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Abstract. While GPU-equipped nodes dominate compute-intensive operations
in high-performance computing, the role of host processors in overall system
performance remains underexplored, particularly for hardware procurement de-
cisions in resource-constrained environments. This study investigates the influ-
ence of the CPU microarchitecture on application performance using an iden-
tical modern GPU. We compare two systems with the same NVIDIA RTX4090
GPU but different CPUs: a 2016 Intel Xeon E5-2620v4 and a 2023 Intel Core
i9-14900KF. We assess CPU impact on compute-bound workloads using dense
Cholesky and LU factorizations from the Chameleon library assisted by the
StarPU runtime system. Our findings demonstrate that: (1) CPU influence is
negligible with modern GPU accelerators, even if some operations lack GPU
implementations; (2) CPU-handled operations are sufficiently small to attenuate
performance differences between processor generations, and (3) modern GPUs
perform effectively in legacy hardware with minimal penalties. These results
suggest selective GPU upgrades offer cost-effective performance improvements
without complete system overhauls, providing valuable insights for academic
and research institution procurement strategies.

1. Introduction

Heterogeneous architectures, with GPU-equipped nodes, are commonplace in today’s
clusters and are widely adopted in High-Performance Computing (HPC) environments
[Dongarra and Keyes 2024]]. Thanks to these accelerators’ massive throughput, way be-
yond that attainable by general CPU cores, all vectorized HPC applications profit essen-
tialy from them. GPU accelerators have become essential for dense linear algebra oper-
ations, such as LU and Cholesky factorizations [Tomov et al. 2010]], but extend to many
other applications, including fast matrix multiplication kernels supporting training and
inference for artificial intelligence applications [Talib et al. 2021]]. For example, dense
linear algebra libraries such as Chameleon [Agullo et al. 2010] provide kernels that ex-
ploit the performance these architectures can deliver. Consequently, there is a widespread
focus on GPUs for compute-bound applications in HPC. Nonetheless, the CPU still has
its place, as even if all the computation happens on the accelerators, at the very least,
communication and I/O operations still pass through the CPU.

The reality of heterogeneous computing involves complex interactions, in-
cluding data movement between the host and GPU, the PCle bandwidth limita-
tions, and numerous other system-level considerations that impact overall through-
put. From the software perspective, the inherent task scheduling complexity



in effectively combining PCle-based CPU and GPU power has become an is-
sue to be studied [Tan etal. 2021], primarily addressed through task-oriented pro-
gramming paradigms following the Sequential Task Flow (STF) [Peietal. 2022
paradigm. Several sophisticated runtime systems have emerged to tackle these chal-
lenges, including StarPU [Augonnet et al. 2009], PARSEC [Bosilca et al. 2013]], Specx
[Cardosi and Bramas 2025]], TaskTorrent [[Cambier et al. 2020], OpenMP Target Task
[Valero-Lara et al. 2021]], and CHAMELEON [Klinkenberg et al. 2020]. They employ
clever performance modeling techniques that account for resource (CPU and GPU) ca-
pabilities and computation and host-GPU communication overhead. The goal is to make
good decisions about where to schedule ready tasks. This sophisticated orchestration re-
veals that the CPU’s role extends far beyond simple data management, as it actively par-
ticipates in the critical scheduling decisions that can dramatically influence the efficiency
of GPU-accelerated computations.

System administrators regularly synchronize GPU-enabled host configurations
with the latest GPU release, upgrading entire systems to match new GPU generations.
However, GPU releases are more frequent nowadays than in the past, and one wonders
if it is necessary to update the whole system infrastructure to host a more modern GPU,
particularly given the substantial costs involved in complete system refreshes. One needs,
therefore, to understand how a modern GPU behaves when deployed in older hardware
environments, including legacy CPUs, older PCle generations, and previous-generation
system architectures, specifically from the performance perspective. Such understanding
might affect hardware procurement decisions, especially in budget-constrained environ-
ments where updating only the GPU might be a viable and cost-effective path.

This article investigates the influence of different CPUs’ microarchitectures on ap-
plication performance when using recent identical GPUs. We leverage the tiled and task-
based dense Cholesky and LU factorization of the Chameleon library [Agullo et al. 2010]
running on top of the StarPU runtime [[Augonnet et al. 2009] as the primary benchmark.
We select it because of its compute-bound characteristic and presence in numerous HPC
applications. We carried out the comparison with an NVIDIA RTX4090 GPU, and two
CPUs: a 2016 Intel Xeon E5-2620v4, and a 2023 Intel Core 19-14900KF processor. The
main contributions of this work include: (1) the CPU influence is negligible when working
with such accelerator, even if some of the operations have no implementation for GPU;
(2) the amount of CPU operations is small, attenuating performance differences; and (3)
modern GPUs in old hardware bring acceptable performance penalties subject to the con-
figurations used in our experimentation. Combined, these results points to selective GPU
as a cost-effective performance improvements without complete system overhauls.

Section [2] presents core concepts regarding task-based applications and tracing.
Section (3| highlights related work and a discussion motivating our work. Section #{ dis-
cusses the experimental methodology used in this work, with details about the applica-
tions, tools, and systems used in the experiments. Lastly, Section [5| shows and discusses
the experimental results, while Section [ concludes this work. A publicly available com-
paniorﬂ includes the paper’s data and visualization code to enable experimental reprodu-
bilicity tight to this work.
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2. Background

Our experimental work combines the StarPU runtime system and the Chameleon frame-
work. A summary of their utilisation comes in the following subsections.

2.1. StarPU

StarPU [?] is a library for task-based programming on heterogeneous architectures. The
task-based paradigm allows its users to write code as tasks, which are built by combining
small routines and their data dependencies. When working with parallel dense linear alge-
bra, these tasks correspond to subroutines that work independently over different parts of
the input data. With these tasks, StarPU creates, at runtime, a direct acyclic graph describ-
ing the order in which these tasks can be executed in parallel on the available hardware,
if the dependencies allow it. The StarPU library also provides a runtime scheduler that
distributes the available tasks on the hardware. By registering the time taken to execute its
tasks, StarPU can create performance models that describe the behavior of the employed
cores. StarPU’s scheduling policies (such as the dmdas adopted in this work) use these
models to estimate task completion time.

2.2. Chameleon

Chameleon [Agullo et al. 2010] is a framework that implements dense linear algebra rou-
tines for heterogeneous architectures in C, supporting real and complex arithmetic in sin-
gle and double precision. Since its code is written for heterogeneous architectures, when
executed with a runtime system such as StarPU, the Chameleon framework provides spe-
cific implementations aimed at the specificities of the adopted underlying hardware. For
example, tasks might use CUDA to run on GPU devices, or regular C code to run on CPU
cores. Other than the dense linear algebra operations, the framework also provides test
binaries to assert its algorithms’ correctness and extract performance metrics such as the
operations GFLOPS and the execution time. This study employs these test binaries to
measure the performance when comparing the two different setups available.

3. Related Work

Research specifically evaluating modern GPUs deployed in older CPU configurations re-
mains notably scarce in the literature. Most GPU performance studies deliberately pair
accelerators with contemporary CPUs to avoid introducing bottlenecks, leaving system
administrators without adequate guidance for evaluating selective hardware upgrades in
resource-constrained environments.

A relatively recent work [Li et al. 2019] evaluates how modern GPU intercon-
nect technologies impact the performance of multi-GPU applications. The paper pro-
vides a comprehensive evaluation of five key interconnect types (PCle, NVLink, NV-SLI,
NVSwitch, and GPUDirect) across high-end server and supercomputing platforms. Other
similar and more recent investigations focus on memory bandwidth [Mishra et al. 2024],
and GPU scalability [Tan et al. 2021]]. Another investigaton [Xi1ao et al. 2018|] considers
that CPU influence is effectively underevaluated for Deep Learning (DL) jobs in HPC
clusters, providing valuable insights into CPU resource allocation. The work focuses
on cluster-level job scheduling and resource allocation across multiple DL jobs running
simultaneously on a GPU cluster, treating individual applications as black boxes that com-
pete for CPU resources. In contrast, our study examines the intra-application performance



impact of host configuration within a single dense linear algebra application. StarPU-
specific investigations on the matter of questioning if an host upgrade is necessary when a
new GPU appears also remain scarse. Recently, a novel algorithm [Gonthier et al. 2022
tackles the problem of memory-aware scheduling of tasks sharing data on multiple GPUs.
More generally, many runtime systems employ scheduling heuristics that considers host-
GPU transfer cost [?], and partitioning schemes [Navarro et al. 2014]], pointing to the
importance of alignment between host and GPU configuration.

Although the PCIe and communication hiding techniques play a clear role on the
overall GPU performance, the analysis of the related work points to a general understand-
ing that a powerful GPU requires an adequate host configuration. However, it is clear by
the scarcity of investigations on this sense that one can still wonder if modern runtime
systems are still capable to exploit maximum GPU performance in an relatively old host
configuration. As most of the previous work are purely GPU-centric, our work differs
because we focus on the influence of the host configuration when employing StarPU to
schedule tasks in CPU cores and GPU for a compute-bound workload.

4. Methods and Materials

We first describe the hardware and software configuration adopted in this work. We then
detail our foundational performance-impacting studies that drive our methodological ef-
fort to carry out the main goal described in this article. These studies include: (1) runtime
system calibration, (2) the effect of heterogeneous cores modeling in the 19 processor; (3)
our baseline CPU-only measurements to demonstrate the performance gap between the
studied processors; (4) the evaluation whether we should dedicate or not a single CPU
core to handle exclusively CUDA operations. These studies then allowed us to define the
parameters that allow StarPU to extract all the performance it can from our experiments,
described at the end of this section.

4.1. Hardware & Software configuration

We employ four nodes of the tupi partition of the PCAD environment at INF/UFRGS
in our experiments. Table [I] specifies the hardware for each of them: tupi[1-2] shares the
same configuration, equipped with a 8-core Xeon Broadwell processor (2.1Ghz); tupi[3-
4] also shares the same configuration, being equipped with a modern 19 Skylake processor
with 8 P-cores (3.2Ghz), and 16 E-cores (2.4Ghz). We chose to test in these different
hardware specifically because of the different CPU models. All four nodes have each
a GeForce RTX4090 connected in the host throught the PCIe 3.0 (Xeon) and 4.0 (i9).
We adopt the Spack package manager [[Gamblin et al. 2015] to control our software stack
and make reproducible the software environment in a Debian 12 host. We set Spack to
compile all software for each CPU’s own microarchitecture: Broadwell for the Xeon, and
Skylake for the 19. We used the StarPU runtime system on commit 14 6ce 9d8 combined
with the Chameleon library on commit 3¢958439. We employ the dmdas schedul-
ing policy of StarPU. It schedules tasks where their termination time will be minimal
according to performance models created on previous executions, but also considering
the data transfer time, the priority and the state (whether ready or not) of the available
tasks [StarPU Project 2015]]. The nodes had CUDA 12.3 and the NVIDIA driver version
545.23.08 for tupi [1-2] and CUDA 12.4 and the the NVIDIA driver version 550.54.15
for tupi [3-4]. We control the typical experimental parameters such as CPU frequency



and governor, GPU frequency, Hyper-threading and Turboboost to reduce variability in
our experiments. For instance, we kept disabled the Hyper-threading technology since it
is known to degrade the performance on compute-bound applications, which is the case
for the selected parallel dense linear algebra applications.

Table 1. Hardware specification of the machines used for the experiments

Name CPU RAM PCI GPU

tupi[1-2] Xeon E5-2620v4 2.1Ghz 256GB DDR4 PCle3.0 x16 RTX4090
tupi[3-4] Corei9-14900KF 3.2Ghz 128GB DDRS5 PCle4.0 x16 RTX4090

4.2. Foundational performance-impacting studies

Combining Chameleon’s implementation for dense linear algebra routines with StarPU’s
runtime system, it is possible to run a series of operations on the available hardware to
properly compare their performances. However, to obtain all the computing power these
tools can provide, one must first tune their parameters to the available machines. Our
studies lead then to a proper design of experiments. They are detailed as follows.

Runtime system calibration: tuning the StarPU models for our experiments. Since
the adopted dmdas scheduling policy requires a performance model for each kernel,
it is important to take their accuracy into account. Every time a kernel is executed,
the runtime system stores its execution time and the hardware where it was ran, and
then updates an average execution time for this specific configuration. StarPU consid-
ers that a performance model is calibrated when the difference between the last exe-
cution time and its configuration previous average is under a threshold value, set by
the STARPU_HISTORY_MAX_ERROR environment variable. From that point and on,
StarPU considers models to be calibrated and no longer update them unless another mea-
surement surpasses the threshold cited beforehand. By default, StarPU creates a single
model for each CPU; however, it also implements an option to consider each core sepa-
rately in order to explore heterogeneous CPU cores.

We demonstrate the calibration effort when computing a single precision LU fac-
torization on a matrix of order 32k. All of the kernels involved (sgemm, splgsy, strsm
and sgetrf_nopiv) were fully calibrated according to the default threshold of 50%. Inves-
tigating further this issue, we set different threshold values, ranging from 10% to 50%, to
check its influence on the resulting models. Figure |l{depicts the resulting average times
(in the Y-axis) as a function of each model (the facets) and calibration thresholds (in the
X-axis), both for the Xeon (blue color) and 19 (red color) CPUs. Despite our concerns
to have a fitting performance model for each task with a higher calibration threshold, the
results demonstrate the impact of this parameter is negligible. The Figure [I] also shows
that the sgemm and strsm create three distinguishible clusters: one for the Xeon cores and
two for the 19 performance and efficient cores. This behavior is expected as the 19 has
P and E-cores with different compute capabilities. For example, considering the sgemm
kernel, the 19’s E-cores demonstrate an average execution time for the sgemm operation
of about 60000us, while the P-cores of this same processor runs the same operation at
about a third, around 20000us. What is surprising is that the models for P and E-cores do



not differ so much when computing the splgsy kernel. Although ommited from this figure
to allow for a proper Y-scale, all GPU models displayed a similar behavior.
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Figure 1. Average execution time as a function of calibration thresholds (LU).

Per-core performance model in the i9 processor: effects on makespan. Since we
employ the 19 processor with its heterogeneous CPU cores, it is necessary to compare
application performance when dealing with the StarPU’s capability to create a per-core
performance model. Before illustrating the effects on the makespan on the usage of per-
core performance models, we carried out a traced execution to collect the duration and
core placement for every single dgemm operation. By using these execution’s traces,
Figure [2] presents a recreation of each core’s model, depicting the dgemm performance
(average execution time in ms) as a function of the CPU core. In the i9 processor, core
identifiers from CPUQ to CPUG6 are P-cores, thereby with a smaller average execution time
(=50ms), while cores from CPU7 to CPU22 are E-cores, with a larger average execution
time (=115ms) for the dgemm operation. Note that one P-core is absent because it was
dedicated to handle CUDA operations. This result clearly confirms that there is indeed a
significant difference between the P-cores and the E-cores performance, matching StarPU
calibrated performance models. One should then expect these per-core models would
provide a better overall application makespan.

Using the same traces, we then compare the overall makespan execution time
of the whole application to assess the impact of per-core performance models. Figure
3] shows the average execution time (in the Y-axis) as a function of the block size (in
the X-axis), the two applications (facets), and the usage an homogeneous single model
(blue color) and heterogeneous per-core models (red color). Even though the models
are completely different for each configuration, as we observed previously, the result-
ing makespans when comparing the two colors for each block size are very similar for
block sizes 512 and 1024, with a difference for the larger block size (2048), where the
per-core models provide indeed a small advantage. However, when comparing with the
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Figure 2. dgemm’s average execution time on each core.

performance with different block sizes, it is visible that the one who profits from the
heterogeneous models has the worst performance between the studied values.
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Figure 3. Comparing homogeneous and heterogeneous models.

Despite the fact that we indeed observe different performances for dgemm when
comparing P and E-cores of the 19 processor (see Figure [2)), we were unable to verify an
actual effect on overall application makespan (see Figure [3) for any block size. Regard-
less of our efforts, we were unable to determine precisely the reason why the per-core
models cannot provide a better overall makespan for smaller block sizes. We leave this
investigation as future work, with the understanding that performance is dominated more
by scheduling decisions and load balancing than by per-core performance. Because of
such reasons, we decided to adopt homogeneous performance models for both 19 and
Xeon processors.

CPU performance comparison between i9 and Xeon: baseline definition. We deter-
mine a baseline for this study, effectively quantifying the CPU performance differences
between i9 and Xeon. Figure ] shows the average execution time (in the Y-axis), along
with the standard deviation metric, as a function of the application (facets) and differ-
ent block sizes (in the X-axis) and processors (colors). As expected, largely because of



the higher CPU base frequency, the 19 is significantly faster than the Xeon. The appli-
cation execution takes aproximately half of the time to finish in the 19 compared against
the Xeon. Regarding the block size, the results demonstrate that for both of the proces-
sors, the optimal block size is somewhere around 1000 for a single precision input. This
foundational results indicates clearly that there is an enourmous performance difference
between the two processors when running without a GPU accelerator.
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Figure 4. CPU-only execution on the i9 and Xeon processors.

Dedicated CPU-core to handle CUDA operations: assess performance. Finally, when
working with CUDA, StarPU allows the user to determine which CPU core will perform
the CUDA operations (i.e. the data transfers from the CPU to the GPU) and if it will
work exclusively or not on these instructions. Without dedicating a CPU-core for CUDA
operations, the same core is subject to receive its share of tasks to compute. This possibil-
ity in the StarPU configuration added a new variation to our GPU experiments, either to
dedicate a CPU core for CUDA (exclusive thread) or not. Figure [5|depicts the results on
this matter. The figure shows the average execution time (Y-axis) as a function of the ap-
plication (top and bottow facet rows), the block size (X-axis) for the Xeon processor. The
color differentiates whether there is a CUDA exclusive thread (red color) or not (blue).
The results indicate that dedicating a CPU core to manage a CUDA resource improves
performance.

4.3. The final Design of Experiments (DoE)

Our design of experiments have the following factors and levels: (1) application, LU
and Cholesky factorization; (2) floating-point precision, single and double; (3) input size,
square matrices of orders 32768 and 100000; (4) a diverse set of block sizes; (5) the
amount of CPU and GPU workers, as one choice for each type of machine (Xeon with
8-cores, and 19 with 8 P-cores and 16 E-cores). All the experiments dedicated one thread
exclusively to the CUDA operations. With the Chameleon performance-oriented binaries,
we repeat each experimental combination six times on a random fixed order to scatter the
execution of same configuration runs. We finally remove the worst execution to mitigate
the known effects of StarPU’s calibration mechanism.
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Figure 5. Performance as a function of an exclusive CPU-core for CUDA calls.

5. Results

When comparing the optimal StarPU’s configuration, Figure [f] shows that the difference
between the two CPU’s performance shrinks as we approach Chameleon’s optimal block
size. This result can also be reinforced by checking the performance models: looking at
the single precision LU factorization on the Xeon CPU, for example, even if the splgsy and
the sgetrf kernels are only implemented on the CPU, ~90% of the kernels are executed
on the GPU; on the sgemm, the most executed kernel, the GPU is responsible for ~99%
of the computations. These results show that as long as the CPU is fast enough to control
the data transfers and the task’s scheduling, the GPU takes care of the largest part of the
computation work. Furthermore, one can see the variability growth on the 19 when its
block size surpasses its optimal size. Furthermore, looking past the optimal block size on
the 19, one can see that the performance gap between the P-cores and E-cores show up as
a progressive variability.
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Figure 6. Experiments employing both CPU and GPU.

Figure [/| shows a closer look at the execution times on single precision for dif-
ferent block sizes. Even though the 19 performs better on every configuration, we would



like to discuss their behavior with different block sizes: this figure shows that setting an
inadequate value for this parameter is enough for the 19 to perform worse than the Xeon:
for instance, the Xeon with blocks of size 1024 outperforms the 19 with blocks of size
800, highlighting the importance of a proper configuration for each individual CPU.
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Figure 7. Closer look at the impact of the block size between CPUs.

Even if the machines performance seems to converge, the aforementioned experi-
ments had smaller matrices which did not fully explore the GPU’s capacity. To maximize
GPU performance, we also compare matrices of order 100k, using almost 90% of the
GeForce RTX 4090 available memory. Figure (8| indicates that as we approach the opti-
mal block size the gap in performance between processors is attenuated, to the point of
becoming statistically equal in some cases.
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Figure 8. Experiments with matrices of order 100k to occupy as much of the
GPU’s memory as possible.

The fastest configurations found in this study were obtained by having a CUDA
exclusive thread with block sizes of 2048 (for single precision) and 1024 (for double
precision), with the 19 performing ~20% faster than the Xeon, except for the double pre-
cision Cholesky factorization, when the gap dropped to ~13%. Additionally, the smallest



difference with the same configuration was found with matrices of order 100k on the sin-
gle precision Cholesky factorization. In this case, while the Xeon took 11.3 seconds, the
19 finished its computation in 10.8 seconds, only 5% faster.

6. Conclusion

In this study we used different machines to track the impact of their CPUs when they
are equipped with the same GPUs which are known to perform the vast majority of the
computations. Our results suggest that, under a cost-benefit perspective, there is no need
to upgrade whole machines; as long as the CPU can keep up with its communication and
scheduling tasks, the GPU delivers such a significant performance that in can exceed a
CPU without its optimal parameters. We also explored StarPU’s parameters to a certain
extent. The results obtained show that employing a core to handle exclusively CUDA
operations improves performance. At the same time, when dealing with the 19’s hybrid
architecture, which combines P-cores and E-cores of different capacities, we saw that the
creation of specific models for each core is not enough to profit from this microarchitec-
ture’s novelty. From all the analysis made, two questions remain to be answered on future
work: how was the Xeon able to outperform the 19 on some specific cases and how can
we profit from the core-specific models provided by StarPU.
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