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Abstract. Traditional profilers struggle with scalability analysis. The PaScal
Suite’s Viewer tool addresses this, but its server-side architecture creates per-
formance bottlenecks with large datasets. This paper proposes a client-side
Single-Page Application (SPA) architecture that transfers all data processing to
the browser, enabling fluid, instantaneous analysis. We also introduce a novel
hierarchical visualization for comparing code regions, which simplifies diagnos-
tics. The result is an agile platform that enhances the identification of scalability
bottlenecks.

1. Introduction

The number of cores in high performance computing (HPC) systems continues to
grow exponentially, a trend that is consistently observed in the Top500 list reports
[Dongarra et al. 2025]. This scenario makes software scalability a permanent and cru-
cial challenge. To extract maximum performance from these machines, developers must
ensure that their applications efficiently benefit from the increase in resources, which re-
quires the use of robust performance analysis tools.

Scalability analysis demands a longitudinal perspective, comparing the behavior
of an application under multiple execution configurations. However, the ecosystem of
profiling tools has been mostly designed with a focus on optimizing a single execution.
Canonical tools such as Gprof [Graham et al. 1982], VAMPIR [Nagel et al. 1996], TAU
[Shende and Malony 2006], and HPCToolkit [Adhianto et al. 2010] are essential for find-
ing bottlenecks in a specific environment, but they do not offer native support for the
comparative analysis of scalability trends. Manually consolidating their results is im-
practical, and solutions that sought to automate this comparison faced other challenges.
PerfExplorer [Huck and Malony 2005], for example, uses line charts that quickly become
unintelligible as the parameter space increases [Silva et al. 2018], while powerful tools
like SCALASCA [Wolf et al. 2008] present a complexity that can be a barrier to quick
visual diagnostics.

In this context, the PaScal Suite was proposed, aiming to automate and sim-
plify the visualization of scalability analysis. The suite is composed of two compo-
nents: the PaScal Analyzer [Silva et al. 2022], responsible for orchestrating the execu-
tions and generating a consolidated JSON file with performance data, and the PaScal
Viewer [Silva et al. 2018, Cunha 2018], the visualization interface. The conceived work-
flow involves the user loading this JSON file into a web application — the PaScal Viewer
— which, in turn, interprets the data and presents it intuitively. The first version of the



Viewer introduced an effective visual paradigm, based on four color diagrams to map
efficiency trends, simplifying the identification of bottlenecks.

However, the original architecture of the PaScal Viewer, implemented with Python
and Django in a server-side model, proved to be a performance bottleneck. The processing
of large JSON files on the server, necessary to generate the diagrams, resulted in high
latency. This waiting time directly compromised interactivity and the user experience,
making the analysis of larger datasets a slow and impractical process.

To overcome these limitations, this paper proposes and validates a client-side ar-
chitectural paradigm for interactive scalability analysis tools. We present a complete re-
design of the PaScal Viewer as a modern Single-Page Application (SPA), which shifts the
computational load from a centralized server to the end-user’s browser. This approach
not only solves the performance bottlenecks of the previous version but also enables a
more fluid and powerful analytical workflow. The new version combines the consoli-
dated visual paradigm of its predecessor with a modern Single-Page Application (SPA)
[Gama et al. 2018] architecture, using the Angular framework. This approach transfers
all data processing logic to the client (client-side), resulting in a drastically faster, more
interactive analysis platform capable of handling large volumes of data instantly in the
browser.

The main contributions of this work are:

* The proposal and validation of a high-performance client-side architecture for in-
teractive scalability analysis, demonstrating its effectiveness in eliminating server-
side latency bottlenecks.

* A novel visualization paradigm for hierarchical analysis of code regions, which in-
tegrates a performance summary directly into a navigable tree structure, reducing
the user’s cognitive load.

* An enhanced interactive model for direct comparative analysis of multiple code
regions, streamlining the discovery of performance patterns.

* The implementation of these concepts in a modern, extensible platform that serves
as a blueprint for future client-based performance tools.

The remainder of this paper is organized as follows: Section 2 describes the new
architecture proposed for the PaScal Viewer; Section 3 presents the tool’s performance
analysis metrics; Section 4 details the new features of the version; Section 5 provides
a validation of the application through a benchmark; and finally, Section 6 presents our
conclusions and discusses directions for future work.

2. New Architecture

The proposed solution, detailed in this paper, was designed to overcome the perfor-
mance bottlenecks of its predecessor [Cunha 2018], migrating from a server-side model
to a modern, fully client-focused (client-side) Single-Page Application (SPA) architecture
[Gama et al. 2018]. This section details this new architecture, starting with its integration
into the PaScal suite and the data format it consumes.

2.1. The PaScal Suite and the Input Data Format

PaScal Viewer is the visualization component of the PaScal suite, designed to work in
conjunction with the PaScal Analyzer [Silva et al. 2022]. The Analyzer orchestrates the



execution of a parallel application under multiple configurations and consolidates perfor-
mance metrics into a single JSON output file, which serves as the standardized interface
between the tools.

The JSON structure is self-contained, divided into two main objects. The config
object contains metadata, such as the workloads used (argument s) and the structure of
the data keys (data_descriptor.keys). The data object is a map where each key
represents a unique execution, containing its total execution time and detailed measure-
ments for instrumented code regions (regions) and load imbalance (imbalances).
A simplified example is shown in Listing 1.

A simplified example of the input JSON file structure can be seen in Listing 1.

2 "config": {
"command": "blackscholes 1 inputs/in_4K.txt",
4 "arguments": ["inputs/in_4K.txt", "inputs/in_1l6K.txt"],
5 "data_descriptor": {
6 "keys": ["cores", "input", "repetitions"]
7 b
8 "extras": {
9 "regions": {
10 "values": ["start_time", "stop_time", "start_line", "

stop_line", "thread_id", "filename"]

1 b

12 "imbalances": {}

13 }

14 1,

15 "data": {

16 Tls0p0%s {

17 "start_time": 1712078902.1,
18 "stop_time": 1712078903.5,
19 "regions": {

20 WilWe [

21 [1712078902.5, 1712078903.2, 472, 495, 0, "
blackscholes.c"]

2 ]

23 b

24 "imbalances": { "1": 0.05 }

25 }

26 //

Listing 1. Simplified example of the input JSON file structure.

Upon receiving this file, the new application processes it entirely in the browser,
eliminating the need for communication with a server.



2.2. From Server to Client: A Re-engineering for Performance

The primary motivation for re-engineering PaScal Viewer was the performance bottleneck
of its original architecture. In the first version, the entire pipeline was synchronous and
centralized on the server: the JSON file was read entirely into memory, metrics were
calculated through multiple operations, and all 16 possible visualizations were generated
before any response was sent to the client [Cunha 2018]. This model resulted in high
initial latency, excessive consumption of server CPU and I/O resources, and an interface
that did not respond well with larger data files, thereby compromising interactivity.

The new client-side architecture, implemented with the Angular framework, re-
solves these issues by transferring the entire workload to the user’s browser. This ap-
proach tackles the root of the latency problem by eliminating the need for file uploads
and the waiting time for remote processing, allowing the analysis to begin instantly in the
browser. Furthermore, the rendering of the graphs is now on-demand; unlike the previous
version that pre-calculated all visualizations, the new architecture dynamically generates
the diagrams as the user interacts with the interface, making it more agile and responsive.

2.3. Client-Side Data Processing Flow

The workflow of the new tool, from file loading to interactive visualization, is detailed
below and illustrated in the flowchart in Figure 1.
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Figure 1. Data processing flowchart of the new client-side architecture.

The process is divided into four main stages. First, upon file selection, a pars-
ing service converts the JSON’s nested structure into a linear list of measurements, pre-
calculating derived metrics like total region time and imbalance. Second, when a user



selects code regions, the application dynamically builds the necessary metric matrices
(e.g., execution times, efficiencies). Third, a centralized service generates the color dia-
gram configurations for the visualization library, applying color palettes and interpolation
algorithms as needed. Finally, the charts are rendered in the interface, allowing the user
to interact with them, switching between different modes and comparing regions.

This new implementation distributes the processing load, efficiently leveraging the
capabilities of modern browsers and removing the bottleneck of a centralized server. As
a result, the analysis experience becomes drastically faster, more interactive, and capable
of handling large volumes of data instantaneously.

3. Metrics and Performance Analysis

PaScal Viewer is a performance analysis system based on statistical metrics and classic
parallel scalability models. The calculation pipeline transforms raw execution data into
visualizations capable of revealing bottlenecks, theoretical limits, and potential gains from
using multiple processors.

3.1. Fundamentals and Notation

Let w be the workload and p the number of processors. For each pair (w, p), the system
aggregates all available repetitions and uses the median of the execution time, T'(w, p), as
it is more robust to outliers and occasional variations. The sequential time is defined as
Tieq(w) = T'(w, 1), requiring the existence of at least one execution with p = 1 for each
w.

The central analysis metric is parallel efficiency:

Tseq(w)
p- T(wa p) 7
which expresses how close the observed performance is to the ideal linear speedup. Val-
ues £/ > 1, characterizing superlinearity, may occur in specific situations and should
be interpreted with caution. The behavior of E(w,p) is consistent with Amdahl’s Law

[Amdahl 1967], according to which the sequential fraction of an application imposes a
ceiling on the maximum gain obtained through parallelization.

E(w,p) =

3.2. Scalability: Amdahl and Gustafson

In addition to the fixed-problem scenario described by Amdahl’s Law, PaScal Viewer also
incorporates Gustafson’s formulation [Gustafson 1988], which considers an increase in
workload proportional to the number of processors. From these two perspectives, the tool
calculates three complementary scalability metrics, all derived from the efficiency matrix
E(w,p):

scalab(w,p) = E(w7p) - E<w07p)> (1
Strong(wap) = E(w7p) - E(w7 1)7 (2)

These metrics represent absolute scalability, in which each value is calculated
relative to a fixed reference point:



* Scalable: compares the efficiency of a workload w with that of a reference work-
load w, while keeping the number of processors constant;

* Strong scaling: measures the variation in efficiency when increasing the number
of processors p while keeping the workload w constant, relative to the sequential
execution (p = 1);

* Weak scaling: evaluates the simultaneous growth of workload and number of
processors, comparing each point (w, p) with the initial configuration along the
diagonal.

In addition to these, PaScal Viewer also allows for the calculation of relative scala-
bilities, where the comparison is always made with the immediate neighbor (i.e., between
consecutive executions in terms of workload or number of processors). Thus, while ab-
solute metrics show the deviation from a global baseline, relative metrics highlight the
marginal increments at each configuration step. The ability to switch between both views
offers the user the flexibility to analyze both the cumulative evolution and the incremental
gain.

Figure 2 illustrates this set of analyses: on the left, the heatmap of absolute ef-
ficiency, and in the three remaining positions, the corresponding maps for the absolute
scalab, strong, and weak scalabilities. This visual organization allows the user to quickly
correlate the behavior of efficiency with its different scalability interpretations.
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Figure 2. Heatmaps of efficiency and the three calculated scalability metrics (ab-
solute mode).



3.3. Load Balance and Statistical Robustness

Another reported indicator is the load imbalance I (w, p), which quantifies the disparity
between the individual execution times of threads within a region. By construction, I €
[0, 1] (or [0,100]% in the visualization): values close to 0 indicate ideal balancing, while
high values suggest poor work distribution or effective serialization, reducing the overall
efficiency F(w, p).

The robustness of the analysis is reinforced by the use of the median, which mit-
igates the impact of outliers and occasional performance fluctuations. Superlinear cases,
when present, are preserved in the efficiency matrix for investigation but can be attenuated
in the scalability differences to avoid visual distortions.

4. New Features

The transition to an SPA was not limited to a technological update. The new architec-
ture enabled the introduction of more interactive and analytically powerful visualization
paradigms that address the limitations of the previous version, especially concerning the
analysis of programs with multiple nested code regions. The two central features of this
new version are the hierarchical visualization of regions and the interactive comparative
analysis, which together reduce the developer’s cognitive load and expedite the identifi-
cation of scalability bottlenecks.

4.1. Hierarchical Visualization of Code Regions

In complex parallel applications, performance analysis focuses on specific regions of in-
terest. These regions are not detected automatically; rather, they are explicitly demar-
cated by the developer in the source code using functions from the PaScal library. This
instrumentation process itself defines a hierarchy, as regions can be nested within one an-
other (e.g., a parallel loop within a larger function). The list-based representation in the
previous version of PaScal Viewer [Silva et al. 2018] was inadequate for capturing this
explicit, hierarchical structure, making the navigation and correlation between parent and
child regions a manual and unintuitive task.

The new tree view (Figure 3) hierarchically organizes all these instrumented re-
gions of the program, treating the complete execution (”whole program”) as the root node
(ID 70”) and the sub-regions as its descendants (e.g., ’0.17, 70.2”, ”0.1.17).

4.1.1. Hierarchy Construction and Visual Synthesis

The construction of the tree is carried out based on the unique identifiers of each region,
which follow a dot notation (e.g., ‘0.3.2°), where each dot represents a level of depth. The
visualization component processes the list of regions from the input JSON file, ordering
them to ensure that parent nodes are created before their children.

The main differentiator of this visualization is that each node in the tree is not just
a textual label, but a visual performance summary. For each region, a thumbnail of its
respective efficiency heatmap is generated.
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Figure 3. Tree visualization structure for regions.

To ensure readability in programs with many regions at the same level, the com-
ponent implements an adaptive layout. It calculates the number of nodes in the most
populated level of the tree and, if it exceeds a predefined threshold, applies a scaling
factor to all nodes, preserving the proportion of the thumbnails and avoiding horizontal
overflow.

Additionally, each node provides a tooltip with contextual metrics that enrich the
analysis without cluttering the main interface. The metrics include:

* Execution Percentage: The range (minimum and maximum) of that region’s con-
tribution to its parent region’s total time.

* Time Variation: A derived metric that indicates the observed load imbalance.

 Static Metadata: The file name and the range of code lines corresponding to the
region.

4.2. Interactive Comparative Analysis of Multiple Regions

The hierarchical structure serves as the foundation for a powerful comparative analysis
tool. The user can select multiple nodes in the tree with a simple click. The list of selected
regions is managed by the application’s state and emitted through an event, allowing other
components to react to this selection.

The multiple selection functionality is a central feature of the new interface, allow-
ing the heatmaps of different regions to be displayed side-by-side for direct comparative
analysis (Figure 4). This visualization simplifies the identification of distinct scalability
patterns between different parts of the code. Additionally, the tool offers greater interac-
tivity by allowing the user to dynamically reorganize the order of the graphs using drag
and drop functionality.

The combination of the tree as a visual performance index and the flexibility of
multiple selection transforms the analysis from one of ”searching” to one of “discovery”.



The developer can quickly identify problematic regions, understand their structural loca-
tion in the program, and compare them with well-performing regions to extract insights
that direct optimization efforts.

Figure 4. Tree with selected regions (indicated by a blue border at the top) fol-
lowed by the display of their efficiency and scalability graphs.

5. Performance Validation: Server-Side vs. Client-Side Architecture

To validate the effectiveness of the new architecture, we conducted a benchmark compar-
ing the processing time of the original server-side implementation of PaScal Viewer with
the new client-side SPA approach proposed in this paper.

5.1. Experimental Setup

The experiments were conducted on a desktop computer with an Intel Core 13-8100 CPU
and 8 GB of RAM. The client-side tests were run on the Firefox browser. For each file
size, the processing time was measured 5 times, and the average value is reported in
Table 1, excluding the first run to account for caching effects. To ensure a fair comparison
of processing capabilities, the server-side tests were executed on the same machine.

The tests were executed on multiple input file sizes (the consolidated JSON from
the Analyzer). Table 1 presents the average times in seconds; Figure 5 illustrates the same
comparison.

5.2. Results and Performance Gain

The results show that the client-side approach consistently outperforms the original im-
plementation, with time reductions reaching almost three orders of magnitude. For most
common-use cases (files up to ~1 MB), the new platform effectively produces responses
in the range of 20-35 ms (= 0.02—0.03s). Even with files of 47.7 MB, the average
processing time remains at ~ 0.29 s, and for 147.7 MB, it is ~ 0.79s.



From a user experience perspective, responses up to ~100 ms tend to be perceived
as instantaneous; up to ~1 s they maintain the cognitive flow without interruption; and
above ~10 s they become disruptive to attention [Miller 1968, Nielsen 1993]. Thus, for
the majority of common use cases (files up to ~ 1 MB), the new platform is effectively
almost instantaneous. For very large inputs (tens to hundreds of MB), it remains well
below the 1-2 s threshold, preserving a sense of fluidity.

Table 1. Average time by file size: a performance comparison between the origi-
nal server-side architecture and the new client-side SPA architecture.

File size  Original (s) Proposed (s) Speedup (Original/Proposed)

22.4kB 1.79 0.0185 x 97
140 kB 5.58 0.0240 X232
1030 kB 32.32 0.0340 x 951
47.7 MB 52.15 0.291 x 179
143.8 MB 140.73 0.789 x 178

—e— Original (PaScal Viewer - Server-side)
102} —e— Proposed (Client-side)

101 L

100 L

Average time (s)

10? 10° 104 10°
File size (kB)

Figure 5. Performance comparison between the server-side (original) and client-
side (proposed) architectures as a function of the input file size.

5.3. Discussion: The Trade-offs of Client-Side Processing

The original server-side architecture imposed a theoretical limit of 500 MB for file up-
loads. However, in practice, we have observed timeouts and execution errors in the 100-
200 MB range, due to the combined cost of data transfer, parsing, and centralized com-
putation on a server under load.

In contrast, the proposed architecture executes the entire performance analysis
pipeline on the client. This architectural shift eliminates upload latency and contention on
a central server, directly addressing the interactivity bottleneck of the previous version.
The trade-off, however, is that the analysis performance becomes intrinsically limited by
the user’s local computing resources. The primary constraints are the browser’s available
RAM to hold the dataset and intermediate data structures, and the client’s CPU power



to perform aggregations and metric calculations. We observed that memory consump-
tion can reach 3—6 times the input file size, which can be a limiting factor on resource-
constrained machines when analyzing datasets on the order of hundreds of megabytes.

This dependency on user hardware directly impacts the scalability claimed in the
paper, a crucial point raised during the review process. While our implementation ef-
ficiently processes files in the hundreds of MBs with low latency on modern developer
machines, users with less powerful systems might experience degraded performance. It
is worth noting, however, that the hardware configuration used in our tests (Intel Core
13-8100 with 8 GB of RAM) represents a common baseline for personal computers today.
If a user experiences latency due to RAM limitations with our tool, it is highly probable
that their hardware is already a bottleneck for general-purpose web browsing and other
demanding applications.

Nevertheless, the client-side approach proved to be a valid and highly effective
solution for enhancing the productivity and fluidity of the analysis for a vast majority of
practical use cases, validating this architectural choice for performance data of parallel
applications. Future work could explore hybrid models or data sampling techniques to
mitigate these limitations for extremely large datasets.

6. Conclusions

This work presented and validated a client-side architectural paradigm for interactive par-
allel scalability analysis, implemented as a Single-Page Application (SPA). Our primary
contribution is the demonstration that shifting the computational load from a centralized
server to the client’s browser is an effective strategy to eliminate performance bottlenecks
in performance analysis tools. The benchmark results confirm this, showing that the anal-
ysis latency becomes practically instantaneous for most use cases. This transformation
is critical as it preserves the user’s cognitive flow, enabling a more fluid and productive
diagnostic process.

Furthermore, we introduced a novel visualization paradigm for hierarchical code
region analysis. By integrating visual performance summaries into a navigable tree struc-
ture, our approach reduces the cognitive load required to correlate nested regions and
identify scalability issues. In summary, the proposed architecture advances the state-
of-the-art for this class of tools by enabling a highly interactive and insightful analysis
workflow, which was previously impractical under the server-side model.

Future work will focus on enhancing the user experience, packaging the tool for
offline use, and exploring near real-time integration with the PaScal Analyzer to further
accelerate the diagnostic cycle.
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