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Abstract. Scalability analysis of High-Performance Computing applications is
essential, but its process is time-consuming and costly. This work introduces
PaScal Paramount, a new feature of the PaScal Analyzer tool that accelerates
this analysis by estimating the total performance from the execution of a small
fraction of the parallel code. Experiments demonstrated that the approach re-
duces analysis time by up to 89% while maintaining low estimation error and
generating performance patterns faithful to the full execution. The feature offers
an adjustable trade-off between speed and accuracy, proving to be an effective
solution for gaining rapid insights into the behavior of applications, thereby
guiding their optimization process.

1. Introduction

Scalability is a metric that refers to the ability of an application or algorithm to effi-
ciently leverage an increasing number of processors/resources as they become available
[Kumar and Gupta 1994]. With advancements in fields such as artificial intelligence, sci-
entific simulations, and big data, the demand for applications requiring high processing
power has significantly increased [Chen et al. 2021]. In this context, scalability analysis
becomes fundamental when choosing the best architecture, predicting system behavior
under different loads, identifying performance bottlenecks, and guiding both the devel-
opment of new algorithms and the evolution of hardware [Ramachandran et al. 1994].
The advancement of supercomputers, which have already surpassed the petaflops mark,
reinforces the need to understand and model how applications perform in different con-
figurations and architectures, ensuring that the available resources are fully utilized
[Cameron et al. 2005].

Despite its importance, conducting scalability analysis presents significant chal-
lenges. The complex interaction between application characteristics and system archi-
tecture makes it difficult to accurately predict performance at a large scale. Traditional
metrics, such as speedup, indicate trends but do not explain the origin of bottlenecks.
To gain a deeper understanding, it is necessary to quantify the overheads that degrade
scalability, such as workload imbalance and communication latencies—a task that often
requires running the application in various configurations, varying both the input and the
computational resources.



To address this gap and simplify the process of scalability analysis, the
Parallel Scalability Suite (PaScal Suite) was developed. The frame-
work includes two tools, the PaScal Analyzer [da Silva et al. 2022] and the
PaScal Viewer [da Silva et al. 2019]: one for collecting execution data from differ-
ent configurations and another for visualizing and interpreting this data. This approach
aims to offer a more accessible and organized means for researchers and developers to
evaluate the behavior of their parallel applications.

Although the PaScal Analyzer facilitates scalability analysis, this process
can still be quite time-consuming, demanding significant time and resources. In this
work, we propose the PaScal Paramount feature, which uses a technique called
Paramount Iteration [Tavares et al. 2019]. This approach aims to reduce the time
and resources required to obtain a scalability analysis through partial executions, making
the data collection process less costly while delivering accurate estimates.

The results obtained from the implementation of PaScal Paramount demon-
strate its effectiveness and potential. The new approach allowed for a significant reduction
in analysis time and good accuracy in execution/performance estimates. The application
of PaScal Paramount in High-Performance Computing (HPC) scenarios has the po-
tential to aid in analyses by accelerating data collection and overcoming prohibitive time-
consuming scalability analysis.

The remainder of this paper is organized as follows: first, the PaScal
Analyzer and its workflow are presented in Section 2. Section 3 details the PaScal
Paramount workflow, explaining how it integrates with and modifies the existing
workflow. In Section 4, the results obtained with the implementation of PaScal
Paramount are discussed. In Section 5, related works are presented, and finally, Section
6 summarizes the contributions and points to directions for future work.

2. PaScal Analyzer Workflow

The PaScal Analyzer is a tool focused on performance scalability analysis for par-
allel programs written in C/C++ for shared-memory systems, with support for POSIX
Threads and OpenMP. Its workflow is designed to be minimally intrusive while offer-
ing flexibility and precision in collecting execution data [da Silva et al. 2022].

The main innovation of the PaScal Analyzer lies in its minimally intrusive
approach, which results in an overhead of less than 1% on the application’s performance.
Instead of collecting an excessive amount of data, the tool focuses on essential mea-
surements for scalability analysis, such as execution time and energy consumption. This
strategy makes it lighter and easier to use.

The Analyzer’s workflow (Figure 1) begins with the execution of the target
application, using user-defined parameters. The analysis itself starts with the instrumen-
tation of the application’s source code. This instrumentation can be done in two ways:
manually, where the user inserts specific routine calls to delimit the code regions to be
monitored; or automatically, where the tool is responsible for identifying and encapsu-
lating parallel blocks. These approaches rely on the use of a wrapper library to intercept
calls to the underlying parallel APIs (such as OpenMP and POSIX Threads), allowing
for the collection of execution time data with less than 1% overhead.



Figure 1. PaScal Analyzer Workflow.

Source: Adapted from [Gomes 2025].

During the application’s execution, measurements from all threads are transmitted
via UNIX sockets to an active instance of the Analyzer. It then unifies the collected
data, organizes the measurements into a standardized structure, and generates an output
file in JSON format containing information such as the total execution time and the time
per parallel region. This file can be visualized with the Viewer, the graphical tool that
allows for an intuitive interpretation of the data and the identification of scalability bottle-
necks in specific code regions.

3. PaScal Analyzer with Paramount Iteration
The optimization and performance evaluation of HPC applications often demand full exe-
cutions, which can be time-consuming and incur high costs, for instance, in cloud environ-
ments. To mitigate this problem, [Tavares et al. 2019] proposed the Paramount Iteration
technique.

3.1. Paramount Iteration

A technique aimed at optimizing the performance analysis of HPC applications. Its
premise is to perform a partial execution of the application, analyzing the behavior of
the initial loops to infer the performance and scalability of the program as a whole. The
technique is based on the observation that most parallel codes are iterative and tend to
behave predictably after an initial warm-up period [Yang et al. 2005]. By measuring the
execution time of a portion of the main loop’s iterations, it is possible to efficiently esti-
mate the performance, scalability, and cost of the application in different configurations,
without the need for full executions [Tavares et al. 2019].

However, it is important to note that the effectiveness of Paramount
Iteration depends on the nature of the application. It is best suited for codes with



deterministic loops that maintain predictable behavior throughout the execution. Ap-
plications whose loops are non-deterministic, dependent on random variables, or that
significantly change their behavior over time may yield unsatisfactory estimation results
[Tavares et al. 2019].

3.2. PaScal Paramount
To leverage the benefits of the Paramount Iteration technique, a new feature
called PaScal Paramount was implemented in the PaScal Analyzer. The goal
is to allow the user to obtain scalability analysis data in an accelerated manner, avoiding
the long wait for full executions, especially for complex applications.

The feature is triggered through a call to the
pascal paramount(id,paramount,total it) routine. This function is
used to manually instrument the source code in the user’s region of interest. The
new routine leverages the existing time measurement routines in the Analyzer,
pascal start(id) and pascal stop(id), which were slightly modified to
collect and store the time of each iteration per thread.

The operational flow of PaScal Paramount can be seen in the flowchart in
Figure 2:

1. Application Start: The application begins to execute, and the initial time is
recorded.

2. Instrumentation: In the region of interest, the call to the
pascal paramount(id, paramount, total it) function initi-
ates the partial analysis routine. The user specifies the region id, the number of
iterations to be analyzed (paramount), and the total number of loop iterations
(total it).

3. Partial Measurement: The tool checks if the number of executed iterations is
less than the defined paramount value. If so, measurement is performed for
each iteration of the loop. Start and end times are collected per thread, and this
data is stored for the subsequent estimation. Otherwise, the tool enters estimation
mode.

4. Estimation and Finalization: When the number of iterations reaches the
paramount value, the application stops the measurement. Based on the col-
lected times, the PaScal Analyzer estimates the time for the remaining itera-
tions. Initially, this estimation was done using the average of the times, but it was
adjusted to use the median to mitigate the impact of cache misses and other initial
warm-up effects. The application is then prematurely terminated.

The implementation of PaScal Paramount uses C++ atomic variables to en-
sure data consistency and avoid race conditions, a critical concern when multiple threads
concurrently access and manipulate shared counters. This lock-free approach is more ef-
ficient than traditional locking mechanisms, such as mutexes, as it avoids synchronization
overhead. These atomic operations are crucial for safely managing the count of executed
iterations and for coordinating the application’s premature termination, ensuring it only
exits after all threads have completed their measurement and estimation phases. The fi-
nal result, which includes both the partial measurements and the estimate, is consolidated
into a JSON output file, providing a complete scalability analysis in a fraction of the total
execution time.



Figure 2. PaScal Paramount Workflow

4. Experiments and Results

In this section, we present the results of the tests conducted to validate the implementation
of the approach presented in Subsection 3.2. The experiments were performed on a com-
putational node in the amd-512 partition of the supercomputer at the Federal University
of Rio Grande do Norte. This node is equipped with 2 AMD EPYC 7713 2.0GHz
CPUs, featuring a total of 128 processing cores and 512 GB of RAM.

For the experiments, we used a matrix multiplication algorithm. As inputs, we
considered matrix orders of 256, 512, 1024, 2048, and 4096, as well as paramount
rates of 10%, 20%, 37%, and 50% of the iterations.

In the execution with the PaScal Analyzer, we defined combinations of 128,
64, 32, 16, 8, 4, 2, and 1 processing cores with the aforementioned inputs. For better vi-
sualization of the graphs, we chose not to perform tests with all variations of the available
core counts. The Analyzer was configured to repeat each combination of core count
and input (problem size) 10 times. In the main loop, where the parallelism occurs, we
used the pascal start() and pascal stop() routines to collect data from the re-



(a) Full execution (b) Execution with 50% paramount

(c) Execution with 37% paramount (d) Execution with 20% paramount

(e) Execution with 10% paramount

Figure 3. Efficiency diagram of the matrix multiplication algorithm. The number
of cores varies on the vertical axis. The problem size varies on the hori-
zontal axis.

gion during the full execution of the algorithm. To test pascal paramount(), it was
used in place of pascal start(), where it only fully executes the defined portion of
iterations and estimates the remainder.

With the help of the PaScal Viewer, diagrams were generated to visualize the
collected data. Figure 3 displays the efficiency of the matrix multiplication algorithm. In
the full execution (Figure 3a), a characteristic performance pattern is observed: efficiency
is high for larger problems (i3 to i5) with few cores but degrades sharply when many
cores (128) are applied to small problems (i1, i2), highlighting the impact of communi-
cation overhead. When comparing with the partial executions, it is noticeable that the
results estimated by PaScal Paramount reproduce this behavior with high fidelity.
In particular, the executions with paramount rates of 20% (Figure 3d), 37% (Figure
3c), and 50% (Figure 3b) generate diagrams that are very similar to the full execution, to



(a) Full execution (b) Execution with 50% paramount

(c) Execution with 37% paramount (d) Execution with 20% paramount

(e) Execution with 10% paramount

Figure 4. Scalability diagram of the matrix multiplication algorithm. The number
of cores varies on the vertical axis. The problem size varies on the hori-
zontal axis.

the point that a user could analyze the application based on these executions, validating
the estimate’s accuracy in capturing performance nuances.

Figure 4, which illustrates the application’s scalability, reinforces this conclusion.
Again, the patterns observed in the partial executions (Figures 4b-4e) are consistent with
that of the full execution (Figure 4a), demonstrating that the method is equally effec-
tive for predicting how the application’s performance behaves with the addition of more
computational resources. This confirms that the approach is capable of capturing the ap-
plication’s scalability trend, allowing the developer to identify bottlenecks and optimal
performance points without needing to execute the code in its entirety.

Figure 5 presents heatmaps of the absolute relative error, comparing the total ex-
ecution time estimated by PaScal Paramount with the time from the full execution.
The objective of this analysis is to quantify the precision of the estimation approach. In



(a) Paramount 50% (b) Paramount 37%

(c) Paramount 20% (d) Paramount 10%

Figure 5. Heatmaps of the absolute relative error of the executions for each input
with pascal paramount compared to the full executions. The number of
cores varies on the vertical axis. The inputs vary on the horizontal axis.

general, a predominance of dark blue is observed in the graphs, which indicates a very low
relative error in most of the tested scenarios. This validates the premise that the estimation
based on the median of the initial iterations is, in most cases, quite accurate. However, a
detailed analysis reveals a clear trade-off between the fraction of executed iterations and
the robustness of the estimate.

The 10% paramount rate configuration (Figure 5d) is a good example of this.
Although many of its estimates are reasonable, it shows an anomalous error of 719.19%
for the configuration with 128 cores and the fourth input. This single extreme point raises
the mean error of this configuration to 25.81%, masking the fact that the typical error is
considerably lower (8.03%). This demonstrates that, while being the fastest approach,
it carries a significant risk of producing inaccurate estimates in computationally sensi-
tive scenarios, possibly due to system warm-up phases that do not reflect the applica-
tion’s stable behavior. A similar, though less extreme, phenomenon occurs in the 50%
paramount configuration (Figure 5a), which, despite being mostly accurate, also regis-
ters an outlier of 129.26%.

In contrast, the 37% paramount (Figure 5b) and 20% paramount (Figure
5c) configurations demonstrate remarkable stability. Their mean errors were 5.44% and
4.78%, respectively, and, more importantly, they do not exhibit the extreme outliers seen
in the other configurations. This suggests that the fraction of execution is already suffi-



(a) Paramount 50% (b) Paramount 37%

(c) Paramount 20% (d) Paramount 10%

Figure 6. Heatmaps of the time-saving percentages of the executions for each
input with pascal paramount compared to the full executions. The number
of cores varies on the vertical axis. The paramount rate varies on the hori-
zontal axis.

cient to capture the representative behavior of the application, thus ensuring greater relia-
bility and predictability in the results.

In summary, Figure 5 validates the overall accuracy of PaScal Paramount
but also serves as a guide for the user. The 10% rate is viable for very fast exploratory
analyses, where the general trend is more important than numerical precision and the risk
of a point error is acceptable. For most use cases that require high confidence in the
data, the 20% and 37% rates prove to be the most robust choices, offering an effective
balance between a drastic reduction in analysis time and high, consistent accuracy in the
estimates.

Figure 6, in turn, quantifies the main benefit of PaScal Paramount: the time
savings in performing the scalability analysis. The results demonstrate the percentage of
time saved by the partial executions compared to the full execution, validating the main
proposition of the approach.

The analysis shows that the smaller the fraction of executed iterations
(paramount rate), the greater the time savings. The savings are substantial in all sce-
narios, starting with an average of 45-58% for the 50% paramount rate (Figure 6a) and



scaling progressively. With the 37% rate (Figure 6b), the savings already reach the 60-
75% range. The benefit becomes even more expressive in the 20% (Figure 6c) and 10%
(Figure 6d) configurations, where the time savings consolidate between 75-85% and can
even exceed 90%, respectively.

However, the choice of the ideal paramount rate involves a cost-benefit analysis,
weighing this time gain against numerical accuracy (Figure 5) and the visual fidelity of
the performance patterns (Figures 3 and 4). The 10% rate, for example, is ideal for a quick
exploratory analysis. It offers the maximum acceleration, with time savings approaching
90%, allowing for agile validation of code changes. However, as seen in Figure 5d, this
speed comes with a higher risk of numerical imprecision, including the possibility of
extreme outliers.

On the other hand, where maximum confidence and visual fidelity are crucial,
the 37% and 50% rates represent the most robust choice. As demonstrated in Figures 3
and 4, these are the rates that produce the performance diagrams most faithful to the full
execution. The user still benefits from expressive time savings (in the 40-75% range),
with the added security of a more numerically stable and visually representative estimate.

Nevertheless, the joint analysis of the results points to the 20% rate as the optimal
balance point for most use cases for the analyzed application. This configuration com-
bines massive time savings, close to 80%, approaching the agility of the 10% rate, while
maintaining excellent visual fidelity and, crucially, the numerical stability of the higher
rates. In the tests performed, the 20% rate showed the lowest mean error and an absence
of outliers, making it the ideal rate for the analysis of the tested application.

Thus, the results not only validate the acceleration provided by PaScal
Paramount but also demonstrate its flexibility, allowing the user to adjust the tool ac-
cording to their specific needs, whether it be maximum speed for exploration or maximum
fidelity in the analysis of results.

5. Related Work
Performance prediction and analysis of parallel applications are classic challenges in
high-performance computing. Traditional approaches often fall into two extremes.
On one side, there are abstract analytical models, which are fast but fail to cap-
ture complex system details; on the other, there are detailed simulation techniques,
which are accurate but extremely costly in time and resources, as pointed out by
[Adve and Sakellariou 2000]. The search for methods that combine accuracy and low
cost is, therefore, an active field of research.

A fundamental premise that has enabled significant advancements in this area is
the observation that most scientific applications are iterative in nature. [Yang et al. 2005]
demonstrated that, after a brief initialization period, the performance behavior of a parallel
program tends to stabilize. Based on this, they proposed that short partial executions could
be used to predict the performance of the full execution with high accuracy, eliminating
the need for complex program modeling and drastically reducing the cost of analysis.

Following this principle, several approaches have emerged. [Zhang et al. 2017],
for example, presented a compiler-based technique (LLVM) to statically analyze itera-
tion frequency and combine it with instruction measurements to predict performance on



large-scale systems from a single-node execution. More directly and in line with our
work, [Tavares et al. 2019] formalized the partial execution technique under the name
Paramount Iteration. They successfully applied it to predict the performance of
cloud applications, demonstrating its utility for estimating costs and choosing hardware
configurations without the need for full and expensive executions.

The present work fits into this context, utilizing the foundations estab-
lished by [Yang et al. 2005] and the Paramount Iteration technique from
[Tavares et al. 2019]. Our contribution, however, is distinguished by integrating
this technique directly into an existing and validated scalability analysis suite, the
PaScal Suite. The foundation for our implementation is the PaScal Analyzer
[da Silva et al. 2022], a tool designed to collect performance data with minimal intrusion
on the target code. While previous works focused on predicting a final performance value,
our goal with PaScal Paramount is to accelerate the scalability analysis workflow.
That is, instead of just estimating the total time, our tool quickly generates the same scal-
ability and efficiency diagrams as a full execution, bridging the gap between numerical
prediction and practical, visual performance analysis.

6. Conclusion

Scalability analysis is a pillar in the development of HPC applications, yet its cost in time
and computational resources represents a significant obstacle for researchers and develop-
ers. This work addressed this challenge with the introduction of PaScal Paramount,
a new feature integrated into the PaScal Analyzer tool. By implementing the
Paramount Iteration technique, the tool drastically accelerates the collection of
performance data by estimating the application’s full behavior from the execution of a
small fraction of its iterations.

The experimental results demonstrated the effectiveness and robustness of the ap-
proach. PaScal Paramount achieved a reduction in analysis time of up to 89% for
larger-scale problems, an expressive gain that makes experimentation more agile. More
importantly, this acceleration was achieved while maintaining a generally low estimation
error and, crucially, preserving the fidelity of the visual patterns of efficiency and scala-
bility, especially with paramount rates of 37% and 50%. The analysis revealed a clear
and useful trade-off, allowing the user to opt for maximum speed for exploratory analyses
(lower rates) or for maximum fidelity to the application’s pattern (higher rates).

The main contribution of this research is, therefore, a flexible solution that makes
scalability analysis more practical and accessible. By providing quick and reliable in-
sights into the code’s behavior, PaScal Paramount empowers users to understand
and guide the optimization process of their applications more efficiently, reducing the
cycle between identifying a bottleneck and its solution.

For future work, we plan to develop a more advanced estimation model to bet-
ter handle unexpected errors. Furthermore, researching ways to automate the choice of
the ideal paramount rate, based on an initial analysis of the application, is a promising
direction for further enhancing this tool.



7. Acknowledgments
This work was supported by the Conselho Nacional de Desenvolvimento Cientı́fico e Tec-
nológico (CNPq) and the Programa de Mestrado e Doutorado Acadêmico para Inovação
(MAI/DAI). We also acknowledge the computing support from the Núcleo de Processa-
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