A Weighted Bi-objective Strategy for Executing Scientific
Workflows in Containerized Environments®

Wesley Ferreira', Liliane Kunstmann?, Yuri Frota'!, Luan Teylo®, Daniel de Oliveira'

nstitute of Computing — Universidade Federal Fluminense (IC/UFF)
2Instituto de Matemdtica Pura e Aplicada (IMPA)
3Centre INRIA de I’université de Bordeaux
wesleyferreira@id.uff.br, liliane.kunstmann@impa.br, luan.teylo@inria.fr,

{yuri,danielcmo}@ic.uff.br

Abstract. Scientific workflows support the execution of complex simulation-based ex-
periments across heterogeneous computing environments. Containerization technolo-
gies, such as Docker, improve portability by encapsulating tasks together with their
dependencies. However, they also introduce challenges in resource management, as
containers incur additional memory and CPU overhead and may execute concur-
rently on the same virtual or physical machine. These challenges are particularly
critical in memory-constrained environments, where inefficient scheduling can lead
to performance degradation or even task failures. To address this issue, we pro-
pose a weighted bi-objective scheduling strategy that considers memory consumption
and execution time, allowing users to prioritize one objective or achieve a balance
between the two. Experimental evaluations with both synthetic and real-world work-
Sflows demonstrate that our approach enhances performance and resource utilization.

1. Introduction

Scientific workflows (hereafter referred to as workflows) are abstractions used to specify
simulation-based experiments [de Oliveira et al. 2019]. They consist of sequences of compu-
tational tasks with well-defined data dependencies and execution constraints. The scale of an
experiment defines the workflow’s characteristics, including the volume of data processed and
the complexity of its specification. This complexity arises from both the number of tasks and
the structure of their control flow. To complete execution within a feasible time, such workflows
often rely on distributed computing environments using workflow systems [Suter et al. 2026].

Well-known workflow systems, such as Pegasus [Deelman et al. 2021], SciCumulus
[de Oliveira et al. 2012], and Parsl [Babuji et al. 2019], have been used to execute workflows
across a broad range of environments, including HPC clusters, supercomputers, and clouds.
Despite representing a step forward, many of these systems present portability limitations. In
several cases, they were developed with a particular type of infrastructure in mind, which hin-
ders their adaptability and usability in other contexts. For example, SciCumulus was designed
for clouds, making its deployment in other environments less straightforward. Similarly, Pega-
sus relies on HTCondor, which may not be available or easily supported in many environments.
Even systems claiming to support multiple execution platforms still impose constraints.

One way to mitigate the impact of infrastructure-specific configurations on workflow
execution and enable the same system to execute seamlessly across multiple environments is

*This study was financed in part by the Coordenacdo de Aperfeicoamento de Pessoal de Nivel Superior — Brasil
(CAPES) — Finance Code 001. The authors would also like to thank CNPq and FAPERJ.

the use of containerization [Struhar et al. 2020]. Containers, such as Docker and Singularity,
encapsulate applications, which may include entire workflows, along with all their required
dependencies, configuration files, and other necessary binaries. As a result, a containerized
workflow can be migrated and executed across heterogeneous environments with minimal con-
figuration overhead or manual intervention from the user. In fact, containerization has been
adopted by some workflow systems, such as Nextflow [Di Tommaso et al. 2017] and Ak6F1ow
[Ferreira et al. 2024], both of which natively support the execution of workflows in container-
ized environments.

Despite the clear advantage of enabling seamless execution of workflows across hetero-
geneous environments, container-based workflow execution also introduces challenges. One
challenge is that, in addition to the application executed by each workflow task, the container
itself consumes computational resources, e.g., memory and CPU, from the host machine and
can share these resources with other containers. If containers executing workflow tasks are not
scheduled carefully, memory may become either underutilized or overutilized. Underutiliza-
tion can lead to inefficient, slower, and potentially more costly executions (in the case of clouds,
where the pay-as-you-go model is applied). At the same time, overutilization may cause perfor-
mance degradation and even task failures, particularly in resource-constrained environments.

Therefore, scheduling containerized workflow tasks presents a challenge, particularly
because the memory consumption of tasks executing the same activity can vary substantially
depending on the characteristics of their input data. This variability makes it difficult to define
in advance which host machine will execute the containerized task. Scheduling containerized
tasks to the appropriate machines, based on their memory and CPU demands, can reduce re-
source contention and lead to more efficient use of the available hardware. Achieving a good
balance between memory usage and workflow execution time is a priority, as it can enhance
the overall throughput and performance of the containerized workflow.

In this paper, we propose a bi-objective weighted workflow execution strategy designed
to improve the scheduling of containerized workflows. The proposed strategy allows users to
balance memory usage and task execution time by employing a weighted function that con-
siders both criteria simultaneously. This function takes into account the resource requirements
of containerized tasks, specifically memory and execution time, as well as the current load on
the host machine. We evaluate the proposed strategy using a set of synthetic workflows with
varying structures and task profiles, along with the Montage workflow [Sakellariou et al. 2009]
executed on the AkSF low system. Experimental results demonstrate improvements in both
performance and resource usage for synthetic and real-world workflows.

2. Problem Formulation

The problem of task scheduling has long been acknowledged as a challenging issue. Its resolu-
tion requires not only considering the availability and capacity of computing resources but also
an analysis of the requirements associated with each task [Muntz and Coffman 1969]. The goal
of task scheduling is to produce a mapping of tasks onto the available computational resources
such that all task-specific constraints are satisfied, while optimizing one or more objective func-
tions, e.g., minimizing the makespan or maximize resource utilization.

The task scheduling problem becomes particularly complex in the context of work-
flows, where non-trivial data dependencies impose hard constraints on the execution order
of tasks. Ensuring that these dependencies are respected is critical for maintaining both the
correctness and the reliability of workflow execution. Typically, tasks, associated data, and
their data dependencies are represented using a Directed Acyclic Graph (DAG), denoted as

G = (V, A, a,w), following the formalism described by [Teylo et al. 2017]. Within this for-
malism, the set V' = N U D comprises tasks ¢ € N and data files d € D, while A denotes
the set of directed edges that encode the precedence relationships between tasks and data files.
Each task 7 € N is associated with a workload a;, and w;, represents the cost associated with
the edge (i,d) € A. Notably, under this formalism, every task in G is always preceded and
succeeded by a data file d € D, reflecting the structured dataflow.

The execution environment of a workflow consists of the set of all resources j € M
available for task execution, which can be a physical machine or a Virtual Machine (VM).
Each j € M is characterized by a computational slowdown index cs;, which quantifies the ratio
between the computing capacity of 7 and that of a baseline reference resource. In addition, each
7 is associated with an available memory capacity, denoted as M.]free, and a number of available
processing cores, denoted CPU§ree. Consequently, the execution time of a workflow task s € N
on a given resource j € M can be expressed as T;; = a; X cs;. Furthermore, each task i
requires a specific amount of memory, M;™, as well as a certain number of processing cores,
denoted as CPU;, which must be satisfied for the task to be executed on the chosen resource.

The objective function, which we henceforth refer to as AkéScore, is computed for
each task that is ready for scheduling, i.e., whose data dependencies are satisfied. The goal
of this score is twofold: (i) to promote the efficient utilization of memory and CPU across the
available resources (since containerized tasks can execute concurrently in the same resource),
and (i1) to minimize the makespan of the workflow. To achieve these objectives, we propose a
scoring strategy that balances the trade-off between memory consumption and workflow execu-
tion time. Specifically, for a given task ¢ in the scheduling queue, the Aké6Score is evaluated
for each j € M. The resulting score, denoted as .5; ;, is formally defined in Equation 1I:

1 M]free _ M;eq
S@j:AiJ" O./E‘f‘(l—a) W (1)

The parameter « defines the relative importance assigned to the makespan and memory
usage objectives, respectively. By adjusting this weight, the proposed strategy can be fine-
tuned according to user preferences, i.e., users may prioritize either a “fast” execution (without
necessary using all resources all the time) or a “memory-optimized” execution (that aims at
occupying the resources as much as possible), depending on the desired trade-off, where o €
[0, 1]. Tt is worth noting that the memory consumption objective is normalized by M™*, which
corresponds to the maximum memory capacity among all available resources (in the context of
this paper, resources refer to VMs in AWS cloud). Furthermore, we define A4;; € {0,1} as a
feasibility indicator of the scheduling decision, which is formally expressed in Equation 2.

1, if CPUJ*™ > CPU; and M > M
A= (2)

0, otherwise

Thus, 7 selected for the execution of containerized task i is the one that yields the highest
value of AkéScore, as defined in Equation 3. In cases where S; ; = 0 for all j € M, task ¢
cannot be scheduled because of insufficient available resources; consequently, it remains in the
scheduling queue and will be reconsidered in the subsequent scheduling round. It is important
to emphasize that, although this paper is primarily motivated by containerized environments,
the proposed score strategy does not rely on any container-specific features yet (e.g., image

size, shared caches), which is planned as future work.

S; = arg max Sij 3)

3. The Proposed Bi-Objective Workflow Execution Strategy

This section presents the proposed scheduling strategy designed for containerized workflows.
The discussion is structured as follows: first, we describe the underlying workflow system.
Then, we detail the scheduling algorithm.

3.1. A Brief Tour to AkoFlow

AkoOFlow [Ferreira et al. 2024] is a workflow system designed to support the execution of
workflows in heterogeneous containerized infrastructures. Unlike several workflow systems
that are typically bound to specific schedulers or infrastructures, Ak&F 1ow builds upon Ku-
bernetes to enable portable and provenance-aware workflow execution across multiple envi-
ronments, e.g., clusters and clouds. Ak6F1ow follows a layered architecture composed of five
modules (Figure 1): (i) Client, (ii) Server, (iii) Proxy, (iv) Worker, and (v) Provenance Manager.

i Server

|
_Sp‘lzz‘rf'\cil.:t\i:;m Client . © . Scheduler ‘ ‘ Monitor ‘
(V™

| ;

User
//_._-_' Status

Provenance Data

Schedul Stat
credule ue Schedule

‘ Provenance Manager ‘

Request
Response Response

Provenance Data Pravenance Data

Figure 1. The Architecture of AkéF1low.

Users specify workflows through a YAML-based description that defines tasks, their
data dependencies, and resource constraints (e.g., CPU, memory, storage). The Client seri-
alizes this specification and submits it to the Server, which orchestrates workflow execution
by scheduling multiple tasks to the Workers. The Scheduler component, at the core of the
Server, schedules workflow tasks as containers, deployed as Kubernetes Pods. Each host ma-
chine can execute several Pods. AkSFlow schedules tasks based on two possible execution
strategies: First-Data-First (FDF), which enables pipelined execution of tasks as soon as in-
put data becomes available, and First-Activity-First (FAF), which enforces synchronization at
each level of the workflow [Ogasawara et al. 2011]. It is important to note that the execu-
tion strategy proposed in this paper must be implemented within the Scheduler, which is de-
signed to support changes in the algorithm without requiring recompilation. For details, refer
to https://github.com/UFFeScience/akoflow.

Task execution takes place in the Worker, which instantiates containers, attaches storage
volumes, and monitors resource usage. The Proxy facilitates efficient communication between
the Server and Workers, particularly for tracking execution and identifying errors through the
Monitor component. Finally, the Provenance Manager collects provenance data from both

Workers and the Server at runtime via the Kubernetes Metrics API, recording CPU, memory,
and storage usage, as well as logs and execution states, in an SQLite database. This provenance
model connects workflows, tasks, and performance metrics, thereby enabling traceability and
reproducibility. In AkS6F 1ow, the execution of a task progresses through a well-defined set of
states. These states are: (i) Pending, (i1) Ready, (iii) In Execution, (iv) Finished, and (v) Failed.
A task initially is in the Pending state until all of its data dependencies are satisfied. Once every
predecessor task has completed, the task transitions to the Ready state and is inserted into the
Ready queue of AkO6F1low. This queue, therefore, represents the set of tasks that are eligible
for scheduling by the Scheduler.

The Scheduler monitors the Ready queue and applies the selected scheduling strategy
(described in Subsection 3.2) as soon as new tasks become available for execution. This design
choice ensures that scheduling remains adaptive to the current state of workflow execution, in
contrast to static, pre-computed scheduling plans. Once a task is assigned to a computational
resource, it transitions to the In Execution state. During this phase, the task consumes resources,
processes its input data, and generates the corresponding outputs. If execution completes suc-
cessfully, the task enters the Finished state, informing that its outcomes are now available for
dependent tasks. On the other hand, if errors occur during execution, the task transitions to the
Failed state, where appropriate fault-handling or recovery strategies may be applied.

3.2. Scheduling Algorithm

This subsection describes the proposed scheduling algorithm (Algorithm 1) for containerized
workflow tasks, which uses the Ak&Score to schedule tasks to resources (in this context,
VMs). The algorithm aims to maximize overall execution performance while respecting both
memory and CPU constraints. The input to the algorithm is a list of tasks /V and a list of avail-
able resources M. Each task ¢ € IV has associated resource requirements, including memory
(M™4%) and CPU cores (CPU™%), and a status that can be Ready, In Execution, Finished, or
Failed. Each j € M maintains its available resources (M]free and CPU?EC).

Algorithm 1 operates iteratively. The main loop (lines 1-25) continuously checks for
the existence of tasks in the list NV that are marked with the status Ready. For each of these
tasks (line 2), the algorithm iterates over all available resources in the set M (line 5) and eval-
uates whether each VM meets the task’s CPU requirement (line 6). Only if the resource has
sufficient CPUs, the algorithm then verifies if the resource also has available memory to exe-
cute the containerized task (line 7). When both constraints are satisfied, the Ak6Score for
the task—resource pair is computed (line 8). If this score exceeds the current best score, the
algorithm updates the best score and records the corresponding resource as the candidate for
allocation (lines 10-11).

Once all resources have been evaluated for the current task, the algorithm checks
whether a suitable resource was found (line 16). If so, the task is scheduled on the selected
resource (line 17), and the resource’s available memory and CPU are updated to reflect the
schedule (lines 18—19). The task status is then updated to In Execution (line 20), indicating
that it is currently executing. If no resource satisfies the CPU and memory requirements for
the task, the task is skipped in this iteration (line 22) but remains in the list of ready tasks to be
reconsidered in subsequent iterations. Through this process, Algorithm 1 ensures that tasks are
scheduled while respecting the resource limitations and prioritizing assignments that maximize
the expected execution performance as measured by the Ak&Score. The iterative nature of the
algorithm guarantees that all ready tasks are continuously evaluated until no further schedules
are possible.

Algorithm 1 Scheduling Algorithm using AkéScore
Require: List of workflow tasks [V, List of available resources M

1: while 3i € N such as status(i) = ” Ready” do
2 for all i € N such as status(i) =" Ready” do
3 SF +— —o0
4: Jr 0
5: forall j € M do
6: if CPU;ree > CPU;™ then > Check CPU availability
7 if M > M;* then > Check memory availability
8: S;.; < AkéScore(i,) > Compute AkOScore for task ¢ on resource j
9: if Si,j > Sz* then
10: SZ* «— Si,j
11 J* e
12: end if
13: end if
14: end if
15: end for
16: if j* # () then
17: Schedule(i — 7*)
18: M e —
19: CPU® « CPU® — CPU
20: status(i) = ” In Execution”
21: else
22: Skip task ¢ > No resource has sufficient CPU or memory at this moment
23: end if
24: end for

25: end while

4. Experimental Evaluation

This section presents the experimental evaluation of the proposed scheduling strategy. The ob-
jective is to examine the performance of the execution strategy across different workflows, VM
configurations (since we have chosen the AWS cloud as execution environment), and parame-
terizations of the o parameter.

4.1. Environment and Experiment Setup

All experiments reported in this section were executed in the AWS cloud. To ensure a rep-
resentative coverage of different resource profiles, we selected three VM types that differ in
terms of CPU architecture, number of vCPUs, and memory capacity: c71i.large (2 Intel
vCPUs and 4GiB of memory), c7a.xlarge (4 AMD vCPUs and 8GiB of memory), and
c6i.xlarge (4 Intel vCPUs and 8GiB of memory). These VM types were chosen to enable
a comparison of scheduling behavior across processor generations, as well as to highlight ar-
chitectural differences between AMD- and Intel-based VMs. In addition, these VM types are
known to present variations in computational performance [De Lima et al. 2024], which is par-
ticularly relevant when evaluating the effectiveness of the proposed scheduling strategy under
performance-oriented configurations, such as when the weighting parameter is set to a = 1.0.
All VMs were configured with Ubuntu 22.04 LTS as the operating system and had Kubernetes
version 1.33 installed to provide the containerized execution environment. To reduce variabil-
ity introduced by geographic distribution, all VMs were provisioned in the same AWS region
(us-east-1). For each experimental run, the VMs were deployed at the start of the workflow
execution and remained active until the execution was completed.

We evaluated the proposed scheduling strategy using two different categories of work-
flows: (i) a real-world scientific workflow, Montage [Sakellariou et al. 2009], and (ii) a set

of synthetic workflows specifically designed to isolate and control task characteristics sys-
tematically. Montage is a widely used astronomy workflow that constructs image mosaics
by combining a collection of individual input tiles. The workflow comprises a set of tasks
with heterogeneous computational requirements. Some tasks are I/O-bound, whereas oth-
ers are CPU-intensive. Due to this diversity in computational behavior, Montage has be-
come a de facto benchmark for evaluating workflow scheduling approaches. We also gen-
erated synthetic workflows derived from a CPU- and memory-intensive benchmark proposed
by [Alves and Drummond 2017]. This benchmark performs a series of computationally inten-
sive mathematical operations on a square matrix of size N x N. The parameter /N controls
both execution time and memory consumption, as larger matrix sizes entail not only greater
computational effort but also higher memory requirements. Based on this property, we derived
synthetic applications by tuning /V so that tasks would present varying resource demands. To be
consistent with the environment setup previously described, we considered the maximum avail-
able memory of 8 GiB as the reference capacity and defined two different memory ranges. For
each synthetic task, the value of /N was randomly selected such that its memory consumption
would fall within the specified range. Using this methodology, we established two synthetic
task classes, each characterized by different memory usage profiles.

Class A. This class represents low-memory tasks. Each task is configured to use between
10-20% of the reference memory capacity, with an upper limit of 1.6 GiB. These tasks are
intended to model lightweight applications that place minimal demands on memory while still
requiring computational resources.

Class B. This class represents high-memory tasks. Each task consumes more than 60% of
the reference memory capacity, corresponding to at least 4.8 GiB. These tasks are designed
to emulate memory-intensive applications, where execution is constrained by memory avail-
ability.

Using the two aforementioned task classes, we constructed six workflows based on the
same specification but varying task classes, as presented in Figure 2. Specifically, workflows
W1 and W2 represent the two homogeneous cases, consisting exclusively of class A (white
circles) and class B (grey circles) tasks, respectively. Workflows W3a and W 3b represent
workflows containing an equal proportion of class A and class B tasks. The distinction be-
tween W3a and W 3D lies in the ordering of tasks: the first half of W 3a is composed of class
A tasks, whereas W 3b is the opposite. This design enables us to investigate whether task or-
dering affects scheduling and performance. Finally, workflows W4 and W5 capture skewed
distributions, incorporating 30/70 and 70/30 splits between class A and class B tasks, respec-
tively. These configurations represent intermediate levels of heterogeneity, situated between
the entirely homogeneous and balanced workflows.

WA w2 Wa3a W3b w4 W5

Figure 2. The six classes of synthetic workflows.

Each workflow was executed under three distinct settings of the parameter o =
{0.0,0.5,1.0}. A setting of @« = 0.0 corresponds to a memory-optimized strategy, which
emphasizes maximizing memory consumption during workflow execution by avoiding the use
of more VMs by concurrently executing multiple containers on the same VM. On the other
hand, a setting of @ = 1.0 represents a performance-oriented strategy, prioritizing the reduc-
tion of makespan. An intermediate value of o = 0.5 1s used to achieve a balanced strategy that
considers both memory usage and performance optimization simultaneously.

4.2. Results Discussion

The first evaluation was conducted by executing the six synthetic workflows described in Sub-
section 4.1. For each task within these workflows, Ak6F 1ow provided an estimated execu-
tion time, which was determined based on the calculated slowdown index. In this study, the
VM type c6i.xlarge was used as the baseline reference, while the slowdown indices for
c7a.xlarge and c7a.large were determined to be 1.42 and 1.39, respectively. The re-
sulting makespan for each workflow, considering the different values of the parameter «, is
presented in Figure 3.

3500 Workflow Makespan x Alpha Values
zz2 a=0.0
3000
2500
a
C
g 2000 by
7
Pe 0%
% 1500 ::::::::: IR
s 53 ”2’235
%

‘.
3
oS

&K
o
%
5

X
<
K2
&

0%
badeS
o
9%
0%

3
%

%
%

1000

X
%

%
S

5
KL

2
%
o
o
X

%

o008

R
SRRLRRRRN]

96%%%%%%%'

SR
<
&
&
X
0
53
D000
oo

0
3
%
o
>
050
X
020

500

,v,v
K
%
X
XX
005,
K5
0.0
SRR

%

%
%

%

KL

%
2
&
o
X
5%
ot

e

oo

X
2000
35

5
S

200000
XK

%
X
%

o
X
[
[

K
kS

W W W° \“3‘0 ‘QD‘ Q°
Workflow

Figure 3. Makespan for the synthetic workflows and different values of parameter .

By analyzing Figure 3, a clear relationship between the parameter o and the makespan
for the six evaluated workflows can be observed. Across all workflows, a consistent trend
emerges: higher values of «, which favor the use of higher-performance VMs, systematically
lead to reduced makespan, as anticipated. This effect is evident for workflows dominated by
tasks of the same class (A or B), such as W1 and W2. Workflow W1 achieves a minimum total
time of 438 seconds when o« = 1.0, increasing to 651 seconds when o = 0.0, corresponding
to a 49% increase. Similarly, the makespan of W2 rises from 1,949 seconds to 2,889 seconds,
a 48% increase, as « decreases from its maximum to minimum value. These findings indicate
that workflows composed of homogeneous task types are highly sensitive to resource allocation
and scheduling strategies.

Mixed workflows, including W3a, W3b, W4, and W5, display different behavior.
W3a, with an even mix of task types, shows a significant increase in makespan from 1,208
s to 2,038 seconds as « decreases, whereas W 3b exhibits a smaller increase from 1,235 s to
1,365 s. This difference likely reflects the impact of activity ordering and dependencies, which
can mitigate the cumulative effect of slower VMs. Similarly, W4 and W5, which contain
uneven distributions of activity types, show intermediate trends: W4 increases from 915 s to
1,704 seconds, while W5 increases from 1435 s to 1720 seconds.

To show the task scheduling behavior, we selected two representative workflows (due
to space limitations), W1 and W4, and present their scheduling plans in Figures 4 and 5. In
these figures, heatmaps depict the assignment of tasks to specific VMs over time, providing a
visual representation of resource usage. For o = 1.0, both workflows present a straightforward
scheduling strategy: all tasks are scheduled exclusively to the c7a.xlarge VM. This out-
come is expected, as this VM type offers the highest computational performance and sufficient
memory capacity to execute all tasks efficiently.

a=1.0

c7a.xlarge

cb6i.xlarge

VM Type

c7i.large

Q D?’ Q’b'\,@\:\ﬁ/ ")W(,;b,ba'\h} o}é\ ,,)Q 0 © q‘b b‘ qb’lz ’\9”": ’)’q’l«hpb?p Q 6"’.\;’)0@‘3,»66,5’1?,@6@6@96%6@60
Time (seconds) Tlme (seconds) Time (seconds)

Number of running tasks

Figure 4. task scheduling plan for workflow 17/1.

However, when « is reduced to 0.5 and 0.0, the scheduling patterns diverge between
the two workflows. In W1, tasks are distributed almost evenly across the available VMs, ex-
cept c71.large. This VM receives fewer tasks because it has only half the memory ca-
pacity of the other two VMs. Consequently, its Ak6Score for a = {0.0,0.5} — which is
defined in terms of the amount of free memory — remains consistently lower than that of
the other VMs. In contrast, 174 displays a more heterogeneous allocation: memory-intensive
tasks are preferentially scheduled to c7a.xlarge, while the remaining tasks are scheduled
on c6i.xlarge. This behavior highlights the influence of task characteristics and workflow
composition on scheduling decisions, particularly when resource selection is constrained by
the parameter o.. These results show that both the selection of VM types (as controlled by «)
and the composition of workflow tasks influence the makespan; however, AkSF1ow was able
to prioritize makespan reduction or maximize resource usage as defined by the user.

a=1.0

c7a.xlarge I

()
S
=" c6i.xlarge
=
S

c7i.large

Q o '\%’1« ’1/«\0) o’bv &,’") 4-,“‘6 é,;\ /\,‘/‘b %@ g,@ ,»'\, b’:l’ ,,’bo’ bq’b‘ @Q"y /\Wb Q? qb‘b Q 0 Q ’5"0 ‘7,\ Q)Q’b %ﬁb’» QN@Q ’&Q)Q ‘\(’;,}0 ‘\00
Time (seconds) Time (seconds) Time (seconds)

Number of running tasks

Figure 5. Task scheduling plan for workflow 17 4.

The second evaluation was conducted using the Montage workflow, with the makespan

presented in Figure 6 for different values of the parameter . As shown, the configuration
designed to prioritize makespan reduction (o = 1.0) outperforms the balanced configuration,
represented by o = 0.5, achieving reduced execution time. However, the behavior of the
a = 0.0 configuration is particularly noteworthy, as it presents a shorter makespan than the
a = 1.0 configuration. At first glance, this may seem counterintuitive, since one might expect
that fully prioritizing the execution time objective would always yield superior results in that
dimension. Upon closer examination, this behavior can be understood in the context of the
greedy nature of the proposed scheduling strategy. Specifically, for each task in the workflow,
the strategy immediately assigns it to a VM with available resources. In doing so, the scheduler
dynamically adapts to resource availability while attempting to optimize the chosen objective.

Makespan of Montage for different values of a

» o)) [o]
o o o
o o o

Makespan (s)

N
o
o

0.5
Alpha (a)

Figure 6. The makespan of Montage workflow for different « values.

For o = 0.0 execution, this approach resulted in scheduling tasks to the most power-
ful VMs from the beginning. Subsequent tasks continue to be scheduled on these same VMs
to maximize resource usage, effectively concentrating compute-intensive tasks on the pow-
erful VMs. As a result, even though the configuration is not explicitly designed to minimize
makespan, the execution time can be faster than that of a = 1.0, where tasks may be distributed
differently across VMs. Figure 7 illustrates this scheduling pattern, highlighting the impact of
the greedy strategy on execution performance. These results suggest that greedy scheduling ap-
proaches, when combined with intelligent strategies, can leverage computational heterogeneity
to reduce makespan, even in configurations that do not explicitly prioritize it.

a=1.0 o= 0.5

cbi.xlarge

c7a.xlarge

VM Type

c7i.large

O S O AP LA O P PPN RO O A DD PO D G OO
LRI O I M A RIS LI P RN I AP AP S ORI L P SR R ARSI

Time (seconds) Time (seconds) Time (seconds)
Number of running tasks

Figure 7. The task scheduling plan for Montage workflow.

5. Related Work

Previous studies have investigated the use of containers and virtualization to improve work-
flow execution in distributed and cloud environments. Early work explored the integration
of containers into workflow systems [Zheng and Thain 2015, Zheng et al. 2017], emphasizing
portability and isolation. More recent research on Workflow as a Service (WaaS) has focused
on scheduling and cost efficiency [Rajasekar and Palanichamy 2021, Karmakar et al. 2024],
proposing scheduling heuristics to reduce costs while satisfying Quality of Service.

Another research direction investigates how workflow systems integrate with orchestra-
tion infrastructures, e.g., Kubernetes, in IaaS clouds. Early work explored workflow deploy-
ment on container schedulers such as Mesos [Zheng et al. 2017]. With Kubernetes emerging
as a de facto standard, new approaches have been proposed. KubeAdaptor [Shan et al. 2023]
bridges workflow scheduling algorithms with Kubernetes’ scheduler to improve task order-
ing and resource utilization. Similarly, [Li et al. 2021] study scheduling of microservice-based
workflows, emphasizing challenges in dynamic resource allocation and scalability. Several
studies have also examined energy-efficient workflow scheduling in containerized environ-
ments. [Sun et al. 2025] propose RMES, a real-time multi-workflow scheduling algorithm that
enhances parallelism and resource utilization, focusing on achieving energy savings that sur-
pass those of prior methods. However, none of the approaches found explore the optimization
of multiple factors, neither fully address the challenges of allocating multiple types of resources
in heterogeneous environments.

6. Conclusions

In this paper, we presented a bi-objective weighted workflow execution strategy designed to im-
prove the scheduling of containerized workflows. By considering both memory usage and task
execution time, the proposed strategy allows users to balance resource efficiency and workflow
performance according to their priorities. Our experiments, conducted with synthetic work-
flows and the real-world Montage workflow on heterogeneous AWS VMs, demonstrate the
effectiveness of this approach under different computational and memory constraints.

The results highlight several findings. First, the parameter o effectively controls the
trade-off between memory usage and makespan, allowing for memory-oriented, performance-
oriented, or balanced scheduling strategies. Second, workflow composition and task ordering
have a significant influence on scheduling outcomes, particularly for mixed workflows where
the distribution of high- and low-memory tasks affects the makespan. Third, even in config-
urations that do not explicitly prioritize makespan, the use of greedy scheduling can exploit
computational heterogeneity to achieve performance gains, as observed in the Montage work-
flow experiments. Future work will explore dynamic adjustment of the weighting parameter
at runtime and the extension of the strategy to larger, more complex workflows and hybrid
cloud-HPC environments.

References

Alves, M. M. and Drummond, L. (2017). A multivariate and quantitative model for predicting
cross-application interference in virtual environments. J. of Systems and Soft., 128:150-163.

Babuji, Y. N., Woodard, A., et al. (2019). Parsl: Pervasive parallel programming in python. In
HPDC 2019, pages 25-36. ACM.

De Lima, M., Teylo, L., et al. (2024). An analysis of performance variability in aws virtual
machines. In SSCAD 2024, pages 312-323. SBC.

de Oliveira, D. et al. (2012). A provenance-based adaptive scheduling heuristic for parallel
scientific workflows in clouds. J. Grid Comput., 10(3):521-552.

de Oliveira, D. C. M., Liu, J., and Pacitti, E. (2019). Data-Intensive Workflow Management:
For Clouds and Data-Intensive and Scalable Computing Environments. Synthesis Lectures
on Data Management. Morgan & Claypool Publishers.

Deelman, E., da Silva, R. F,, et al. (2021). The pegasus workflow management system: Trans-
lational computer science in practice. J. Comput. Sci., 52:101200.

Di Tommaso, P., Chatzou, M., et al. (2017). Nextflow enables reproducible computational
workflows. Nature Biotechnology, 35(4):316-319.

Ferreira, W. et al. (2024). Akoflow: um middleware para execugao de workflows cientificos em
multiplos ambientes conteinerizados. In SBBD 2024, pages 27-39, Florian6polis/SC. SBC.

Karmakar, K., Tarafdar, A., Das, R. K., and Khatua, S. (2024). Cost-efficient workflow as a
service using containers. Journal of Grid Computing, 22(1):40.

Li, W, Li, X., and Ruiz, R. (2021). Scheduling microservice-based workflows to containers
in on-demand cloud resources. In 2021 IEEE 24th International Conference on Computer
Supported Cooperative Work in Design (CSCWD), pages 61-66.

Muntz, R. and Coffman, E. (1969). Optimal preemptive scheduling on two-processor systems.
IEEE Transactions on Computers, C-18(11):1014-1020.

Ogasawara, E. S., de Oliveira, D., et al. (2011). An algebraic approach for data-centric scientific
workflows. Proc. VLDB Endow., 4(12):1328-1339.

Rajasekar, P. and Palanichamy, Y. (2021). Scheduling multiple scientific workflows using
containers on iaas cloud. Journal of Ambient Intelligence and Humanized Computing,
12(7):7621-7636.

Sakellariou, R., Zhao, H., and Deelman, E. (2009). Mapping workflows on grid resources:
Experiments with the montage workflow. In Proc. of the CoreGRID ERCIM Working Group
Workshop, pages 119—132. Springer.

Shan, C., Xia, Y., Zhan, Y., and Zhang, J. (2023). Kubeadaptor: A docking framework for
workflow containerization on kubernetes. FGCS, 148:584-599.

Struhér, V., Behnam, M., Ashjaei, M., and Papadopoulos, A. V. (2020). Real-time containers:
A survey. In Fog-IoT, volume 80 of OASIcs, pages 7:1-7:9.

Sun, Z., Huang, H., Li, Z., and Gu, C. (2025). Energy-efficient real-time multi-workflow
scheduling in container-based cloud. Journal of Combinatorial Optimization, 49(2):34.

Suter, F., Coleman, T., et al. (2026). A terminology for scientific workflow systems. FGCS,
174:107974.

Teylo, L., de Paula Junior, U., Frota, Y., de Oliveira, D., and Drummond, L. M. A. (2017).
A hybrid evolutionary algorithm for task scheduling and data assignment of data-intensive
scientific workflows on clouds. FGCS, 76:1-17.

Zheng, C. and Thain, D. (2015). Integrating containers into workflows: A case study using
makeflow, work queue, and docker. VIDC 15, page 31-38, New York, NY, USA.

Zheng, C., Tovar, B., and Thain, D. (2017). Deploying high throughput scientific workflows
on container schedulers with makeflow and mesos. In CCGRID, pages 130-139.

