
A Literature Review on Live Migration in Container-Based
Distributed Systems

João Pedro Resende Barroso1, Aleardo Manacero1, Renata Spolon Lobato1,
Roberta Spolon2

1 São Paulo State University - UNESP – São José do Rio Preto, SP

2São Paulo State University - UNESP – Bauru, SP

joao.barroso@unesp.br, aleardo.manacero@unesp.br

renata.spolon@unesp.br, roberta.spolon@unesp.br

Abstract. Task schedulers are a cornerstone of high-performance distributed
computing systems, efficiently distributing workloads across multiple nodes to
optimize resource utilization and enhance application performance. By balanc-
ing computational tasks, they ensure scalability, minimize latency, and maintain
system reliability. Live container migration is an emerging technology in the
area of task schedulers; it involves making the task of rescheduling containers
as fast as possible, thereby reducing the idle time of the system. This article
reviews the most relevant works in the area of live migration in container-based
distributed systems, identifying the most significant innovations on the subject.

1. Introduction

Distributed systems are fundamental for executing tasks of medium to high complexity,
particularly in scenarios involving large-scale data processing, high computational de-
mands, or the need for high availability and fault tolerance. Instead of relying on a single
powerful machine, these systems distribute the workload across multiple nodes, enabling
parallelism, scalability, and improved performance. To ensure coordination among the
nodes, distributed systems typically utilize a component known as middleware.

The scheduler module is a vital component in container-based distributed sys-
tems, managing the allocation of tasks and resources across nodes. Its efficiency directly
impacts cluster performance, influencing resource utilization, workload distribution, scal-
ability, and overall system responsiveness.

A part of the scheduler is the rescheduling of tasks and resources, which balances
the workload on the system depending on the requirements of the tasks during runtime
and the situation of each machine. Usually, in container orchestration systems like Kuber-
netes, the job of migrating tasks, or rescheduling tasks, consists of deleting the running
container and then running it on another node with the previous data, which can be slow
and cumbersome.

On this matter, there is an innovation called live migration, which is a concept of
saving the actual status of a running container and running it on another machine, without
the container needing to restart, allowing for an almost instant migration, accelerating the
tasks on the cluster. It is already applied in the context of virtual machines, but in the case



of containers, there are challenges, because of the interconnection between the container
runtime and the host machine.

Therefore, this article presents a literature review on live container migration, aim-
ing to provide an understanding of the current state of the method and the prevailing
research trends in the field.

1.1. Organization of the paper

This article is organized as follows:

The next chapter explores the area of live container migration, emphasizing its
relevance to current applications. Following that, the review methodology is detailed,
including the research questions, search strategy, and article selection criteria.

Subsequently, a set of guiding questions is introduced, along with the rationale
behind each one. The results chapter then presents insights gathered from the literature
review. Finally, the article concludes with a brief summary of the findings and discusses
potential future directions in the field of live container migration.

2. Context

Today, high-end applications, such as machine learning and real-time simulations, work
on tens of thousands of terabytes of data at runtime [32], which means that data processing
must also be very fast. Therefore, the use of parallelization in distributed systems is
necessary.

The speedup that parallelization brings to an application depends on the system’s
capacity to execute operations simultaneously. Once the system does not have sufficient
resources for parallel execution, there will be a bottleneck. Therefore, understanding
the workload of an application is of utmost importance, allowing the system manager to
divide the resources appropriately and achieve greater performance.

Based on the understanding of an application’s workload, developers can design
specialized schedulers tailored to specific requirements[24]. This enables tasks to be dis-
tributed more effectively, potentially achieving greater speedup compared to scenarios
where the distribution is performed manually or using a generic approach. In certain
cases, performance gains can be even more significant if the system is able to adapt to
tasks dynamically during their execution.

To achieve this, a rescheduling module can be employed, leveraging runtime in-
formation to continuously balance resources and ensure performance improvements, par-
ticularly in situations where workloads become concentrated on specific nodes [6].

In order to reduce the time required to rebalance tasks across the nodes of a sys-
tem, the concept of live migration may be applied. As shown in Figure 1, this technique
involves the action of checkpointing a container, capturing all the execution state of a
task (including memory data, CPU state, etc.) and restoring it to another node, thereby
allowing execution to continue seamlessly.

In the context of distributed systems based on virtual machines, this process is fa-
cilitated by the fact that a VM is encapsulated within a single process, with all system and



Figure 1. Example of checkpoint/restore of a container.
Source: https://surenraju.medium.com/migrate-running-containers-by-
checkpoint-restoring-using-criu-6670dd26a822

hardware information isolated from the host environment[9]. Conversely, in container-
based distributed systems, where each container shares the host’s kernel, migration poses
greater challenges, as containers rely on host-level resources and data.

2.1. Related Works
Surveys on live container migration often concentrate on specific contexts. For example,
Soussi, Gür, and Stiller focuses on designing live migration modules and comparing them
within cloud computing environments. Similarly, Patel, Mehta, and Patel provides a brief
survey of migration in edge and hybrid computing, emphasizing application-specific use
cases.

Other surveys, such as Soma and Rukmini and Lohumi et al., examine live migra-
tion mainly in the context of virtual machines with the use of containers, which introduces
distinct challenges and strategies.

By contrast, this article distinguishes itself by reviewing newer implementations
across broader domains and highlighting emerging trends in live container migration,
with the aim of identifying areas where live migration is advancing and exploring how
this method can benefit other domains.

3. Methodology
This review adopts the methodology proposed by Barbara Kitchenham [13] due to its
rigor in guiding the creation of literature reviews. It examines projects developed over the
last five years in the field of live migration for container-based distributed systems, with
a focus on implementations targeting container orchestrators such as Kubernetes.

The review focuses on projects published in leading journals and conferences in-
dexed by ACM, IEEE, and Scopus. The selection of these articles was based on the rel-
evance of the projects and the novelty of the technologies developed by the researchers.
The methodology employed in this study is outlined below.

3.1. Research Questions
The main question this article attempts to answer is:



What is the state of research on live migration in container-based distributed
systems?

Therefore, the purpose of this article is to investigate the implementations of live
migration in container orchestrators, conducting an in-depth analysis of their innovations.
The results highlight the main challenges that the adoption of such a method may pose to
system administrators in the industry, as well as the potential performance gains that can
be achieved.

3.2. Search Strategy
The first step in the review consists of the choice of keywords that retrieve related articles
to the theme. Accordingly, the following expressions were used:

[[Abstract: live migration] AND [Abstract:
container]] OR [[All: checkpoint restore] AND [Abstract:
container]]

These expressions were first searched within the abstracts of the articles to better
filter out unrelated projects, since the term container may have different meanings in the
text of a project, which could make the selection of relevant articles more difficult. With
this search, the following sum of articles was returned:

• ACM, 19 articles
• IEEE, 42 articles
• Scopus, 40 articles

The search was conducted using the database’s search engine, with a restriction
to articles published within the last five years. This limitation aims to capture the current
state of research, identifying areas that require further attention and development.

3.3. Criteria of Inclusion and Exclusion
To achieve the best outcomes, it’s essential to filter works based on specific criteria to
ensure only those relevant to this article’s purpose are selected. Below are the criteria
applied:

Criteria ID Description
Inclusion I1 The article presents a implementation of live container mi-

gration.

Exclusion

E1 The article is a performance analysis of an implementation.
E2 The article is a literature review.
E3 The article focuses on live virtual machine migration.
E4 The article does not have a DOI.

Table 1. Criteria of exclusion and inclusion.

3.3.1. Reason for the criteria

• I1,E1: To be included, an article must present a novel implementation of live
migration, rather than merely analyze an existing project, as the latter is not within
the scope of this article.



• E2: Articles that focus solely on literature reviews are excluded, as they do not
contribute to the development of live container migration modules.

• E3: Projects that use a live container migration module but do not focus on it are
excluded, as this is not the objective of the article.

• E4: Only articles published with a DOI are included, as this facilitates searching
for them and ensures access to the original work.

3.4. Filtering the articles

The initial search done in July 2025 returned 101 articles, across all databases. The num-
ber of articles was still too big, making it necessary to use further criteria to select the
most relevant projects. With the full reading of the abstract, 61 articles were removed,
and with the other articles read, only 33 articles were used for the review. For the sake
of not making this article bigger, articles with no citations in three years were removed,
removing seven articles and with a final number of 26 articles used in this review.

4. Data Extraction

To achieve a clearer understanding of the current state of research in the field of live con-
tainer migration, a set of questions was formulated to address the characteristics present
in each project that may influence the performance and usability of the implementations.
Upon completion of the review of these studies, these questions can be answered.

• Q1: Is the project open source?
The availability of the source code of the proposed implementations allows it to
be reviewed by third-party researchers and compared with other implementations,
which accelerates the development of improved tools.

• Q2: Usage of simulators for testing?
The use of distributed systems simulators allows third-party researchers to easily
replicate the results of the project and facilitates its review. It also creates op-
portunities for further testing on real distributed systems, enabling researchers to
validate findings under practical conditions, evaluate system performance at scale,
and explore potential optimizations or limitations that may not be evident in sim-
ulated environments.

• Q3: Utilized CRIU in the implementation?
CRIU (Checkpoint/Restore in Userspace) is a Linux tool for saving and restoring
the state of processes and applications at runtime. It can be used for live container
migration, although it is still in an experimental phase for this use case. The use
of an established tool allows projects to be more easily extended and improved,
as researchers can build on a reliable foundation, reproduce experiments more
accurately, and focus on optimizing migration strategies rather than developing
the underlying checkpoint/restore mechanisms from scratch.

• Q4: What language was used for the implementation?
The choice of programming language can significantly affect the performance of
the module. Languages such as Go and C, which are used by container orchestra-
tors like Kubernetes, have a small memory footprint and execute functions quickly.
In contrast, implementations in Python, a high-level language, may exhibit lower
performance, presenting opportunities for further optimization and improvement.



• Q5: On which application domain does the implementation focus?
Understanding the primary application domain of the live migration module is
important, as different domains have distinct requirements and challenges. For
instance, some implementations may target real-time simulations, where mini-
mizing downtime is critical to maintaining simulation accuracy; others may focus
on machine learning workloads, where resource elasticity and fast migration be-
tween nodes improve training efficiency; and some may address high-performance
computing or cloud services, where scalability, fault tolerance, and overall system
throughput are the main concerns. Identifying the domain helps contextualize the
design choices and performance trade-offs of each implementation.

• Q6: Concentrates on stateful or stateless applications?
The application type used for testing the live container migration module is highly
significant. Stateless applications are much easier to migrate at runtime, as only
the running processes need to be saved and restored with minimal preparation.
In contrast, stateful applications are more challenging to migrate, since the run-
time data must also be saved and accurately restored on another machine, often
requiring additional coordination and synchronization.

5. Results
This section presents the results obtained from the review of the selected articles, ad-
dressing the questions outlined in the previous chapters and providing a comprehensive
understanding of the current state of the art.

5.1. Q1: Is the project open source?
During the analysis of the articles, it was observed that most of them do not have their
projects open-sourced. From the 26 articles, only 5 of them have a GitHub page, namely
KubeSPT [35], UMS [7], and LIMOCE[10]. The other 22 articles do not share their
sources, but they present their methodology represented by pseudocode, allowing re-
searchers to implement the proposed project in a more challenging manner.

The action of sharing the source code of the proposed project is good practice
because it allows further improvement by third-party researchers and provides an easy
way to review the results presented in the paper. For a simpler analysis, we considered
open source only cases where the researchers provided the link to the project code. There
was no further research on the Internet for the project’s source code.

5.2. Q2: Usage of simulators for testing?
The majority of the analyzed live container migration projects were tested on real,
container-based distributed systems. Only two articles, Singh [29] and Rukmini [27],
employed the generic cloud simulator CloudSim, while another two, namely Hashemi
[12] and Rukmini [27], used the fog distributed system simulator iFogSim. This indicates
a strong preference for experimentation on actual systems rather than simulated environ-
ments.

This preference can be attributed to the relative affordability and ease of setting
up distributed systems for testing container orchestrators. In contrast, simulation envi-
ronments, while useful for preliminary studies, are less appealing when evaluating the
performance and behavior of live container migration in realistic conditions.



5.3. Q3: Utilized CRIU on the implementation?

Out of the 26 analyzed articles, 15 employed the tool CRIU in their implementations
of live container migration modules. In the case of the project by Poggiani et al.,
the researchers used the CRI-O container runtime for its compatibility with the check-
point/restore tool. The remaining 11 articles developed their own checkpoint/restore
mechanisms.

This distribution can be attributed to the fact that CRIU’s support for containers
is still in an experimental stage, which may hinder the development of new projects.
As a result, many researchers opt for alternative implementations that are better suited
to their specific requirements. In the case of the implementation by Koziolek, Burger,
and Puthan Peedikayil, a new checkpoint/restore tool was implemented because it could
create smaller checkpoints than CRIU, which is ideal in the context of industrial controller
systems.

5.4. Q4: What language was used for the implementation?

The majority of the projects utilized the Go language and the YAML scripting language,
as they are what the developers of container orchestrators, such as Kubernetes, utilize.
The language Go was utilized for the implementation of the modules, as in the case of
the article by Zhang et al. Meanwhile, YAML scripts are used for the configuration of the
clusters, which serve as the method of communication and configuration in Kubernetes.

The language Python is also used in many of the articles because of its ease of
learning and its ability to implement complex projects, as is the case with a live container
migration system. The loss of performance of the language can be compensated for by
the speed of development that the language provides to researchers. In the case of some
articles, such as Benjaponpitak, Karakate, and Sripanidkulchai, which use a python script
for managing the transfer of the checkpoints created by the live migration module, the
performance difference between languages is dismissible.

On the projects by Singh et al. and Hashemi et al., the Java programming language
was used for the implementation of live container modules for use in simulators such as
CloudSim and iFogSim, both of which are written in Java. In the articles by Koziolek,
Burger, and Puthan Peedikayil, Das and Sidhanta, and Lu and Jiang, the researchers chose
to implement the migration modules in the languages C and C++ because of their low-
level functions and low memory usage, which are necessary for low resource machines
used in their projects.

5.5. Q5: On which application domain does the implementation focus?

The majority of the projects focus on cloud computing, with test applications primarily
consisting of relational databases, such as MySQL, deployed within cloud service en-
vironments like AWS and Google Cloud. Relational databases are commonly used for
testing live container migration because they are stateful applications that maintain criti-
cal data and transactional consistency, making them ideal benchmarks for evaluating the
reliability and efficiency of migration techniques.

Furthermore, ten of the articles propose live container migration modules for ap-
plications at the edge, with six of them focusing on 5G networks. These kinds of applica-



tions take advantage of live migration due to the necessity for an always-online runtime
and the demand for low latency in tasks such as remote surgery and traffic management.

Also, the articles presented by Lim and Lee, Addad et al., and Sarrigiannis et al.
focus on MEC (Multi-Access Edge Computing), which demands quick migration from
different nodes for a seamless connection with clients. Aside from that, Aleyadeh et al.
focuses on hybrid computing between the fog and edge, and Manatura et al. focuses on
liquid computing, which comprises a seamless experience among cloud, fog, and edge
computing.

Finally, the article by Chanikaphon and Salehi focuses on live migration in the
context of autonomous computing in self-driving cars, which have a high necessity for
very low latency in the communication of the application. Another article by Koziolek,
Burger, and Puthan Peedikayil focuses on industrial controllers, which require a quick
means of communicating states between nodes and must always be online for the duration
of the process.

Article Q1 Q2 Q3 Q4 Q5 Q6
Addad et al.[2] X Go 5G Network X
Ramanathan et al.[23] X Go 5G Network X
Lim and Lee[16] Yaml 5G Network X
Li et al.[15] X Go 5G Network X
Xie et al.[33] Python 5G Network X
Bhattacharyya et al.[5] Python 5G Network X
Chanikaphon and Salehi[7] X X Python Autonomous Cmpt. X
Zhang et al.[36] X Go Cloud Cmpt X
Lu and Jiang[18] X Go Cloud Cmpt. X
Zhang et al.[35] X X Go Cloud Cmpt. X
Poggiani et al.[22] X X Go Cloud Cmpt. X
Guitart[11] X Go Cloud Cmpt. X
Singh et al.[29] CloudSim Java Cloud Cmpt. X
Xu et al.[34] X Python Cloud Cmpt. X
Rukmini and Soma[26] Python Cloud Cmpt. X
Benjaponpitak et al.[4] X Python Cloud Cmpt. X
Das and Sidhanta[10] X X C/C++ Edge Cmpt. X
Rong et al.[25] Go Edge Cmpt. X
Sarrigiannis et al.[28] Python Edge Cmpt. X
Abdullah and Hadeed[1] X Python Edge Cmpt. X
Rukmini et al.[27] CloudSim,

FogSim
Python Fog Cmpt. X

Hashemi et al.[12] FogSim Java Fog Cmpt. X
Chebaane et al.[8] X Python Fog Cmpt. X
Aleyadeh et al.[3] Python Hybrid Cmpt. X
Koziolek et al.[14] Industrial Controller X
Manatura et al.[19] X X Python Liquid Cmpt. X

Table 2. Comparison table between all articles. Abbreviations: Cmpt. = Comput-
ing



5.6. Q6: Concentrates on stateful or stateless applications?

All of the analyzed articles focus on stateful applications, where containers are migrated
along with their runtime state. This is essential in domains such as databases, industrial
controllers, and edge computing, where preserving the application’s data and execution
context is critical for consistency and reliability. Unlike stateless applications, stateful
workloads pose greater challenges for live migration, since any disruption or data loss
during the transfer may compromise the correctness of the system.

6. Discussion

A deeper discussion is necessary for a better understanding of the trends of research in
the area. The first trend observed in the analysis of the articles is the importance of
live migration in real-life applications, like databases, traffic managers, and IoT systems,
where availability is of utmost importance and the possibility of changing the node at
runtime for a better one is welcomed.

The languages Go and Python were the most used for the implementation, the
first one because of its relation to container orchestrators, like Kubernetes, and its low-
level application, which makes the migration module performative, and the second for its
easy-to-program characteristics and the capacity of improving the project without syntax
barriers.

Unfortunately, most projects are closed-source, only having parts of their imple-
mentation shared as pseudo-code, which makes the job of reviewing the results of their
tests harder, as well as the task of improving the implementation presented. We believe
that making the project code open source allows it to have a bigger relevance in the area,
because anyone could assert its claims and improve the project further.

The usage of CRIU on more than half of articles shows that even if its support for
containers is still experimental, its implementation of checkpoint/restore is very usable,
allowing researchers to use it to facilitate its implementation of live container migration.

Finally, the focus on implementing live container migration for stateful applica-
tions is understandable, as stateless programs are comparatively easier to migrate and do
not require extensive investigation.

Nevertheless, the selected applications indicate that more complex domains, such
as machine learning and real-time simulations, remain largely unexplored, highlighting
the need for further research in these areas.

One reason for the lack of articles on live container migration in machine learning
is that it is a complex task requiring a distinct set of skills and knowledge often beyond
the typical expertise of AI developers. Additionally, distributed machine learning is still
emerging, with many tasks currently running on single, powerful machines. As tools ma-
ture and algorithms grow more complex, the demand for live migration in ML workflows
is likely to increase.

The same applies to real-time simulations, where the need for low latency and the
reliance on in-memory state make live container migration significantly more complex. In
most cases, implementing such migration is too costly and cumbersome due to the current
limitations of experimental tools and the lack of widespread support from developers.



7. Conclusion
This review highlights the main trends in the field of live container migration. The most
prominent application domains at this moment are big data and edge/fog computing, while
areas such as autonomous systems and industrial applications are beginning to gain atten-
tion. At the same time, domains where migration could be highly beneficial, such as
machine learning and real-time simulations, remain largely unexplored, primarily due to
their complexity and dependence on specialized hardware accelerators like GPUs and
TPUs. Looking ahead, the growing reliance on AI-driven applications, combined with
the continued maturation of tools such as CRIU, is expected to enable the adoption of live
container migration modules in a broader range of domains, as evidenced by the works
reviewed.

References
[1] Dhuha Basheer Abdullah and Wael Hadeed. “Container live migration in edge

computing: a realtime performance amelioration”. In: International Journal of Ap-
plied Science and Engineering 19.3 (2022). DOI: 10.6703/IJASE.202209_
19(3).007.

[2] Rami Akrem Addad et al. “Fast Service Migration in 5G Trends and Scenarios”.
In: IEEE Network 34.2 (2020). DOI: 10.1109/MNET.001.1800289.

[3] Sam Aleyadeh et al. “Optimal Container Migration/Re-Instantiation in Hybrid
Computing Environments”. In: IEEE Open Journal of the Communications Society
3 (2022). DOI: 10.1109/OJCOMS.2022.3140272.

[4] Thad Benjaponpitak, Meatasit Karakate, and Kunwadee Sripanidkulchai. “En-
abling Live Migration of Containerized Applications Across Clouds”. In: IEEE
INFOCOM 2020 - IEEE Conference on Computer Communications. 2020. DOI:
10.1109/INFOCOM41043.2020.9155403.

[5] Abhishek Bhattacharyya et al. “Multi-vendor OpenROADM Testbed Supporting
the Live-Migration of a 5G gNB-CU-UP Container”. In: 2025 International Con-
ference on Optical Network Design and Modeling (ONDM). 2025. DOI: 10 .
23919/ONDM65745.2025.11029220.

[6] Carmen Carrión. “Kubernetes Scheduling: Taxonomy, Ongoing Issues and Chal-
lenges”. In: ACM Comput. Surv. 55.7 (Dec. 2022). DOI: 10.1145/3539606.

[7] Thanawat Chanikaphon and Mohsen Amini Salehi. “UMS: Live Migration of Con-
tainerized Services across Autonomous Computing Systems”. In: GLOBECOM
2023 - 2023 IEEE Global Communications Conference. 2023. DOI: 10.1109/
GLOBECOM54140.2023.10437519.

[8] Ahmed Chebaane, Simon Spornraft, and Abdelmajid Khelil. “Container-based
Task Offloading for Time-Critical Fog Computing”. In: 2020 IEEE 3rd 5G World
Forum (5GWF). 2020. DOI: 10.1109/5GWF49715.2020.9221486.

[9] Christopher Clark et al. “Live migration of virtual machines”. In: Proceedings of
the 2nd Conference on Symposium on Networked Systems Design & Implementa-
tion - Volume 2. NSDI’05. USA: USENIX Association, 2005, pp. 273–286.

[10] Rohit Das and Subhajit Sidhanta. “LIMOCE: Live Migration of Containers in the
Edge”. In: 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and
Internet Computing (CCGrid). 2021. DOI: 10.1109/CCGrid51090.2021.
00070.



[11] Jordi Guitart. “Practicable live container migrations in high performance comput-
ing clouds: Diskless, iterative, and connection-persistent”. In: Journal of Systems
Architecture 152 (2024). DOI: 10.1016/j.sysarc.2024.103157.

[12] Sayed Mohsen Hashemi et al. “A new approach for service activation management
in fog computing using Cat Swarm Optimization algorithm”. In: Computing 106.11
(2024). DOI: 10.1007/s00607-024-01302-0.

[13] Barbara Kitchenham. “Procedures for Undertaking Systematic Reviews”. In: (Jan.
2004).

[14] Heiko Koziolek, Andreas Burger, and Abdulla Puthan Peedikayil. “Fast state trans-
fer for updates and live migration of industrial controller runtimes in container
orchestration systems”. In: Journal of Systems and Software 211 (2024). DOI:
https://doi.org/10.1016/j.jss.2024.112004.

[15] Xiaoyu Li et al. “Software-based Live Migration for Containerized RDMA”. In:
Proceedings of the 8th Asia-Pacific Workshop on Networking. APNet ’24. Syd-
ney, Australia: Association for Computing Machinery, 2024. DOI: 10.1145/
3663408.3663416.

[16] Yeonjoo Lim and Jong-Hyouk Lee. “Container-based Service Relocation for Be-
yond 5G Networks”. In: Journal of Internet Technology 23.4 (2022). DOI: 10.
53106/160792642022072304026.

[17] Yogesh Lohumi et al. “Recent Trends, Issues and Challenges in Container and VM
Migration”. In: 2023 International Conference on Computer Science and Emerging
Technologies (CSET). 2023, pp. 1–5. DOI: 10.1109/CSET58993.2023.
10346895.

[18] Yahui Lu and Yu Jiang. “A Container Pre-copy Migration Method Based on Dirty
Page Prediction and Compression”. In: 2022 IEEE 28th International Confer-
ence on Parallel and Distributed Systems (ICPADS). 2023. DOI: 10 . 1109 /
ICPADS56603.2022.00097.

[19] Sorawit Manatura et al. “ FastMig: Leveraging FastFreeze to Establish Robust Ser-
vice Liquidity in Cloud 2.0 ”. In: 2024 IEEE 17th International Conference on
Cloud Computing (CLOUD). Los Alamitos, CA, USA: IEEE Computer Society,
July 2024. DOI: 10.1109/CLOUD62652.2024.00019.

[20] M Patel, A Mehta, and Sachin Patel. “IJTPE Journal CONTAINER MIGRATION
AND PLACEMENT IN HYBRID CLOUD-FOG ENVIRONMENT: SYSTEM-
ATIC REVIEW”. In: International Journal on Technical and Physical Problems of
Engineering 14 (Mar. 2022), pp. 130–135.

[21] Leonardo Poggiani et al. “Live Migration of Multi-Container Kubernetes Pods in
Multi-Cluster Serverless Edge Systems”. In: 2024. DOI: 10.1145/3660319.
3660330.

[22] Leonardo Poggiani et al. “Live Migration of Multi-Container Kubernetes Pods in
Multi-Cluster Serverless Edge Systems”. In: Proceedings of the 1st Workshop on
Serverless at the Edge. SEATED ’24. Pisa, Italy: Association for Computing Ma-
chinery, 2024, pp. 9–16. DOI: 10.1145/3660319.3660330.

[23] Shunmugapriya Ramanathan et al. “Demonstration of Containerized Central Unit
Live Migration in 5G Radio Access Network”. In: 2022 IEEE 8th Interna-
tional Conference on Network Softwarization (NetSoft). 2022. DOI: 10.1109/
NetSoft54395.2022.9844071.



[24] Zeineb Rejiba and Javad Chamanara. “Custom Scheduling in Kubernetes: A Sur-
vey on Common Problems and Solution Approaches”. In: ACM Comput. Surv. 55.7
(Dec. 2022). DOI: 10.1145/3544788.

[25] Chenghao Rong et al. “Exploring the Layered Structure of Containers for Design
of Video Analytics Application Migration”. In: 2022 IEEE Wireless Communica-
tions and Networking Conference (WCNC). 2022. DOI: 10.1109/WCNC51071.
2022.9771659.

[26] S. Rukmini and Shridevi Soma. “An Optimized Beluga Whale Approach for Mi-
gration to Reduce Power and Service Level Agreement in Real-Time System”.
In: Contemporary Mathematics (Singapore) 6.1 (2025). DOI: 10.37256/cm.
6120253854.

[27] S. Rukmini, Shridevi Soma, and Rajkumar Buyya. “A Novel Approach for Energy-
Efficient Container Migration Using GNBO”. In: Contemporary Mathematics (Sin-
gapore) 5.3 (2024). DOI: 10.37256/cm.5320243085.

[28] Ioannis Sarrigiannis et al. “Fog-Enabled Scalable C-V2X Architecture for Dis-
tributed 5G and Beyond Applications”. In: IEEE Network 34.5 (2020). DOI: 10.
1109/MNET.111.2000476.

[29] Gursharan Singh et al. “A secure and lightweight container migration technique in
cloud computing”. In: Journal of King Saud University - Computer and Informa-
tion Sciences 36.1 (2024). DOI: 10.1016/j.jksuci.2023.101887.

[30] Shridevi Soma and S. Rukmini. “Virtual Machine and Container Live Migration
Algorithms for Energy Optimization of Data Centre in Cloud Environment: A Re-
search Review”. In: IoT Based Control Networks and Intelligent Systems. Springer
Nature Singapore, 2023.

[31] Wissem Soussi, Gürkan Gür, and Burkhard Stiller. “Democratizing Container Live
Migration for Enhanced Future Networks - A Survey”. In: ACM Comput. Surv. 57.4
(Dec. 2024). DOI: 10.1145/3704436.

[32] Robert Welch et al. Engineering Supercomputing Platforms for Biomolecular Ap-
plications. 2025. arXiv: 2506.15585 [physics.bio-ph].

[33] Xingju Xie et al. “Multi-Container Migration Strategy Optimization for Indus-
trial Robotics Workflow Based on Hybrid Tabu-Evolutionary Algorithm”. In: IEEE
Transactions on Services Computing 17.5 (2024). DOI: 10.1109/TSC.2024.
3440054.

[34] Bo Xu et al. “Sledge: Towards Efficient Live Migration of Docker Containers”. In:
2020 IEEE 13th International Conference on Cloud Computing (CLOUD). 2020.
DOI: 10.1109/CLOUD49709.2020.00052.

[35] Hansheng Zhang et al. “KubeSPT: Stateful Pod Teleportation for Service Re-
silience With Live Migration”. In: IEEE Transactions on Services Computing 18.3
(2025). DOI: 10.1109/TSC.2025.3564888.

[36] Liangbin Zhang et al. “Improved Pre-copy Container Live Migration Optimiza-
tion”. In: 2024 7th International Conference on Electronics Technology (ICET).
2024. DOI: 10.1109/ICET61945.2024.10673096.


