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Abstract. Astronomical surveys such as the Dark Energy Survey (DES) and the up-
coming Legacy Survey of Space and Time (LSST) produce massive volumes of obser-
vational data, demanding scalable and efficient data analysis techniques. Among
these, Machine Learning (ML) has become a key tool for extracting patterns and de-
tecting anomalies in large astronomical catalogs. However, traditional centralized
ML approaches are impractical in this scenario, due to data transfer bottlenecks,
storage constraints, and privacy concerns. Federated Learning (FL) offers a de-
centralized alternative by training models across distributed data sources, reducing
transfer costs and preserving data locality. However, configuring and deploying
FL workflows is challenging due to client heterogeneity and data distribution. This
paper explores the use of FL for outlier detection in large astronomical catalogs,
using DES as a proxy for LSST. We emulate FL deployments on Amazon Web Ser-
vices (AWS) cloud, evaluating various configurations of compute resources. Our
results evidence the trade-offs between training time and financial cost, providing
insights into the configuration of FL workflows for large-scale LSST data.

1. Introduction
Over the past decades, astronomical surveys, e.g., Dark Energy Survey (DES)
[Abbott et al. 2018], have transformed our understanding of the universe by collecting data
on millions of objects across regions of the sky [Mickaelian 2016]. These surveys produce
large catalogs with hundreds of attributes, e.g., positions, brightness, spectral properties, and
other physical characteristics, associated with a plethora of objects like stars and galaxies
[Jurić et al. 2015]. While astronomers can still rely on visual inspection and expert analysis
to draw conclusions from these catalogs, the data volume has made such methods impractical.

To help address these challenges, Machine Learning (ML) techniques have been used
in astronomy for many years in several tasks, e.g., the classification of astronomical transients
[D’Isanto et al. 2016], light curve analysis and classification [Mahabal et al. 2017], and aster-
oid identification [Alves et al. 2025]. Beyond these well-established applications, ML meth-
ods are also used as tools for exploratory analysis, such as the detection of outliers in the
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catalogs [Covey et al. 2007]. Indeed, one of the potential uses of astronomical catalogs is the
identification of rare or unusual objects that may hold the key to scientific discoveries.

Although the application of ML techniques in astronomy represents a step forward,
the rapid increase in the scale of astronomical catalogs and the volume of generated data
introduces new challenges. The complexity of this scenario has grown with the start of
operations at the Vera C. Rubin Observatory’s Legacy Survey of Space and Time (LSST)
[Ivezić et al. 2019]. Equipped with a 3.2-gigapixel camera, the observatory can capture im-
ages at an unprecedented scale. Each night, it is expected to generate approximately 20
terabytes of raw data. This volume of data is transferred to a US Data Facility at SLAC1,
where it undergoes processing to produce large-scale astronomical catalogs.

The volume of data produced by LSST not only makes traditional visual inspection
methods impractical but also imposes limitations on the training of traditional ML models
[Savić et al. 2023]. Model training typically requires that the entire dataset be accessible in
one place, which becomes challenging as data volumes grow. LSST catalogs are expected
to span hundreds of terabytes, creating critical storage demands and data transfer bottlenecks
when attempting to centralize the data for ML training purposes. Although advanced network
infrastructure exists to ease the transfer of data from the Rubin Observatory to SLAC and
partner institutions, only a few Independent Data Access Centers (IDACs)2 have the technical
capacity and the authorization to store and process such catalogs.

To address these challenges, Federated Learning (FL) [McMahan et al. 2017] has
emerged as a promising paradigm for distributed ML. FL enables the decentralized train-
ing of models by allowing data to remain on local clients (in the context of this paper, the
IDACs would serve as these clients), while only model updates, e.g., weights of a neural
network or centroids in clustering algorithms, are shared with a server for aggregation. This
approach minimizes the need for large-scale data transfers and preserves data locality. FL has
shown its potential in various fields, e.g., healthcare, where privacy and data distribution are
critical concerns. Still, its application to large-scale scientific data analysis, especially in the
field of Astronomy, remains unexplored and represents an open field [Razmi et al. 2024].

However, training ML models for astronomical applications using FL is far from
straightforward. Several factors can affect both training performance and the quality of the
trained models. For example, if a subset of clients presents limited computational resources
or restricted bandwidth, they may delay the transmission of model updates, thus increasing
the training time. Similarly, if the central server has insufficient computational capacity, the
aggregation of updates and synchronization with clients can become a bottleneck. Moreover,
the partitioning of astronomical catalogs among clients must be handled carefully to ensure
that the data distribution is as balanced as possible, a requirement that may be difficult to
achieve in practice. Poorly balanced or skewed data distributions can hinder the convergence
of the global model and increase the risk of model degradation. These challenges highlight
the complexity of applying FL effectively to large-scale astronomical catalogs.

In this paper, we evaluate the feasibility of using FL for the problem of object out-
lier detection in the large-scale DES Data Release 2 (DR2) [Abbott et al. 2021]. We use the
FLARE+Prov, an extension of NVIDIA FLARE [Roth et al. 2023], to deploy and evaluate
the FL performance with a particular focus on preparing for the data volume expected from
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the LSST. We use the DES dataset as a proxy for LSST’s data, given that the LSST’s IDACs
are planned to begin operations only in early 2026. Our study seeks to proactively evaluate FL
by emulating the distributed environment and the heterogeneous data expected. Specifically,
we emulate deployments using Amazon AWS as a platform. The core idea of our work is
to explore various deployment scenarios that differ in terms of client and server performance
characteristics and data distribution strategies. Through this exploration, we aim to analyze
the total training time required by FL-based workflows, as well as the financial costs asso-
ciated with these deployments. By doing so, we plan to generate insights into the practical
trade-offs and constraints involved in executing federated outlier detection tasks at the scale
anticipated for LSST.

2. Outlier Detection in Astronomical Surveys

Outlier detection task [Covey et al. 2007] plays a critical role in astronomy, particularly in
large-scale surveys where catalogs contain millions (or even billions) of objects with different
characteristics (Figure 1 - left). Identifying “anomalous” or rare objects can provide insights
or highlight areas of the sky that require further visual analysis. Astronomical outlier detec-
tion is typically based on observational features such as magnitudes and colors. Magnitudes
in astronomical catalogs refer to the brightness of an object measured using specific filters
that consider parts of the electromagnetic spectrum [Fukugita et al. 1996]. Common used
filters are optical ones, e.g., u, g, r, i, z, and infrared, e.g., Y , J , H , K. In the structured cat-
alog, each astronomical object typically has a measured magnitude for each filter, commonly
named as g mag, r mag, i mag, z mag, etc. Specifically in the experiments considered
in this paper we used the Auto Magnitude (mag auto) [Bertin and Arnouts 1996], which is
based on an elliptical aperture that adapts to the shape and size of each object individually
using the Kron radius [Kron 1980] to contain most of the object’s flux while minimizing
contamination from near objects.

Figure 1. Spatial distribution of objects (left) and clusters (right) restricted to a small
sky region with coordinates (7.,−32.2, 10,−32.2, 10,−32.7, 7.,−32.7).

Colors, in turn, are derived from the differences in magnitudes between photo-
metric bands (e.g., g − r, r − i, i − z) and serve as representations for stellar tem-
perature, age, and composition. Objects with extreme color combinations may represent
high-redshift galaxies or outliers. Similarly, magnitude helps isolate objects that are ei-
ther much fainter or brighter than expected for a given population, which can indicate the
presence of flares, supernovae, or saturated observations. In order to detect outliers, ML
methods such as K-Means [MacQueen 1967] can be applied using the aforementioned fea-
tures. These algorithms identify regions of low-density occupancy or sparse neighborhoods,



which may be indicative of outlier objects. K-Means clustering, particularly, can be lever-
aged for unsupervised outlier detection by identifying data points that lie far from their as-
signed cluster centroids, based on the assumption that normal instances form dense groups
while anomalies appear as isolated points. This approach is computationally efficient and
well-suited for large-scale datasets where labeled anomalies are scarce. For instance, in
the feature space defined by (g − r, r − i, i − z, r mag, g mag, i mag, z mag), clusters
generated from the DES DR2 dataset, restricted to a small sky region with coordinates
(7.,−32.2, 10,−32.2, 10,−32.7, 7.,−32.7), are presented in Figure 1 (right). In the upcom-
ing LSST survey, the massive data volume will make centralized outlier detection compu-
tationally prohibitive. Therefore, scalable and distributed approaches such as FL should be
explored to enable in-situ anomaly detection while preserving data locality.

3. A Brief Tour on Federated Learning
Federated Learning (FL) [McMahan et al. 2017] is a decentralized ML paradigm that enables
model training across multiple clients (that can be computers, VMs, clusters, mobile phones)
without the need to access the complete dataset. This strategy has gained attention, particu-
larly since it avoids the transmission of raw data between participants, avoiding unnecessary
data transfers and maintaining privacy. In FL, only model updates are shared with a central
server [Nair et al. 2022].

FL follows a well-defined and iterative workflow. The training is organized in multi-
ple rounds. At each round, the server defines the type of model to be trained (e.g., a CNN)
and distributes it to the clients with the associated hyperparameters. Each client performs
local training using local data, without sharing the raw data with other clients or with the
server. When the local model is trained, clients send model updates, i.e., metadata associ-
ated with the trained model, such as neural network weights, back to the server. The server
aggregates these updates to generate a new global model using an aggregation strategy. A
widely adopted method is Federated Averaging (FedAvg), in which each client performs mul-
tiple steps of local stochastic gradient descent on its data, and the server computes a weighted
average of the resulting model parameters to update the global model. This updated model is
then broadcast back to the clients to initiate the next communication round.

Besides the hyperparameters of the ML method (e.g., dropout rate, loss), the FL work-
flow also has specific parameters, e.g., the number of rounds T , the total number of clients
K, the fraction C of clients selected to participate in each round, and the batch size B, which
defines the number of training examples processed per round. FL can be categorized into
two classes: Cross-Device and Cross-Silo [Yang et al. 2019]. In the Cross-Device, clients are
typically mobile devices, and the system may scale to millions of participants. In contrast,
Cross-Silo, which is the focus of this paper, involves a smaller number of stable clients, i.e.,
no churn is expected. Several frameworks support the execution of FL workflows, including
NVIDIA FLARE [Roth et al. 2023] and Flower [Beutel et al. 2020]. These frameworks of-
fer integration with popular ML libraries such as Keras, TensorFlow, and PyTorch, enabling
seamless deployment across multiple environments, including cloud, mobile, on-premise,
and edge. In this paper, an extended version of NVIDIA FLARE is used as a framework.

4. Methodology
This section describes the materials and methods employed to evaluate a series of deploy-
ment scenarios, each with specific client–server configurations and data distribution strate-
gies. These experiments aim to quantify the total training of FL workflows and to uncover



trade-offs and operational constraints inherent to executing federated outlier detection tasks
at the scale projected for the LSST.

4.1. FL Framework
All experiments were conducted using an extended version of the NVIDIA FLARE frame-
work [Roth et al. 2023] named FLARE+Prov. FLARE+Prov extends the architecture of the
original FLARE by adding new components to capture provenance data and automatically de-
ploy the server and clients (Figure 2). The FL workflow in FLARE is based on interactions
between FL Clients and a FL Server. The FL Server coordinates the execution of the work-
flow, i.e., it receives local model updates from clients, performs aggregation, and distributes
the updated global model back to clients for another training round. On the other hand, the
FL Clients train the model in situ, consuming their local and private data, and send metadata
regarding the trained model back to the server. For local training, each client can invoke ML
libraries such as PyTorch and TensorFlow.

Figure 2. The architecture of the FLARE+Prov framework.

FLARE was extended into two directions (blue components in Figure 2): (i) prove-
nance management [Herschel et al. 2017] and (ii) automatic deployment. Regarding prove-
nance management, the architecture was extended by adding provenance capture compo-
nents on both clients and the server. The idea follows a similar approach adopted in prior
work [Lopes et al. 2023], where hyperparameters used during each training round, interme-
diate and final performance metrics, and system-level data (e.g., runtime and resource us-
age) are captured and stored in a structured database. This database stores the complete
data derivation path during distributed training, thereby ensuring end-to-end traceability of
model development and reproducibility. Regarding the automatic deployment, AkôFlow
[Ferreira et al. 2024] was integrated into the architecture to create a virtual environment
where the FL workflow executes. AkôFlow instantiates multiple virtual machines (VMs)
in the cloud environment, deploys clients and servers within those VMs, executes the FL
workflow, and monitors resource consumption, such as CPU. The source code will be made
available at https://github.com/UFFeScience/flare_prov.

4.2. Data
The experimental data were obtained from the Dark Energy Survey (DES) Data Release 2
(DR2), an astronomical catalog containing photometric observations for millions of celestial



objects. In this paper, a subset of the catalog was divided into ten fragments, each representing
a different 2× 2 degree region of the sky. Each fragment has approximately 450,000 objects
and is stored in a separate CSV file. These files include positional and photometric attributes
for each object. The attribute coadd object id serves as an identifier for catalog entries.
The attribute ra denotes Right Ascension (RA), specifying the east-west position on the
celestial sphere, while dec indicates Declination (Dec), measuring the angular distance north
or south of the celestial equator.

In the used dataset, photometric measurements are represented in multiple bands,
each corrected for the effects of interstellar dust extinction (i.e., dereddened). Specif-
ically, mag auto g dered denotes the total magnitude in the g-band (green op-
tical); mag auto r dered refers to the total magnitude in the r-band (red opti-
cal); mag auto i dered corresponds to the near-infrared magnitude in the i-band;
mag auto z dered provides the total magnitude in the z-band (far red/near-infrared); and
mag auto y dered indicates the magnitude in the y-band, which is the reddest band in
the optical/near-infrared range. To enrich the input features for the outlier detection process,
we computed a set of colors based on the differences between magnitudes in adjacent photo-
metric bands. Specifically, we derived the following color features: g − r, r − i, and i − z.
These colors are essential for distinguishing variations in the spectral energy distributions of
objects, thereby enhancing the sensitivity of the ML-based outlier detection algorithms.

4.3. Experimental Setup

To investigate the feasibility of applying FL for the problem of astronomical outlier detection,
we designed three types of experiments focusing on different aspects of the FL workflow: (i)
server performance under varying configurations, (ii) the effects of client heterogeneity, and
(iii) the impact of data volume and distribution among clients. Each analysis is described in
detail in the following. Federated outlier detection was conducted in all experiments by ex-
ecuting the K-Means clustering algorithm [MacQueen 1967] in each client. Following local
model training, each client sends its computed centroids and the count of local data samples
used for training to a central server. The server then performs aggregation on the centroids,
using a weighted average based on sample counts, analogous to the FedAvg method.

The first experiment evaluates the performance of various server configurations. The
FL server is deployed on three types of VMs: (i) m7i.xlarge, a general purpose VM with 4
vCPUs, 16 GiB RAM, and a financial cost of US$0.22176 per hour; (ii) c7i.xlarge, a compute
optimized VM with 4 vCPUs, 8 GiB RAM, and a financial cost of US$0.19635 per hour; and
(iii) r7i.xlarge, a memory optimized VM with 4 vCPUs, 32 GiB RAM, and a financial cost of
US$0.29106 per hour. In this experiment, all clients use homogeneous hardware (m7i.xlarge
VMs). Each client receives one fragment of the DES catalog described in Subsection 4.2,
resulting in a total of 10 clients. This controlled setup isolates and evaluates the server’s
impact on FL workflow performance.

The second experiment evaluates the impact of client heterogeneity on the FL training
workflow. The server’s VM type is fixed, while the clients’ computational resources vary.
Both homogeneous and heterogeneous client pools are defined to analyze the performance
implications of these configurations. Each client receives a different fragment of the dataset,
consistent with the previous experiment. This experiment evaluates whether variations in
client resources, such as the number of vCPUs or memory, influence training duration or
convergence behavior. The configurations being evaluated include: (i) 10 m7i.xlarge clients,



(ii) 10 c7i.xlarge VMs, (iii) 10 r7i.xlarge VMs, (iv) 5 m7i.xlarge VMs and 5 c7i.xlarge VMs,
(v) 5 m7i.xlarge VMs and 5 r7i.xlarge VMs, (vi) 5 c7i.xlarge VMs and 5 r7i.xlarge VMs, and
(vii) 3 m7i.xlarge VMs, 3 c7i.xlarge VMs, and 4 r7i.xlarge VMs.

The third experiment evaluates how the distribution of data fragments among clients
affects the FL workflow performance and outcomes. The experiment increases the size of
each data fragment assigned to clients, thereby reducing the total number of clients, and
investigates alternative strategies for merging data into larger fragments. The first strategy
merges two spatially adjacent fragments into a single file for assignment to a client. The
second strategy randomly merges dataset fragments, disregarding spatial distribution, before
assignment. Training performance is evaluated under these allocation strategies to evaluate
whether spatially adjacent fragments within clients enhance or hinder the federated outlier
detection process. The implications for model convergence are also analyzed in both sce-
narios. The experimental environment consisted of one r7i.xlarge VM as the server and 5
r7i.xlarge VMs assigned as clients.

5. Results

This section presents and analyzes the results obtained from the three experiments previously
described. Regarding the first experiment (performance analysis of various server configura-
tions), Figure 3(a) presents the makespan (average of 5 executions), and Figure 3(b) depicts
the financial costs. Analyzing the makespan shows that the choice of server VM type impacts
the performance of the FL workflow. In particular, it can be observed that memory-optimized
and memory-balanced VMs achieve superior performance compared to compute-optimized
VMs, highlighting the role of RAM in determining execution efficiency.

Figure 3. Server Evaluation (a) Makespan (b) Financial Costs

The reason behind this behavior is that the model evaluation step of the FL workflow
affects both the makespan and financial costs. In each round, the FL workflow computes
the silhouette score to evaluate model performance. This procedure requires determining the
average distance from each data point to all other points within the same cluster and those in
the nearest neighboring cluster. Each client performs this memory-intensive procedure, which
is especially demanding for datasets with hundreds of thousands of data points, as analyzed in
this study. VMs with greater memory capacity process these large-scale computations more
efficiently, resulting in improved performance.

The results demonstrate that VMs with larger memory present better performance.
Nevertheless, it is worth noting that the makespan achieved by the r7i.xlarge (memory-



optimized) and m7i.xlarge (memory-balanced) VMs was relatively similar, despite differ-
ences in hardware configurations. From a cost-performance perspective, the m7i.The xlarge
VM is the more advantageous option, as it offers nearly the same level of performance as the
r7i.xlarge but at a lower financial cost. Although the differences in both makespan and cost
may appear small in absolute terms, they become critical when considering the operational
context of the FL workflow for astronomy. Specifically, within the scope of the LSST, new
observational data will be generated every three days over ten years. Consequently, the work-
flow will need to be executed repeatedly, thereby amplifying the cumulative impact of even
small performance and cost differences.

While server memory impacted overall performance, CPU usage was also measured
during training. Figure 4 presents CPU usage for one representative configuration, selected
due to space limitations. This pattern was consistent across all executions. Figure 4 shows
CPU usage for the server and three clients: (i) client 1 shows typical usage, (ii) client 9 shows
intermittent decreases, and (iii) client 10 maintained stable usage throughout training. None
of the clients exceeded an average of 50% CPU usage, indicating that memory is the primary
resource requirement for both clients and the server, rather than CPU.

Figure 4. Server vs. Client CPU Usage

In the second experiment, which evaluates the impact of client heterogeneity on the
FL workflow, Figure 5(a) shows the workflow makespan, and Figure 5(b) presents the asso-
ciated financial costs. The results are consistent with those from the first experiment. Client
pools composed exclusively of r7i.xlarge (memory-optimized) and m7i.xlarge (memory-
balanced) VMs achieved lower makespan and financial cost. On the other hand, client pools
that contain c7i.xlarge (compute-optimized) VMs resulted in increased makespan and cost.
This result is attributed to the memory-intensive nature of the K-Means algorithm executed
on each client, especially when processing large datasets. K-Means requires computation of
the distance between n data points and each of the k centroids during each iteration. The
implementation used in this study generates an n × k distance matrix, which can become
substantial in size. For specific data fragments, approximately 4-5 GB of RAM is needed
solely for storing the distance matrix. This memory constraint is particularly significant for
the clients operating on the c7i.xlarge VM, which is limited to 8 GiB of RAM.

Regarding the third experiment, it addresses two primary research questions: (i)
whether increasing the number of data points assigned to each client for outlier detection im-
proves performance, and (ii) whether merging spatially adjacent fragments facilitates faster
or more stable convergence of the ML model. Figure 6(a) presents the distribution of chunk



Figure 5. Client Evaluation (a) Makespan (b) Financial Costs

sizes processed by each client under three scenarios: the original 10 fragments left unmerged
(Uniform), merging of two spatially adjacent fragments, and randomly merging of fragments.

One can observe that the chunk size in the case of spatially adjacent merging presents
a high degree of variability. This happens because a very high density of objects is found
in some areas of the sky, while others are relatively sparse. As a consequence, although
spatial adjacency can benefit the K-Means (spatially adjacent data points are more likely to
belong to the same cluster, thereby stabilizing centroid updates and reducing the number
of required iterations), the resulting merged fragments can differ significantly in size. For
example, in our experiments, some spatially adjacent fragments contained approximately 1.4
million objects (the largest fragment in Figure 6(a)). On the other hand, under the random
partitioning strategy, the maximum fragment size was approximately 900,000 objects.

Figure 6. Data distribution evaluation (a) Chunk size (b) Makespan

This imbalance has important implications for FL. Specifically, clients assigned to
very large fragments required more time to train their local models compared to clients with
smaller fragments. These slower clients effectively became bottlenecks in the execution, im-
pacting the makespan of the FL workflow. Although we expected that the makespan would
increase when reducing the number of clients from 10 to 5, since each fragment would then
contain roughly double the number of datapoints, Figure 6(b) shows a more nuanced out-



come. In practice, the spatially adjacent strategy took 301% more time than the baseline
configuration (10 clients with smaller fragments as in the first experiment). In comparison,
the random partitioning strategy took 199% more time than the baseline.

These results provide two key insights. First, they demonstrate that even though spa-
tial adjacency is beneficial for K-Means clustering, the size of the dataset, primarily driven
by the density of points within each region, has a greater influence on performance. Sec-
ond, they indicate that the makespan does not grow linearly with the number of data points
processed per client. This implies that increasing fragment sizes must be approached with
caution, carefully balancing the trade-off between spatial adjacency and dataset density. In
other words, partitioning strategies must not only consider whether points are spatially ad-
jacent, but also take into account the densities of objects across different regions to avoid
performance degradation.

6. Related Work

Recent research on FL has focused on addressing challenges in decentralized ML, particu-
larly in contexts that are similar to the one discussed in this paper. An issue in FL is data
heterogeneity, which causes clients to store and process local datasets that differ in size, dis-
tribution, or statistical properties, thereby impacting the global model’s convergence. Some
approaches have been proposed to solve this problem. The Clustered Federated Learning
(CFL) framework [Sattler et al. 2019] dynamically groups clients that present similar local
data distributions, enabling the training of ML models that are fine-tuned to subsets of data
rather than seeking convergence of a global model. FL has been adopted in a plethora of do-
mains to perform tasks such as outlier identification. [Laridi et al. 2024] investigated feder-
ated anomaly detection using autoencoders with non-independent and identically distributed
(non-IID) data, showing that decentralized learning can maintain robustness even under het-
erogeneous conditions. FL has been applied to domains such as finance and cybersecurity.
[Aljunaid 2025] demonstrated its utility for detecting fraudulent financial transactions across
distributed institutions, while [Cui et al. 2022] applied FL to enhance the security of Internet
of Things (IoT) infrastructures against adversarial threats.

In Astronomy, FL has only recently begun to be explored, mainly as a strategy to
overcome the high costs of data transfer. Astronomical surveys generate large-scale datasets,
often reaching petabyte scale, which are infeasible to move between sites (a “site” may denote
a single machine, a cluster, or even a data center). A NASA study demonstrated the use of
FL for training models on distributed datasets located both on the International Space Station
(ISS) and on Earth [Casaletto et al. 2022], thereby evaluating its applicability in space-based
sensing environments. Other approaches have considered the broader systems perspective,
such as the energy efficiency of FL in satellite constellations [Razmi et al. 2024], or the chal-
lenges posed by class imbalance and heterogeneous distributions in aerial and space net-
works [Dong et al. 2024]. Building upon these efforts, this paper extends the discussion of
FL into a novel application: object outlier detection in large-scale astronomical catalogs.
While anomaly detection has been studied in other domains, its application to astronomy in
a federated context remains unexplored.

7. Conclusions

In this paper, we investigate the challenges of using FL for large-scale astronomical catalogs,
with a particular focus on outlier detection using the DES DR2 dataset in preparation for



the forthcoming LSST data volume. We evaluated how different deployment strategies, i.e.,
varying server configurations, client heterogeneity, and data distribution strategies, affect both
makespan and cost when executing FL workflows in a cloud environment. Our study used
the FLARE+Prov framework as an FL framework, which extends NVIDIA FLARE with
provenance management and automated deployment features.

The results bring several insights. First, memory capacity at both servers and clients
plays a more critical role than the number of vCPUs, given the memory-intensive nature
of clustering-based outlier detection executed in the experiments. Configurations using
memory-optimized or memory-balanced VMs outperformed compute-optimized ones. Sec-
ond, clients with less memory became bottlenecks that delayed the aggregation step on the
server, increasing workflow makespan and costs. Finally, the analysis of data distribution
strategies revealed that while spatial adjacency can improve clustering quality, its benefits are
outweighed by the imbalance introduced by variable object densities across the sky regions.
Spatially adjacent fragments often became too large, producing bottlenecks in federated out-
lier detection. On the other hand, random merging achieved better load balance. These
findings evidence that while FL is a promising paradigm for astronomical data analysis, its
deployment requires careful consideration. Beyond the choice of ML algorithms, resource al-
location, workload balancing across clients, and handling uneven data densities are all critical
factors for the practicality of FL, especially at the LSST data volume.

As future work, we plan to extend our analysis to include unsupervised learning meth-
ods such as DBSCAN for clustering, as well as other techniques for outlier detection. It will
also be investigated how to provide adaptive load-balancing, where clients are assigned data
volumes proportional to their available resources, as well as hybrid partitioning strategies
that consider spatial adjacency and object density. Moreover, although we evaluated the FL
workflow in the cloud to prepare for the LSST environment, real-world deployments across
IDACs will introduce new challenges.
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