32IMAC Zicsr+ Write Strobe Yes 0
Riscado-V3 Multi-cycle RV32I Read modify write No 1
Tinyriscv4 3-stage pipeline RV32IM Read Modify Write No 0
Grande Risco 55 5-stage pipeline RV32IMBC Zicsr Read Modify Write No 1
Riskow6 Multi-cycle RV32I Read Modify Write No 0
Risco 57 Multi-cycle RV32IM Read Modify Write No 2
Kronos8 3-stage pipeline RV32I Zicsr Zifencei Write Strobe Yes 0
PicoRV329 Multi-cycle RV32IMC/E Write Strobe No 0
AUK-V-Aethia10 5-stage pipeline RV32I Write Strobe No 5
Fedar F111 5-stage pipeline RV64IM Not Implemented No 2
Hornet12 5-stage pipeline RV32IM Write Strobe No 1
Nerv13 Multi-cycle RV32I Write Strobe No 0
Baby Risco 514 Multi-cycle RV32E Read Modify Write No 3
Zero-Riscy15 2-cycle pipeline RV32IMC Write Strobe No 0
mriscv16 Multi-cycle RV32I Write Strobe No 0
SprintRV17 5-stage pipeline RV32IM Zicsr Write Strobe No 0
Leaf18 2-stage pipeline RV32I Write Strobe No 0
RPU19 Multi-cycle RV32IM Zicsr Write Strobe Yes 1
RS520 4-stage pipeline RV32IMACV+ Write Strobe Yes 0
SuperScalar-CPU21 5-stage 3-issue OoO RV32IMC Write Strobe Yes 0
1https://github.com/rafaelcalcada/rvx 12https://github.com/yavuz650/RISC-V
2https://github.com/Wren6991/Hazard3 13https://github.com/YosysHQ/nerv
3https://github.com/zxmarcos/riscado-v 14https://github.com/JN513/Baby-Risco-5
4https://github.com/liangkangnan/tinyriscv 15https://github.com/tom01h/zero-riscy
5https://github.com/JN513/Grande-Risco-5 16https://github.com/onchipuis/mriscv
6https://github.com/racerxdl/riskow 17https://github.com/CastoHu/SprintRV
7https://github.com/JN513/Risco-5 18https://github.com/daniel-santos-7/leaf
8https://github.com/SonalPinto/kronos 19https://github.com/Domipheus/RPU
9https://github.com/YosysHQ/picorv32 20https://github.com/gaph-pucrs/RS5
10https://github.com/veeYceeY/AUK-V-Aethia 21https://github.com/risclite/SuperScalar-RISCV-CPU
11https://github.com/eminfedar/fedar-f1-rv64im

characteristics that influenced the design of the testbench. The Required Adapter column
shows that six processors needed an adapter module: Hazard3 used a AHB-to-Wishbone
module; RVX, Kronos, and RS5 required a Wishbone-to-Pipelined-Wishbone (introduc-
ing a one cycle delay of data signals); RPU and Superscalar-RISC-V-CPU required a
custom adapter that translates the byte-enable signals.

The method was also applied to a superscalar core, which required a specific in-
terface for multiple instruction fetches and careful trace comparisons, considering the
possibility of multiple register file commits at the same cycle. The fetches, however, still
follow the same relative order, as well as the memory stores.

These results indicate that the verification infrastructure is scalable, because (1)
most processors have a direct mapping to the wrapper interface, (2) most of the adapters
are standard and reusable, (3) and only two processors required a custom adapter. It
should also be noted that the configuration files were easily generated, and that identifying
the register file interface requires listing only a few signals, typically fewer than five.

4.3. Processor Verification via Trace Comparison

The purpose of the generic simulation setup is to allow the verification of multiple proces-
sors. The method involves simulating both the processor under test and a golden reference
model to generate their respective execution traces, which are then compared. The infras-
tructure does not rely on a specific test format to execute the ELF file instructions, so it
can handle from handwritten to randomly generated tests.

To evaluate the feasibility of the proposed method, a custom benchmark consist-



ing of 40 programs was executed on each processor. The benchmark included manually
written tests for each RV32I instruction, along with a few additional corner cases. These
cases include programs with stores followed by loads and instruction combinations that
trigger forwarding structures. The main bugs found after running the benchmark were the
following:

Load/store half/byte instructions errors: AUK-V-Aethia, Fedar F1, Risco-5 and
RPU exhibited bugs related to halfword and byte memory accesses. AUK-V-Aethia failed
to sign-extend loaded halfwords and bytes. Fedar F1 incorrectly loaded the entire mem-
ory word at all times, even for halfword and byte load instructions. Risco-5 modified the
entire memory word instead of the selected bytes during halfword and byte store oper-
ations. RPU would incorrectly load the entire word in the specific case of the unsigned
instructions LBU and LHU.

Wrong first instruction fetch: The Hornet processor consistently skipped the
first instruction of the program. Investigation revealed that the instruction address port
was connected to the combinational logic for the next PC value rather than the current PC
register. As a result, the processor began execution with the address port pointing to the
second instruction of the program.

Incorrect jump behavior: Fedar F1, Grande-Risco-5 and Baby-Risco-5 exhib-
ited control flow issues related to jump instructions under certain conditions. When fetch-
ing a jump, Fedar F1 requires two cycles to recognize the jump and update the control
flow, resulting in two incorrect instructions being fetched and needing to be flushed. How-
ever, the processor’s flush mechanism did not function correctly, causing these erroneous
instructions to be committed. Grande-Risco-5 hangs when executing an infinite loop (e.g.,
the RISC-V assembly instruction label: j label). Instead of repeatedly fetch-
ing the same instruction, the processor ceases instruction fetches entirely. Baby-Risco-5
failed to jump at the JALR instruction and proceeded with the program sequentially.

Table 2 indicates that some processors have more bugs than others. This variation
can be attributed to differences in core maturity, influenced by the extent of verification
and the designers’ team profile. Processors with a higher number of detected bugs were
often developed by individual designers and verified primarily through simulation using
limited testbenches (for example, only a single test program was found in the Fedar F1
repository). Information regarding core maturity can assist designers in selecting proces-
sors, enabling them to choose more reliable cores or to anticipate additional verification
effort when opting for less mature designs.

5. Conclusion

The popularization of the RISC-V ISA has led to the emergence of numerous processor
cores, raising important questions regarding their verification and criteria for selection
in specific applications. In this paper, we present a verification framework designed to
support multiple processors effectively.

The framework includes an automated design inspection tool that leverages LLMs
to analyze the project’s source files, identifying those related to the processor. Based on
this analysis, an RTL wrapper is generated around the top module to ensure compati-
bility with the testbench interface. Various bus interfaces such as AHB, Wishbone, and



customized ones were connected using the Wrapper. This task was executed by 21 differ-
ent LLMs and their outputs were compared to a manually created reference in terms of
successfully generated outputs and output quality. The automation coverage in the final
wrapper files was also evaluated, revealing an average of 85%.

Following this, the framework employs a generic simulation-based verification
method that monitors the processor’s instruction fetch and register file interfaces to pro-
duce an execution trace. This trace is then compared with that generated by the Spike
golden model. Simulating a processor requires no modifications to its source code and
minimal wrapper code. This approach successfully simulated 21 processors that exhibit
diverse structures and interface behaviors, primarily consisting of embedded cores.

A benchmark comprising 40 manually written test programs was executed on each
processor and their execution traces were compared. Using this method, 16 bugs were
identified in eight different processors. The number of detected bugs can serve as an
indicator of the maturity of a design and may assist designers in selecting appropriate
processors.
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