
Evaluating Memory Constraints of
RISC-V Matrix Accelerators using gem5

Iago C. Aquino1, Casio P. Krebs1, Lucas Wanner1, Sandro Rigo1

1Instituto de Computação – Universidade Estadual de Campinas (UNICAMP)
Campinas, SP – Brazil

{i198921,c264953}@dac.unicamp.br, {lucas,sandro}@ic.unicamp.br

Abstract. Matrix multiplication is a core operation in artificial intelligence
workloads, often limited by memory bandwidth in modern computing
accelerators. This study explores the architectural integration of a prototype
RISC-V matrix extension using the gem5 simulator by modeling various
memory hierarchy configurations, ranging from private caches to direct DRAM
connections. Results demonstrate that strategic memory hierarchy placement
significantly enhances computational throughput and efficiency. Our matrix
implementation achieves 1.35x the performance of OpenBLAS using the same
architectural state and 87% of the theoretical maximum.

1. Introduction
The remarkable spread of artificial intelligence (AI) in contemporary computing drove
a paradigm shift in processor and accelerator design, particularly due to the demand for
manipulating extremely large datasets. The key operation for this workload is dense linear
algebra, especially General Matrix-Matrix Multiplication (GEMM), which is the most
used for training and inference in recent models.

To meet the demands of the ever-growing models, General-Purpose GPUs
(GPGPUs) are employed, providing tens of billions of multiply-accumulate (MAC)
operations per second, the base operation for GEMM. However, their usage is limited
by its huge power requirements and memory restrictions. Addressing these bottlenecks,
dedicated matrix acceleration units have been introduced to recent processors, with
Intel’s Advanced Matrix Extensions (AMX) [Kim et al. 2024] and ARM’s Scalable
Matrix Extension (SME) [Weidmann 2021], offering more efficient execution compared
to traditional CPUs and GPGPUs, while also granting access to the larger memory pool
of the system.

With its open-source and royalty-free model, the RISC-V [Waterman et al. 2014,
RISC-V International 2025] instruction set architecture (ISA) has emerged as a
compelling alternative for the data center space. Designed for flexibility, it has enabled
the design of numerous products tailored to specific application domains, such as AI and
high-performance computing (HPC). However, while vector extensions have already been
standardized, matrix extensions remain under development, limiting GEMM performance
and leading to proprietary extensions [Alibaba Cloud 2023, SiFive 2024] with fragmented
software support.

Another key design challenge for next-generation matrix accelerators lies in
balancing computational throughput with memory bandwidth. Without adequate data



delivery, even highly capable compute units risk remaining underutilized. However,
mathematical analysis alone is insufficient to address this problem. A comprehensive
understanding of how accelerators interact with different levels of the memory hierarchy
is essential for guiding architectural optimization, making simulation necessary to achieve
deeper insights.

The gem5 simulator [Binkert et al. 2011, Lowe-Power et al. 2020], a widely used,
open-source, cycle-level simulation platform for computer architecture research, can
provide enough information to guide accelerator projects. Its modular design enables
full-system and microarchitectural simulation of modern CPU, memory, and peripheral
components across multiple ISAs, including RISC-V. Since it can simulate pipeline
stages, memory subsystems, and custom instructions, it can be employed for early-stage
architectural exploration, especially when RTL is unavailable or too costly to modify.

In this work, we extend the gem5 simulator to model a prototype RISC-V
matrix extension and evaluate its integration at different levels of the memory hierarchy,
aiming to identify how architectural placement impacts bandwidth, latency, and arithmetic
intensity in matrix-heavy workloads. Our custom implementation achieves up to 1.35x the
performance of OpenBLAS vector-based kernel and reaches 87% of the theoretical peak
throughput.

The rest of the paper is organized as follows: Section 2 provides an overview
of related work on GEMM workloads and accelerator simulation, Section 3 describes
the methodology used to implement and evaluate the RISC-V matrix extension within
the gem5 simulator. Section 4 presents the simulation setup and discusses the
architectural parameters used for matrix and vector comparisons. Section 5 details the
experimental results, including performance across memory hierarchies and comparison
with OpenBLAS. Finally, Section 6 concludes the work and outlines directions for future
research.

2. Related Work
Achieving the best performance of a given hardware is a question of balancing the
computing power of the chip with the ability of the system to keep it fed with data.
Bigger and bigger accelerators are being built for recent tasks, but a lot of thought is
still necessary to sustain this performance. For artificial intelligence, GEMM is the
predominant task, which is memory-bound, as shown by a variety of works proposing
solutions for memory hierarchy limitations and custom accelerators, as is done by
[Yessin et al. 2014] and [Wang et al. 2024].

Literature already goes over arithmetic and memory balance, with
[McCalpin 1995] proposing a mathematical formula for it (Equation 1). Although
he proposes the use of a sustained memory operations to mitigate variations, there are
multiple inconsistencies in memory performance that need simulation to be accounted
for, as is the case of DRAM row management or cache parallelism, which affects latency.

Bmachine =
Peak FLOPs/cycle

Sustained Memory Ops/cycle
. (1)

The work of Goto [Goto and Geijn 2008], a reference in the implementation of linear
algebra operations for CPUs, does an extensive job on optimizing the GEMM operation



for multiple levels of cache, as is the case in modern systems. This strategy mitigates some
of the memory inconsistencies, but cannot be directly applied to our implementation,
because we want to evaluate the requirements of a matrix accelerator fetching data at
different memory levels, in other words, our accelerator does not benefit directly from the
partitioning of data proposed by Goto. For some configurations, we cannot assume three
or even two levels of cache. Furthermore, our accelerator design differs from the CPUs
targeted by Goto in the communication between the scalar core and the functional units
that are actually crunching numbers, which implies more data movement between both
when a similar strategy is used.

Although this may seem like a disadvantage, the work done by
[Volokitin et al. 2023] shows that RISC-V is a promising architecture for future
HPC systems and that there is space for existing optimizations for ARM and x86 to be
applied on RISC-V systems, the limitation now being the variety of available devices.

Several prior works have leveraged gem5 to evaluate accelerator integration. For
instance, gem5-SALAM [Rogers et al. 2020] introduces a LLVM-based interface for
accelerator modeling, while gem5-accel [Vieira et al. 2024] enables pre-RTL simulation
of accelerators as memory-mapped devices. However, both approaches model
accelerators as external devices and do not directly support custom ISA extensions or
tight integration into the CPU instruction stream.

In contrast, our work extends gem5’s RISC-V ISA with custom matrix
instructions, matrix register file, and a dedicated datapath, enabling fine-grained
simulation of a tightly-coupled matrix accelerator. By integrating it at different points
in the memory hierarchy, from private L1 to DRAM, we capture bandwidth, latency, and
performance counters, and characterize its behavior.

3. Methodology
This section describes the methodology adopted to design and evaluate the proposed
RISC-V matrix extension prototype within the gem5 simulator. We outline the
architectural choices made, the different accelerator configurations considered, the target
GEMM workload used for testing, and the modifications applied to gem5.

3.1. RISC-V Matrix Extension
The standardization of matrix operations within the RISC-V ecosystem is currently being
pursued through parallel efforts, but with slightly different approaches. One proposal
aims to reuse the vector register file to represent matrices, adding instructions that handles
vectors as linearized matrices without introducing new state. A second suggestion reuses
the vector register file, but includes accumulator registers to increase the performance
of MAC operations and reduce data movement during GEMM. The last option adds an
entirely new set of matrix register state, operating independently of RVV.

RISC-V Vector was the first Single Instruction, Multiple Data (SIMD) to be
consolidated to the ISA, being one of the requirements added to the RVA23 Profile, a base
standard for future RISC-V compatible processors. This inclusion made RISC-V more
suitable to HPC, AI and data center markets. It specifies a new set of registers with flexible
size and SIMD-style vector operations for memory access, addition, multiplication and
others. It stands out from ARM’s SVE and Intel’s AMX standards because of the



configuration options that allow for length agnostic code, allowing performance to scale
while maintaining software compatibility.

The matrix extension proposals represent a step into specialized AI workloads,
complementing the existing RVV with higher performance. The main distinction between
both extensions lies in the data layout within registers. While RVV exposes one-
dimensional vectors, most of the matrix extensions adopt a two-dimensional structure that
enables more efficient matrix multiplication. Although promising, the proposals still lack
a decision on topics like size configuration, supported data types, widening and interaction
with existing vector instructions.

In this work, we implement a prototype matrix extension modeled after the RVV-
independent option and inspired by one of the proposed RISC-V alternatives, defining
32 matrix registers (m0 - m31) organized as 4×4 tiles of 32-bit elements. With each
matrix register having 512 bits, which matches the system cache line size, there is in
total 2 KiB of additional architectural state. We introduce a set of custom instructions
to load, store, zero, and perform fused multiply-accumulate (MAC) operations on these
registers. Table 1 summarizes the instruction set implemented by our extension. All
data movement between scalar, vector, and matrix registers occurs explicitly via memory
operations, enabling fine-grained control and decoupling of matrix datapaths. Squared
tiles were used to remove the need for register shape configuration, as this amount of
flexibility was discarded by the task group, since it would increase the complexity of the
matrix acceleration unit design.

Table 1. Description of instructions of the draft matrix extension

Instruction Description
ml Loads an entire matrix register from memory from a contiguous 512-bit

block.
ms Stores an entire matrix register to memory in a contiguous 512-bit block.
mls Loads an entire matrix register from memory from 128-bit blocks

separated by a stride value.
mss Stores an entire matrix register to memory in 128-bit blocks separated by

a stride value.
mzero Copies the value zero to all positions of a register.
mmac Computes the product of input registers and accumulates on the

destination register.

3.2. System Architecture
When building an accelerator, providing sufficient data throughput is essential to avoid
wasting computing cycles. However, it is not desirable to over-provide and waste area on
resources that will sit idle. To balance these requirements, an accelerator can be attached
to different levels of the memory hierarchy or even include a dedicated cache. Figure 1
illustrates some system architectures that were evaluated with simulation:

1a. Connected to a private L1 and then to a shared L2, the matrix accelerator has its
own cache and can exchange data with the core without accessing DRAM.

1b. Connected to a private L1 and then to DRAM, similar to the previous, but forcing
data to be exchanged through DRAM.



(a) Private L1 with
Shared L2

(b) Private L1 with
DRAM (c) Shared L2

(d) DRAM (e) Shared L1

Figure 1. Different options for memory hierarchy.

1c. Connected to a shared L2, the matrix accelerator can exchange data with the core
without accessing DRAM.

1d. Connected to DRAM, the matrix accelerator has to fetch all data from DRAM,
introducing synchronization considerations, resembling a heterogeneous system.

1e. MPU sharing the same memory path as the scalar core.

3.3. Target Application

To evaluate our matrix extension and assess the performance of different memory
hierarchy configurations, we focus on GEMM operations, known to be memory-bound.

We use OpenBLAS as a baseline, a well-optimized linear algebra library with
support for RVV, serving as a representative of the current state-of-the-art GEMM
implementation. The library was used without modification, ensuring a fair comparison
with our custom kernel under identical architectural assumptions, including register size
and number of functional units.

Inspired by Level 3 BLAS routines, we implemented a custom kernel targeting the
proposed matrix instruction set optimized to maximize compute-to-memory ratio using
blocked matrix multiplication, packing, multilevel memory optimization, and register
reuse. It uses 24 matrix registers for output and the rest for input, structured as a 4x6
grid, enabling significant reuse of loaded data and minimizing stalls caused by memory
accesses, as illustrated by Figure 2. The registers with a dashed outline correspond
to the reuse that is possible once all the calculations are done, allowing the extension
of the output panel. To ensure correctness, the results are validated against a baseline
implementation of matrix multiplication in software.

Our benchmark consists of an application that receives the matrices’ dimensions as
a parameter and performs GEMM on randomly generated data for the given dimensions.
The calls are instrumented with M5ops, special functions provided with gem5 that allow
interaction between simulated system and host, to reset and dump gem5’s statistics only
on selected regions of the code, allowing us to eliminate the influence of the setup step.
Using the same function signature, the three implementations can be swapped in the
application, allowing us to compare all for results and performance.



Figure 2. Representation of register utilization by 4x6 kernel.

Exploring the concept of machine balance [McCalpin 1995], to achieve Bmachine =
1, a system must feed the computational units at their peak rate without stalling for data. If
the algorithm’s arithmetic intensity (AI) is below this ratio, the kernel becomes memory-
bound; if above, it is compute-bound.

A GEMM operation performs 2N3 floating-point operations (FLOPs) on 3N2

elements (two inputs and one output). The theoretical arithmetic intensity is therefore:

AIinstruction =
Floating-point Operations

Loaded Elements
=

2N3

3N2
=

2

3
N [FLOPs/element] (2)

This grows linearly with N , which explains why GEMM is considered a high-
arithmetic-intensity kernel. However, the effective AI in hardware depends critically on
how the data is fetched from memory, which in turn depends on the register blocking
strategy, cache reuse, and sustained bandwidth.

At the microarchitectural level, the arithmetic intensity can be constrained by
register size and instruction latency. Considering the parameters of our matrix extension,
each register holds Elemreg = 16 elements of size selem = 32 bits, and a MAC instruction
does Opselem = 8 floating-point operations per element. If we consider issuing one MAC
instruction every Latmac = 4 cycles, the peak per-cycle throughput is:

Arithmetic Throughputpeak =
Elemreg × Opselem

Latmac
=

16× 4

4
= 16 FLOPs/cycle. (3)

To achieve peak performance, the memory subsystem must supply enough data per
cycle to sustain the arithmetic throughput (ATpeak), which, according to these parameters,
translates to:

Bandwidthreq = selem × ATpeak = 32× 16 = 512 bits/cycle (4)

Due to reuse, our kernel achieves a higher arithmetic intensity of:

AIkernel =
Multiply Registers

Load Registers
× ATpeak =

24

10
× 16 = 38.4 FLOP/element. (5)

Finally, we compare the effective Arithmetic Throughput (6) obtained by simulation
against the theoretical maximum predicted by (5) and (4).

Arithmetic Throughputsimulation =
Total FLOPs Executed

Execution Cycles
[FLOPs/cycle] (6)



3.4. gem5 Simulator

The gem5 simulator is a widely used, open-source, cycle-accurate simulation platform
for computer architecture research. Its modular design enables full-system simulation
with microarchitectural details of modern CPU, memory, and peripheral components
across multiple ISAs, including RISC-V, ARM, and x86. Because gem5 can simulate
pipeline stages, memory subsystems, and custom instructions, it is commonly employed
for early-stage architectural exploration, especially when RTL is unavailable or too costly
to modify. It has become an essential tool for both academia and industry due to its ability
to simulate full-system architectures in detail and, unlike functional simulators as QEMU
and Spike, it provides cycle-accurate results of the processor microarchitecture and cache
systems. With more than 20 years of development, it provides a complete set of models
for recent memory modules, devices, and ISAs, like RISC-V.

This framework was chosen for our evaluations due to our necessity to model
the interactions between our matrix instructions and the memory hierarchy, as well as
the CPU pipeline. We used gem5 to model different architectures where the matrix
accelerator is attached at the L1 cache, L2 cache, or directly to main memory (DRAM).
These scenarios reflect real architectural design choices, each with different latency and
bandwidth characteristics. The simulator also provides fine-grained statistics, including
cache hits and misses, memory queue occupancy, and port utilization, all of which are
critical for understanding how effectively our matrix accelerator can be fed with data
under varying conditions.

The first modification made to the RISC-V gem5 model was the addition of the
new matrix instructions to its ISA Definition, following the same methodology as in
[C. Aquino et al. 2024]. The numbered components in Figure 3 were modified.

Figure 3. Simplified illustration of modified components from gem5 architecture.

1. ISA Description: defines the instruction formats, semantics, and how instructions
are executed at the architectural level. This component was expanded with the
matrix instructions present in our draft extension, as well as with the new registers
and control registers.

2. CPU Model: takes care of the microarchitectural simulation, calling the
instruction’s behavior when it should execute. The O3CPU model was modified
to include a new data port for matrix instructions.

3. Decoder: translates instruction bits (opcodes) into internal instruction
representations that the CPU model can work with; this component is generated
from the ISA Description.



4. Memory System: includes DRAM models and caches, was modified to
accommodate the new data port.

4. Evaluation and Results

In this section, we present the evaluation of our proposed approach and discuss the results
obtained from simulations. We explain the experimental setup, detail the workloads
used, and compare the performance of matrix and vector implementations under different
memory hierarchy configurations.

4.1. Simulation Setup

Our simulation environment is designed to isolate the impact of memory hierarchy and
instruction set on computational throughput. Ubuntu 22.04 LTS was used with the GCC
13 version available at the time in the riscv-gnu-toolchain repository. To ensure a fair
comparison between matrix and vector implementations, equivalent hardware parameters
were set in gem5.

Both matrix and vector implementations operate on 512-bit registers, each
accommodating 16 single-precision (32-bit) elements per register. Both have a single
functional unit capable of performing MAC instructions, but each extension computes a
different number of operations per instruction. Vector operations use an element-wise
product (Figure 4a), computing 16 multiplications per instruction. On the other hand,
matrix operations use an inner product between rows and columns (Figure 4b), computing
64 multiplications per instruction. To ensure equivalent peak compute throughput, vector
MACs have one fourth of the latency of a matrix one, isolating performance differences to
algorithmic and memory system behavior. One cycle for a floating point multiplication is
unusual, but for the conditions of the experiment, it is an advantage for the vector model.
Table 2 summarizes key architectural parameters simulated.

(a) Vector Multiplication: Element-wise
Product (b) Matrix Multiplication: Inner Product

Figure 4. Multiplication strategy for vmacc.vv and mmac instructions.

Table 2. Parameters for vector and matrix operations

Vector Matrix
Operations per instruction 16 64
Number of Functional Units 1 1
Register Size (bits) 512 512
MAC Latency (cycles) 1 4
Peak Performance (flops/cycle) 16 16



4.2. Results

To define realistic workload sizes, we examined the convolution operations’ dimensions
reported by ConvBench [Alvarenga et al. 2024] datasets, which span from roughly 2
million to 60 million elements. To reduce the simulation effort while preserving
equivalent computational demand, we chose square matrices with sizes 64, 128, 256,
384, 512, 768, 1024, 1280, 1536, 2048, 2560, 3072 and 4096, representing both small-
scale inference and large transformer or deep neural network layers, and avoids the need
to model every possible matrix shape. Every input size was simulated for each of the
aforementioned memory hierarchies, generating a statistics file, which is used to capture
the total simulated time and cycle count.

Figure 5 summarizes the effective performance of each scenario for matrix
operations. In this graph, each curve is an exponential plot of the corresponding memory
hierarchy, the vertical axis shows the effective performance in GMAC/s, while the
horizontal axis shows the size of the matrices, on the bottom as the number of elements
and on the top as the total size in MB of the matrices. Dashed lines indicate the sizes of
the L1 and L2 caches, as well as the peak computing performance.

Figure 5. Comparison of accelerator performance for each memory hierarchy.

The first segment, between the y-axis and the orange dashed line, shows the
smallest possible sizes, where every input matrix fits in the L1 cache and the performance
is limited by the packing step. The second segment, between the the orange and indigo
dashed lines, corresponds to the input matrices fitting in L2 cache. After the indigo dashed
line, the performance of each kernel reaches its peak, especially at the points furthest to
the right, allowing the characterization of its expected peak performance.

The results show that reusing the L1 cache between the accelerator and the scalar
core (blue line) achieves the best performance, followed by the private L1 cache with
shared L2 cache (yellow line), with less than 5% difference. As expected, connecting
the accelerator directly to DRAM shows the lowest performance, which is aligned
with the high bandwidth required by the GEMM algorithm, as shown by multiplying
equation 4 by our simulated operating frequency of 1.5GHz resulting in a requirement of



Bandwidthreq = 10 GB/s. The bigger performance gap between DRAM and all cache
scenarios reiterates the presence of data reuse.

The presence of L1 cache configurations at the top of the performance rankings
highlights the algorithm’s sensitivity to memory latency, while the configurations using
L2 reveal that size and bandwidth are secondary to the performance, yet they alleviate the
restrictions on algorithm tuning.

Figure 6 compares our private L1 matrix scenario, which corresponds to a
more typical accelerator, against OpenBLAS. While vector instructions operate on one-
dimensional data leading to a O(n2) multiplications, matrix instructions leverage two-
dimensional tile registers that enable multiple operations across rows and columns in a
single instruction performing O(n3) multiplications, effectively computing n times more
operations while using the same number of loads. Our matrix-based implementation
achieves 1.35 times better average performance for matrices of size 512 or higher
compared to its vector counterpart, primarily due to its higher computational intensity
and improved data reuse.

Figure 6. Comparison of Matrix and Vector implementations. Matrix GEMM
achieves 1.35x RVV performance.

Finally, to better understand the performance limits of the evaluated
configurations, we applied the Roofline model to create Figure 7, which relates achievable
performance to both the peak compute capability of the system and the effective memory
bandwidth. The horizontal red dashed line represents the peak compute performance of
48GFLOP/s, while the green dashed diagonal line corresponds to the DDR4 2400 MHz
memory bandwidth limit of 19.2 GB/s.

The matrix implementation exhibits an operational intensity of approximately 4.8
FLOPs/Byte (blue dashed vertical line), appearing to the right of OpenBLAS (orange
dashed vertical line) with 3.2 FLOPs/Byte, supporting the increased computational
intensity of the matrix instructions. Also, the position of the measured matrix
implementation rests closer to peak performance than OpenBLAS, 87% and 63%
respectively, reinforcing its better utilization of available resources. The model shows
that OpenBLAS’s lower operational intensity puts it closer to a memory-bound regime



Figure 7. Roofline model comparing OpenBLAS and Matrix GEMM.

than our matrix implementation, which also could theoretically benefit from a higher peak
compute, given that memory latency stays the same.

5. Conclusions and Future Work
In this paper, we presented an architectural exploration of matrix accelerators using a
custom RISC-V matrix extension implemented within the gem5 simulator. Using GEMM
workloads with varying matrix sizes and memory configurations, we demonstrated how
data placement significantly impacts performance and bandwidth utilization.

Our results show that attaching the matrix accelerator closer to the processor core,
particularly via shared L1 or L2 cache, improves arithmetic intensity and throughput
by minimizing memory latency and maximizing reuse. The custom matrix kernel
consistently outperformed the OpenBLAS-based vector baseline, highlighting the benefits
of two-dimensional tile operations in both compute density and memory access efficiency.

This study confirms that gem5 is a powerful tool for modeling instruction-set-level
accelerators with minimal changes, enabling detailed analysis of future ISA proposals
such as RISC-V Matrix proposals. Our infrastructure and findings provide a starting
point for architectural design and co-optimization of accelerators and memory systems in
open hardware platforms.

In future research, we aim to develop and evaluate prototypes for other matrix
proposals, including decoupled matrix accelerators and multi-core systems.

References
Alibaba Cloud (2023). XuanTie Matrix Multiply Extension Instructions.

https://riscv.org/blog/2023/02/xuantie-matrix-multiply-extension-instructions/.

Alvarenga, L., Ferrari, V., Souza, R., Pereira, M., and Araujo, G. (2024). Convbench: A
comprehensive benchmark for 2d convolution primitive evaluation.

Binkert, N., Beckmann, B., Black, G., Reinhardt, S. K., Saidi, A., Basu, A., Hestness, J.,
Hower, D. R., Krishna, T., Sardashti, S., Sen, R., Sewell, K., Shoaib, M., Vaish, N.,



Hill, M. D., and Wood, D. A. (2011). The gem5 simulator. SIGARCH Comput. Archit.
News, 39(2):1–7.

C. Aquino, I., Wanner, L., and Rigo, S. (2024). Architectural Simulation with gem5,
chapter 4, pages 92–118. Sociedade Brasileira de Computação, São Carlos, SP.

Goto, K. and Geijn, R. A. v. d. (2008). Anatomy of high-performance matrix
multiplication. ACM Trans. Math. Softw., 34(3).

Kim, H., Ye, G., Wang, N., Yazdanbakhsh, A., and Kim, N. S. (2024). Exploiting Intel
Advanced Matrix Extensions (AMX) for Large Language Model Inference. IEEE
Computer Architecture Letters, 23(1):117–120.

Lowe-Power, J., Akram, A., Amin, R., Hill, M. D., Wood, D. A., Chen, D. H., Hsu, L.,
Krishna, T., Agarwal, N., Wright, A. R., et al. (2020). The gem5 Simulator: Version
20.0+. arXiv preprint arXiv:2007.03152.

McCalpin, J. (1995). Memory bandwidth and machine balance in high performance
computers. IEEE Technical Committee on Computer Architecture Newsletter, pages
19–25.

RISC-V International (2025). RISC-V International. https://riscv.org/.

Rogers, S., Slycord, J., Baharani, M., and Tabkhi, H. (2020). gem5-salam: A system
architecture for llvm-based accelerator modeling. In 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 471–482.

SiFive (2024). Sifive proposal for risc-v ame extension. https://lists.riscv.org/g/
tech-attached-matrix-extension/topic/sifive proposal for risc v/110189555.

Vieira, J., Roma, N., Falcao, G., and Tomás, P. (2024). gem5-accel: A pre-rtl simulation
toolchain for accelerator architecture validation. IEEE Computer Architecture Letters,
23(1):1–4.

Volokitin, V., Kozinov, E., Kustikova, V., Liniov, A., and Meyerov, I. (2023). Case Study
for Running Memory-Bound Kernels on RISC-V CPUs. In Malyshkin, V., editor,
Parallel Computing Technologies, pages 51–65, Cham. Springer Nature Switzerland.

Wang, C., Song, P., Zhao, H., Zhang, F., Wang, J., and Zhang, L. (2024). High-Utilization
GPGPU Design for Accelerating GEMM Workloads: An Incremental Approach. In
2024 IEEE International Symposium on Circuits and Systems (ISCAS), pages 1–5.

Waterman, A., Lee, Y., Patterson, D. A., and Asanovic, K. (2014). The RISC-V
instruction set manual, volume I: User-level ISA, version 2.0. EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-2014-54, page 4.

Weidmann, M. (2021). Introducing the scalable matrix extension for the armv9-a
architecture. https://community.arm.com/arm-community-blogs/b/architectures-and-
processors-blog/posts/scalable-matrix-extension-armv9-a-architecture.

Yessin, G., Badawy, A. H. A., Narayana, V., Mayhew, D., and Ghazawi, T. E. (2014).
”CERE”: A CachE Recommendation Engine: Efficient Evolutionary Cache Hierarchy
Design Space Exploration. In 2014 IEEE Intl Conf on High Performance Computing
and Communications, 2014 IEEE 6th Intl Symp on Cyberspace Safety and Security,
2014 IEEE 11th Intl Conf on Embedded Software and Syst (HPCC,CSS,ICESS), pages
566–573.


