
Adaptive Detection of Software Aging under Workload Shift

Rafael José Moura1, Maria Gizele Nascimento1, Fumio Machida2, Ermeson Andrade1

1Federal Rural University of Pernambuco (UFRPE)
Recife, PE – Brazil

{rafael.mourasilva, gizele.alves, ermeson.andrade}@ufrpe.br

2University of Tsukuba
Tsukuba – Japan

machida@cs.tsukuba.ac.jp

Abstract. Software aging is a phenomenon that affects long-running systems,
leading to progressive performance degradation and increasing the risk of
failures. To mitigate this problem, this work proposes an adaptive approach
based on machine learning for software aging detection in environments subject
to dynamic workload conditions. We evaluate and compare a static model
with adaptive models that incorporate adaptive detectors, specifically the
Drift Detection Method (DDM) and Adaptive Windowing (ADWIN), originally
developed for concept drift scenarios and applied in this work to handle
workload shifts. Experiments with simulated sudden, gradual, and recurring
workload transitions show that static models suffer a notable performance drop
when applied to unseen workload profiles, whereas the adaptive model with
ADWIN maintains high accuracy, achieving an F1-Score above 0.93 in all
analyzed scenarios.

1. Introduction
With the increasing reliance on complex and long-running software systems, such as
database servers, cloud applications, and embedded systems, reliability and availability
have become essential requirements to ensure the stability and efficient operation of
these systems. One of the main phenomena that threaten this stability is software aging,
which progressively compromises system performance and can lead to failures over
time [Cotroneo et al. 2014]. This problem is generally caused by faults such as memory
leaks, resource fragmentation, and the accumulation of internal errors [Jain et al. 2020,
Dabukke et al. 2025]. When not properly identified and mitigated, software aging can
result in severe failures, leading to service degradation and even financial losses for
organizations that depend on software for critical operations.

To mitigate the effects of software aging, several strategies have been
proposed, including software rejuvenation techniques. However, for these techniques
to be effective, it is essential to accurately and proactively detect the signs of
aging [Pietrantuono and Russo 2020]. In this context, Machine Learning (ML)-based
approaches have proven to be promising due to their ability to identify degradation
patterns from system monitoring data. Nevertheless, most traditional ML models assume
that the statistical distribution of data remains stationary over time, which rarely occurs in
practice. Real software systems operate in dynamic environments, with usage patterns



and resource consumption that constantly change according to different workloads.
Workload shifts can be understood as changes in the intensity of request rates per
second sent to the server. Such changes directly affect resource consumption, and
higher workloads accelerate the manifestation of software aging symptoms, including
increased memory usage, response time degradation, and faster progression toward
memory exhaustion [Couto et al. 2024]. These changes directly impact the performance
of predictive models, as they alter the relationship between the input variables and the
expected output.

This work aims to evaluate the robustness and adaptability of software aging
detection models in environments with varying workload conditions. Rather than
addressing concept drift in a strict sense, we analyze how static and adaptive models
respond to explicit workload shifts that alter system behavior and affect model
performance. We investigate scenarios involving sudden, gradual, and recurring workload
transitions, comparing a static baseline model with adaptive models that integrate
adaptive detectors such as the Drift Detection Method (DDM) and Adaptive Windowing
(ADWIN). Although originally developed for concept drift detection in data streams,
these techniques are adapted in this study to address performance loss caused by
workload shift, demonstrating their potential to support adaptation in dynamic operational
environments. Experimental results show that, under such workload shifts, static models
suffer significant performance degradation, while the adaptive approach, especially with
ADWIN, maintains high detection accuracy.

The remainder of this paper is organized as follows: Section 2 presents the
theoretical background, including the concept of software aging and adaptive detectors,
detailing the DDM and ADWIN. Section 3 discusses related work. Section 4 describes the
methodology employed. Section 5 presents the experiments conducted and the analysis of
the results. Finally, Section 6 presents the conclusions of the study and outlines directions
for future work.

2. Background
This section presents the main theoretical foundations that support this study. It discusses
the phenomenon of software aging and introduces the adaptive detectors adopted,
specifically DDM and ADWIN, and how these methods are applied to maintain the
robustness of software aging detection models under varying workload conditions.

2.1. Software Aging
Software aging refers to the performance degradation or the emergence of failures
after a system has been running continuously for an extended period, due to
the accumulation of internal errors that lead to the exhaustion of computational
resources [Cotroneo et al. 2014]. This degradation occurs mainly because of the system’s
inadequacy to meet new environmental and user demands, as well as the cumulative
modifications made over time [Parnas 1994]. To mitigate these effects, software aging
detection and software rejuvenation techniques are adopted. Software rejuvenation is
a proactive approach that performs system state cleanup and periodic restart, aiming to
prevent failures related to aging [Jia et al. 2017, Cotroneo et al. 2014].

Software aging detection is performed by monitoring system indicators such as
available physical memory, RAM usage, swap space, file and process table sizes, response



time, and traffic metrics, including packet and bit rates [Shruthi and Cholli 2020].
More recently, ML-based approaches have been successfully applied in this context,
using the same indicators as input features to train models capable of classifying
the system’s state or predicting the failure moment due to resource exhaustion,
such as memory [Nascimento et al. 2024, Jia et al. 2017, Cotroneo et al. 2014]. ML-
based approaches are grouped into three categories: classification (identifying
the system state, [Andrzejak and Silva 2008]), regression (estimating time to failure
(TTF) [Nascimento et al. 2024]), and time series forecasting (predicting future
resource trends using models like ARIMA or Long Short-Term Memory (LSTM)
[Carberry et al. 2024]). However, these approaches generally assume that the data
distribution remains constant over time. In real-world environments, this assumption
rarely holds, as changes in system usage patterns can affect the relationship between
monitored indicators and the system state.

2.2. Adaptive Detectors: DDM and ADWIN

To address performance degradation caused by variations in workload, we incorporate two
adaptive learning techniques: the DDM and ADWIN. Although originally developed for
detecting distribution changes in data streams, these methods can also be used to trigger
model updates in response to operational changes that affect prediction accuracy.

The DDM monitors the online error rate of a model and applies statistical bounds
to detect significant increases. When the error rate first exceeds a warning threshold
and then a drift threshold, the method signals a distributional change and triggers model
adaptation [Gama et al. 2004]. ADWIN, in turn, maintains a variable-length window
of recent data and automatically detects shifts by splitting the window into two sub-
windows and comparing their statistics. If the difference between them is statistically
significant, older data are discarded and the model is updated with the most recent
information [Bifet and Gavalda 2007].

In this work, both methods are applied to controlled workload shift scenarios,
such as abrupt, progressive, or periodic changes in load intensity, that can impact system
behavior and reduce model generalization. As the system continues to operate over time,
its failure behavior and resource consumption may evolve. Such variations can reduce
the accuracy and effectiveness of ML-based detection models. By integrating DDM
and ADWIN, we aim to handle abrupt or recurring workload shifts, enabling models
to maintain robustness and adapt to changing operational conditions.

3. Related Works

The literature on software aging has mainly focused on detecting this phenomenon or
predicting when it will occur. Several approaches have been proposed, including hybrid
strategies that combine statistical techniques and ML to improve detection accuracy
in different application contexts. However, most of these studies do not consider the
impact of workload shift on the manifestation of software aging. To structure this
discussion, we first present works that explicitly analyze the effects of workload shift, then
describe studies that use ML techniques for aging detection, followed by approaches that
investigate performance degradation caused by workload changes. Finally, we position
our contribution in relation to these existing efforts.



Workload shift has been shown to directly influence software aging behavior.
Watanabe et al. [2023] analyze a real-time object detection system deployed on an edge
server and demonstrate that varying the input image size leads to statistically significant
degradation in memory and swap usage, resulting in reduced time-to-failure events. These
findings highlight that changes in workload intensity can accelerate aging symptoms
and negatively affect overall system reliability. Similar results are reported in Couto et
al. [2024] and Andrade et al. [2021], which likewise show that workload fluctuations
exacerbate aging-related degradation in long-running systems.

Several ML–based approaches have been proposed to detect aging in long-running
systems. Battisti et al. [2022] introduce hLSTM-Aging, a hybrid model combining a
Convolutional Long Short-Term Memory (Conv-LSTM) network and a Moving Average
(MA) model to forecast resource usage trends and anticipate failures caused by aging.
Jia et al. [2023] propose DGRU (Decomposition-based Gated Recurrent Unit), which
leverages Seasonal-Trend Decomposition (STL) and GRU networks to model long-
term growth and short-term fluctuations in memory usage series to predict aging-
related degradation. Nie et al. [2024] present MSAP (Multi-Scenario Aging Prediction),
an ensemble learning approach for aging prediction on Android systems that uses
multiple workload profiles and ML algorithms to maintain robustness in highly dynamic
environments.

In addition to aging detection, some studies have addressed performance
degradation caused by variations in workload. For example, Huang et al. [2023]
analyze how changes in workload intensity and co-located Virtual Machine (VM)
interference produce large execution-time increases, and propose an ML predictor
and a performance-degradation index to distinguish workload-induced slowdowns from
interference. Similarly, Meyer et al. [2021] show that variations in co-located application
workloads create cross-application interference that significantly increases response time
and leads to Service Level Agreement (SLA) violations, motivating interference-aware
ML scheduling. Lastly, Ahmed et al. [2023] report empirical evidence that CPU steal
time leads to measurable performance degradation in cloud VMs under varying load
conditions, and propose a detailed framework for monitoring the issue.

Despite these advances, to the best of our knowledge there are no studies
evaluating how aging detection models perform under dynamic workload conditions.
This work addresses this gap by comparing static and adaptive ML models in controlled
workload shift scenarios and demonstrating how adaptive detectors, such as DDM and
ADWIN, can help maintain detection accuracy in dynamic operational environments.

4. Methodology
The methodology adopted in this study is structured into five main steps, aiming to select,
label, and detect software aging, with the objective of investigating the effects of workload
shift on ML models for aging detection. Figure 1 presents a summary of the steps applied
in this methodology, illustrating the process flow from data acquisition to the evaluation
of adaptive models.

4.1. Dataset Selection and Labeling
To investigate the impact of workload shift on software aging detection, we used a dataset
from the experimental study by [Couto et al. 2024], which monitored RAM consumption



Dataset Selection
and Labeling

1
Baseline Model

Training

2 3 4
Robustness

Evaluation Against
Workload Shift

5
Implementation
of the Adaptive

Solution

 Analysis

Figure 1. Stages of the methodology adopted in this study.

in a SQL Server DBMS over 48 hours under different workload levels (“Low”, “Medium”
and “High”) with measurements taken every five seconds. Due to the scarcity of publicly
labeled datasets for software aging, a custom labeling strategy based on raw monitoring
data was developed. This approach aims to distinguish persistent degradation from
natural fluctuations and random noise [Machida et al. 2013]. A binary labeling procedure
(Normal/Aging) was applied individually to each workload profile, following four main
steps:

• Removal of the Warm-up Phase: Initially, the data were preprocessed to remove
an initial warm-up phase, corresponding to the first 600 seconds of monitoring.
This step is crucial to ensure that the subsequent analysis focuses on the system’s
stable behavior, disregarding transient variations during startup.

• STL decomposition: The memory time series, after removal of the warm-up
phase, was processed using the STL decomposition technique. This method
separates the original signal into three components: trend (long-term behavior),
seasonality (repetitive patterns), and residual (random noise) [Jia et al. 2023]. The
trend component is essential for aging detection, as it reflects the underlying
growth or decline in memory consumption.

• Trend Analysis and Labeling via Linear Regression in Sliding Windows: The
isolated trend component is analyzed using linear regression applied in sliding
windows. For each window, the slope of the regression line is calculated. If
it exceeds a fixed threshold of 0.5 memory units per sample, the window is
labeled as Aging (1). This approach identifies continuous memory growth periods
characteristic of software aging while remaining robust to short-term fluctuations.
The threshold was chosen empirically to balance sensitivity and robustness:
smaller values tend to misclassify short-term fluctuations as aging, whereas higher
values may delay the detection of genuine long-term trends.

• Binary Label Consolidation: Finally, the complete time series is labeled in a
binary manner. Windows identified with a significant growth trend are classified
as Aging (1). The remaining parts of the series, including the warm-up phase
(explicitly labeled 0) and periods without a detectable growth trend, are classified
as Normal (0). This consolidation integrates the trend labeling with the warm-up
phase, providing a comprehensive view of the system’s behavior over time.

4.2. Baseline Model Training

With the data properly labeled, the next step is the construction of a baseline model. For
this purpose, a supervised ML model based on Random Forest (RF) was adopted, trained
under a single workload scenario. In this study, the “Low” workload was chosen in order
to create a static environment that allows for measuring the model’s optimal performance.



The objective of this phase is to establish the theoretical maximum performance
of the model. The evaluation is conducted in the same workload context used for training,
using standard classification metrics: Accuracy, Precision, Recall, and F1-Score. The
results obtained define the performance baseline, which will be used as a reference to
quantify the degradation under workload shift.

4.3. Robustness Evaluation Against Workload Shift

After training the reference model under a “Low” workload, we next assess its robustness
when applied to different workload levels. Rather than focusing on abstract distributional
drift, we simulate workload shifts that directly alter the system’s resource-usage patterns:

• Sudden Shift, characterized by an abrupt transition from one workload profile to
another, such as a direct shift from “Low” to “High” workload;

• Gradual Shift, representing a progressive transition with incremental mixing of
data from different workloads, simulating a constantly evolving environment;

• Recurring Shift, involving periodic alternation between distinct workload
profiles, reflecting cyclic operational patterns of the system.

For each scenario, we apply the reference model (trained on Low) to the shifted
dataset and compute Accuracy, Precision, Recall, and F1-Score. This analysis quantifies
the model’s sensitivity to workload-induced changes, with the goal of identifying
conditions where adaptive strategies are required to maintain reliable software aging
detection under variable loads.

4.4. Implementation of the Adaptive Solution

To mitigate the performance degradation caused by workload-induced shifts, we
implement an adaptive solution based on continuous model retraining. This strategy
combines statistical adaptive detectors with automatic update mechanisms, enabling the
model to dynamically adjust to shifting input patterns. Two detectors from the river
library [River 2021] are employed: DDM and ADWIN. Both monitor the model’s error
rate for each new instance and trigger retraining when significant shifts are detected
according to statistical criteria.

In the case of DDM, upon detecting a change, the model is retrained using a sliding
window with the last 2000 processed samples. Retraining is performed only when the
window contains more than one class, to avoid imbalance. After the update, the detector
is reset, initiating a new detection cycle. For ADWIN, the same mechanism is adopted:
upon detecting a change, the model is retrained with the last 2000 instances in a sliding
window. As with DDM, retraining occurs only if the window contains multiple classes.
The detector is then reset to monitor the new operating condition. This approach enables
the model to maintain its accuracy even in the presence of abrupt, gradual, or recurring
workload changes, promoting greater predictive robustness in dynamic environments.

4.5. Analysis

The final step performs a systematic comparison between the static model (trained only
with data from the Low workload) and the adaptive models integrated with DDM and
ADWIN. The evaluation considers four distinct workload shift scenarios: two cases
of sudden workload shift (transitions from Low to Medium and Low to High), one



gradual workload shift, and one recurring workload shift. To ensure reproducibility
and transparency, all the data used, as well as the trained models, are available in an
online repository1. Furthermore, the obtained results are analyzed, aiming to identify
the contexts in which each detector demonstrates greater effectiveness, as well as their
operational limitations.

5. Experiments and Results
This section presents the experiments conducted to evaluate the effectiveness of the
proposed approach. Initially, the training of the baseline model is described, followed
by the simulation of different types of workload shifts and the application of adaptive
detectors. The analysis of the results aims to compare the performance between static and
adaptive models in scenarios with dynamic workload shifts.

5.1. Model Training and Workload Shift Simulation

To assess the effectiveness and robustness of the detection model, the experiments were
divided into two stages. First, a baseline model, based on the RF algorithm, was trained
and validated using k-fold cross-validation with k = 5, exclusively with data from
the Low workload scenario. The objective of this step was to establish a performance
baseline in a static and controlled environment. The value of k = 5 was chosen as it
provides a stable evaluation of the model with a good balance between performance and
computational cost.

Table 1 summarizes the performance obtained under different workload scenarios.
It is observed that the model, trained only with data from the Low workload, does not
generalize well to other contexts: the F1-Score, for example, dropped from 0.9996 to
0.7689 in the Medium workload and to 0.8207 in the High workload. This degradation
highlights the impact of workload shift, indicating that a static model is insufficient to
capture changes in the system’s behavioral patterns.

Table 1. Model performance under different workload profiles

Test Scenario Accuracy Precision Recall F1-Score
Low Workload 0.9995 0.9996 0.9996 0.9996
Medium Workload 0.6542 0.7626 0.7753 0.7689
High Workload 0.7356 0.8028 0.8395 0.8207

Figure 2a illustrates the difference between the memory consumption scenarios
for each workload, showing the distinct system usage dynamics under different levels of
stress. This helps explain the model’s difficulty in generalizing, as it is evident that each
workload exhibits a different memory consumption behavior over time. To investigate
the impact of more dynamic data changes, synthetic datasets were generated based on the
experimental data presented in [Couto et al. 2024], simulating different types of workload
shift. Figure 2b shows the sudden shift simulation, characterized by an abrupt transition
between workload profiles. Two scenarios were considered: a shift from Low to Medium
workload and another from Low to High workload. Figure 2c illustrates the cases of

1https://anonymous.4open.science/r/drift-aging-detection-E573/
README.md



gradual and recurring shift, simulated through the mixing and alternation of different
workloads, representing a gradual evolution and a periodic repetition of patterns.

0 25000 50000 75000 100000 125000 150000 175000
Elapsed Time

1.4

1.5

1.6

1.7

1.8

M
em

or
y 

Us
ag

e

1e6

Low Load
Medium Load
High Load

(a) Memory consumption over time.

0 25000 50000 75000 100000 125000 150000 175000
Elapsed Time

1.4

1.5

1.6

1.7

1.8

M
em

or
y 

Us
ag

e

1e6

Sudden Shift Low-Medium
Sudden Shift Low-High

(b) Sudden drift simulation.

0 25000 50000 75000 100000 125000 150000 175000
Elapsed Time

1.35

1.40

1.45

1.50

1.55

1.60

1.65

M
em

or
y 

Us
ag

e

1e6

Gradual Shift
Recurrent Shift

(c) Gradual and recurring drift simulation.

Figure 2. Memory usage and drift scenarios.

Table 2 presents the performance of the baseline model in different workload
shift scenarios, considering multiple evaluation metrics. However, the following analysis
focuses on the F1-Score, as it is the most appropriate metric to assess the extent to which
adaptive models can recover or maintain performance in the face of data changes. It
is observed that the model achieved its best performance in the sudden shift scenario
between Low and High workloads, with an F1-Score of 0.8719, suggesting that despite
the abrupt change, the pattern of the new workload was more easily identified. On the
other hand, the sudden shift from Low to Medium resulted in lower performance, with an
F1-Score of 0.8111, indicating greater difficulty in adapting to the new pattern.

The gradual shift scenario presented intermediate results with an F1-Score of
0.8525, reflecting the model’s limitation in tracking progressive changes over time.
Finally, the worst performance was observed in the recurring shift scenario, with an F1-
Score of 0.7033 and an accuracy of only 0.5809. This result highlights the static model’s
fragility when faced with frequent alternations between different concepts, requiring
continuous adaptation capability.

5.2. Application of Adaptive Detectors
With the workload shift scenarios properly defined, adaptive detectors originally
developed for concept drift were applied to evaluate the model’s ability to adapt under
workload shift. Specifically, we tested DDM and ADWIN, which signal a shift in data
behavior based on statistical criteria and then trigger model retraining. Each detector was
applied across the three simulated types of workload shift (sudden, gradual, and recurring)
to assess its effectiveness in maintaining performance under dynamic conditions.



Table 2. Model performance under different workload shift scenarios

Type of Shift Accuracy Precision Recall F1-Score
Sudden Shift (Low–Medium) 0.7343 0.8521 0.7738 0.8111
Sudden Shift (Low–High) 0.8219 0.9056 0.8406 0.8719
Gradual Shift 0.7792 0.9220 0.7927 0.8525
Recurring Shift 0.5809 0.7918 0.6325 0.7033

Table 3 presents the performance of the adaptive model using the DDM detector.
A significant improvement was observed in the gradual shift scenario, with an F1-
Score of 0.9301, and a moderate recovery in the recurring shift case with 0.7131, when
compared to the static model. However, in sudden shift scenarios, there was a reduction
in performance. This behavior may be related to how DDM operates: since the method
depends on the error rate to signal changes, it requires a minimum number of incorrect
samples to statistically confirm drift. In abrupt changes, this detection time may be
insufficient, and the model ends up being retrained with data still mixed between old and
new concepts. This overlap compromises the model’s ability to adapt to the new context.

In contrast, the ADWIN-based model showed significant improvement in all
scenarios, achieving an F1-Score above 0.93 across all types of workload shift. ADWIN’s
performance is attributed to its adaptive window mechanism, which not only detects
changes but also dynamically adjusts the sampling window, retaining only the most recent
data and discarding obsolete information. As a result, the model is able to adapt more
quickly to the new concept and maintain a high level of performance.

Table 3. Performance of adaptive models using DDM and ADWIN under different
workload shifts

Model Scenario Accuracy Precision Recall F1-Score
DDM Sudden Shift (Low–Medium) 0.6217 0.8484 0.5927 0.6979
DDM Sudden Shift (Low–High) 0.8011 0.8562 0.8703 0.8632
DDM Gradual Shift 0.8863 0.9195 0.9410 0.9301
DDM Recurring Shift 0.6139 0.8558 0.6111 0.7131
ADWIN Sudden Shift (Low–Medium) 0.9838 0.9921 0.9859 0.9890
ADWIN Sudden Shift (Low–High) 0.9141 0.9844 0.8950 0.9376
ADWIN Gradual Shift 0.9651 0.9859 0.9706 0.9782
ADWIN Recurring Shift 0.9751 0.9828 0.9855 0.9842

These results highlight the importance of considering workload-induced
performance degradation in the development of predictive and classification models,
especially for software aging detection in real-time applications. Adaptive detection
mechanisms, such as ADWIN, have proven effective in mitigating the effects of workload-
induced performance degradation, particularly in dynamic environments commonly
observed in aging-prone systems. The ability to quickly adapt to workload shifts is
fundamental to preserving model performance over time.

5.3. Threats to Validity
Threats to the validity of this work are described below.



• Dataset Scope. The study is based on a single monitoring dataset collected from
a SQL Server environment under controlled workload conditions. Although the
dataset reflects realistic aging behavior, results may not generalize to other types
of systems or resource consumption patterns.

• Baseline Definition. The baseline model was trained only under the Low
workload profile to serve as a controlled reference and to highlight performance
degradation when exposed to unseen workloads. Additional baselines (e.g.,
Medium and High) could provide complementary insights.

• Synthetic Workload Transitions. The workload shift scenarios were
synthetically generated by combining segments of different workload intensities.
While this design enables controlled experimentation and reproducibility, it may
not fully capture the complexity of real-world workload dynamics. For example,
organic variations in user demand, background processes, often introduce subtler,
noisier, and less predictable shifts.

• Workload Shift Simplification. Workload shifts were modeled mainly as
changes in request intensity. Although this captures a key aspect of system usage,
real-world workloads may also vary in operation mix, query complexity, and
temporal patterns.

• Detector Configuration. Both DDM and ADWIN rely on internal thresholds and
sliding window parameters. In this study, fixed configurations were used across
all experiments. Although this ensures comparability, such configurations may
not be optimal for every workload shift scenario or data distribution.

• Single Model Architecture. The experiments employed a RF algorithm. While
robust and interpretable, results might differ when using other model types (e.g.,
neural networks, ensemble techniques, or online learners).

6. Conclusion
Software aging represents an ongoing challenge to the reliability of long-running systems.
Although ML-based detection is promising, its effectiveness is often compromised
by dynamic workload and operating condition changes, which may impact model
performance over time. This study investigated the robustness of software aging detection
models under such workload shifts that directly affect model generalization. While these
changes are not treated as classical behavior shifts, they represent operational shifts
that alter data patterns over time, challenging static models and motivating the use of
adaptive techniques. To this end, we compared the performance of a static baseline model
with adaptive models using the DDM and ADWIN detectors under scenarios of sudden,
gradual, and recurring workload shifts.

The experimental results confirmed that the static model, despite its excellent
performance in a controlled environment, suffers significant degradation when exposed
to new workload profiles, showing the importance of adaptability. The adaptive approach
using the DDM detector presented modest improvements but was limited in scenarios
involving abrupt changes. In contrast, the adaptive model with ADWIN achieved superior
performance in all tested scenarios, maintaining a high F1-Score and demonstrating
robustness and adaptability. The main contribution of this study is to show that adaptive
strategies are not only viable but essential for effective software aging detection in
dynamic production environments. Additionally, we provide a direct comparison between



the DDM and ADWIN detectors, indicating that ADWIN’s ability to dynamically adjust
the data window is fundamental for more agile and accurate adaptation. The proposed
methodology can also serve as an evaluation framework for other adaptive solutions under
varying workload conditions.

As future work, we plan to investigate true concept drift scenarios, where
workload and usage patterns gradually change over extended periods, progressively
degrading model accuracy. In addition, we intend to extend the analysis to different
types of systems, including cloud services, operating systems, and mobile devices,
incorporating additional indicators such as CPU usage and response time. We also
aim to explore adaptive neural network approaches and evaluate dynamic tuning of
drift detector configurations to further enhance robustness across diverse operational
scenarios. Another direction is to study unified or continuous aging scores instead of
binary classification, as well as to design cost-aware rejuvenation strategies that balance
unnecessary interventions against failure risks.

References

Ahmed, H., Syed, H. J., Sadiq, A., Ibrahim, A. O., Alohaly, M., and Elsadig, M. (2023).
Exploring performance degradation in virtual machines sharing a cloud server. Applied
Sciences, 13(16):9224.

Andrade, E., Pietrantuono, R., Machida, F., and Cotroneo, D. (2021). A comparative
analysis of software aging in image classifiers on cloud and edge. IEEE Transactions
on Dependable and Secure Computing, 20(1):563–573.

Andrzejak, A. and Silva, L. (2008). Using machine learning for non-intrusive modeling
and prediction of software aging. In NOMS 2008-2008 IEEE Network Operations and
Management Symposium, pages 25–32. IEEE.

Battisti, F., Silva, A., Pereira, L., Carvalho, T., Araujo, J., Choi, E., Nguyen, T. A., and
Min, D. (2022). hlstm-aging: A hybrid lstm model for software aging forecast. Applied
Sciences, 12(13):6412.

Bifet, A. and Gavalda, R. (2007). Learning from time-changing data with adaptive
windowing. In Proceedings of the 2007 SIAM international conference on data mining,
pages 443–448. SIAM.

Carberry, J. R., Rahme, J., and Xu, H. (2024). Real-time rejuvenation scheduling for
cloud systems with virtualized software spares. Journal of Systems and Software.

Cotroneo, D., Natella, R., Pietrantuono, R., and Russo, S. (2014). A survey of software
aging and rejuvenation studies. ACM Journal on Emerging Technologies in Computing
Systems (JETC), 10(1):1–34.

Couto, H., Machida, F., Callou, G., and Andrade, E. (2024). A comparative analysis
of software aging in relational database system environments. IEEE Transactions on
Emerging Topics in Computing.

Dabukke, A., Silaban, J., and Aliefia, R. (2025). Implementation of preventive
maintenance in educational information systems to overcome software aging. Journal
of Data Science, Technology, and Computer Science, 5(1):24–30.



Gama, J., Medas, P., Castillo, G., and Rodrigues, P. (2004). Learning with drift detection.
In Brazilian symposium on artificial intelligence, pages 286–295. Springer.

Huang, D., Costero, L., Pahlevan, A., Zapater, M., and Atienza, D. (2024).
Cloudprophet: a machine learning-based performance prediction for public clouds.
IEEE Transactions on Sustainable Computing, 9(4):661–676.

Jain, R., Agrawal, R., Gupta, R., Jain, R. K., Kapil, N., and Saxena, A. (2020). Detection
of memory leaks in c/c++. In 2020 IEEE International Students’ Conference on
Electrical, Electronics and Computer Science (SCEECS), pages 1–6. IEEE.

Jia, K., Yu, X., Zhang, C., Hu, W., Zhao, D., and Xiang, J. (2023). Software aging
prediction for cloud services using a gate recurrent unit neural network model based
on time series decomposition. IEEE Transactions on Emerging Topics in Computing.

Jia, S., Hou, C., and Wang, J. (2017). Software aging analysis and prediction in a web
server based on multiple linear regression algorithm. In 2017 IEEE 9th International
Conference on Communication Software and Networks (ICCSN), pages 1452–1456.

Machida, F., Andrzejak, A., Matias, R., and Vicente, E. (2013). On the effectiveness
of mann-kendall test for detection of software aging. In 2013 IEEE International
Symposium on Software Reliability Engineering Workshops (ISSREW), pages 269–274.

Meyer, V., Kirchoff, D. F., Da Silva, M. L., and De Rose, C. A. (2021). Ml-driven
classification scheme for dynamic interference-aware resource scheduling in cloud
infrastructures. Journal of Systems Architecture, 116:102064.

Nascimento, M. G., Moura, R. J., Machida, F., and Andrade, E. (2024). Comparison of
machine learning algorithms for detecting software aging in sql server. In Proceedings
of the 13th Latin-American Symposium on Dependable and Secure Computing.

Nie, Y., Chen, Y., Jiang, Y., Wu, H., Yin, B., and Cai, K.-Y. (2024). A method of
multidimensional software aging prediction based on ensemble learning: A case of
android os. Information and Software Technology, 170:107422.

Parnas, D. L. (1994). Software aging. In Proceedings of 16th International Conference
on Software Engineering, pages 279–287. IEEE.

Pietrantuono, R. and Russo, S. (2020). A survey on software aging and rejuvenation in
the cloud. Software Quality Journal, 28(1):7–38.

River (2021). River: Machine learning for streaming data in python. Available at https:
//riverml.xyz.

Shruthi, P. and Cholli, N. G. (2020). An analysis of software aging in cloud environment.
International Journal of Electrical and Computer Engineering, 10:5985–5991.

Watanabe, K., Machida, F., Andrade, E., Pietrantuono, R., and Cotroneo, D. (2023).
Software aging in a real-time object detection system on an edge server. In Proceedings
of the 38th ACM/SIGAPP Symposium on Applied Computing, pages 671–678.


