
Intrusiveness and Scalability of OMPT-Based Tracing Tools
for Task-based OpenMP Applications
Rayan Raddatz de Matos1, Lucas Mello Schnorr1

1 Institute of Informatics, Federal University of Rio Grande do Sul (UFRGS)
Caixa Postal 15.064 – 91.501-970 – Porto Alegre – RS – Brazil

{rayan.raddatz, schnorr}@inf.ufrgs.br

Abstract. Task-based parallel programming has become popular for handling
irregular parallelism in modern HPC applications. This paradigm requires
tailored performance analysis tools, with the OpenMP Tools (OMPT) API be-
ing the state-of-the-art for tracing task-based execution events. However, since
large-scale applications can generate enormous numbers of tasks, understand-
ing the intrusion of OMPT callbacks and existing tracing tools is crucial. This
article proposes a methodology to investigate and compare the intrusiveness
and scalability of OMPT-based tracers, evaluating Score-P, Extrae, TiKKi, and
custom tracers under various configurations that stress task numbers and reg-
istered events. We demonstrate that OMPT-based tracer intrusiveness varies
significantly across tools, with some achieving low intrusion and good scala-
bility while others exhibit substantial performance degradation as parallelism
increases.

1. Introduction
The constant increase in High-Performance Computing (HPC) capacity, seen in the
world’s most powerful machines [Dongarra and Keyes 2024], confirms the need for
HPC application programmers to adopt higher levels of parallelism manifestation. Fol-
lowing this trend, the task-based paradigm to express such parallelism has become a
popular and influential parallel programming model because of its flexibility and ef-
ficiency [Agullo et al. 2017]. It takes out of the programmer the responsibility for
most load balancing and scheduling intricacies and gives such responsibility to a
performance-oriented runtime. This recent trend has seen numerous runtimes emerge,
such as StarPU [Augonnet et al. 2010], OpenMP tasks [Ayguadé et al. 2008], and Par-
SEC [Hoque et al. 2017].

Task-based programs create dynamically scheduled tasks that execute out-of-order
across threads while respecting dependencies, forming task dependency graphs. Since
programmers lose direct scheduling control to the runtime system, understanding appli-
cation behavior becomes challenging. To address this, programmers employ tracing tools
that capture task lifecycle and thread information through manual or automatic instrumen-
tation. Unfortunately, any type of tracing introduces computational overhead (extra CPU
cycles, increased memory consumption, additional I/O operations), commonly identified
as intrusion or tracing overhead [Hunold et al. 2022].

For OpenMP task-based applications, the OpenMP Tools (OMPT) API
[Eichenberger et al. 2013] enables user-defined callback execution whenever a specific
event occurs. Moreover, this interface appears in established tracing tools such as Score-P



[Mey et al. 2011], TiKKi [Daoudi et al. 2020], and Extrae [Llort et al. 2016] to trace and
analyze OpenMP task-based programs. These tools typically implement an OMPT plugin
capable of attaching to a supporting runtime like the one provided by the LLVM/Clang
compiler. With an active OMPT-based plugin, the runtime registers typical events during
the execution of a task-based application, such as task creation and execution. It also reg-
isters the graph of tasks created by the application. As the number of tasks grows larger
for small-scale applications, it becomes important to correctly understand the intrusion
caused by OMPT plugins.

This work presents a methodology and an investigation of the intrusiveness of
modern OMPT-based tracing tools in stressful situations, such as when there are many
tasks and worker threads. We evaluate Score-P, Extrae, TiKKi, and different in-house
tracers under different configuration scenarios and compare them against a situation with-
out tracing. Our contributions include (1) a comprehensive methodology for evaluating
the intrusiveness and scalability of OMPT-based tracers in task-parallel applications, en-
abling systematic comparison of tracing tool overhead across different parallelism levels;
(2) an empirical analysis revealing significant performance variations among established
OMPT tracers (Extrae, Score-P, TiKKi), demonstrating that tool selection critically im-
pacts application scalability in parallel environments; and (3) comparison against our
in-house low-overhead tracing mechanism for OMPT capable to gathering the necessary
information for Space-Time views and graph analysis.

Section 2 presents core concepts regarding task-based applications and tracing.
Section 3 highlights related work and a discussion motivating our work. Section 4 dis-
cusses the experimental methodology used in this work, with details about the applica-
tions, tools, and systems used in the experiments. Lastly, Section 5 shows and discusses
the experimental results, while Section 6 concludes this work.

Software and Data Availability. We endeavor to make our analysis reproducible for
a better science. We made available a companion material hosted in a public GitHub
repository at https://github.com/rddtz/sscad2025-companion. Our companion contains the
source code of this article and the software necessary to handle the created datasets. We
also include instructions to run the experiment and figures.

2. Background

2.1. Task-based paradigm and OpenMP

The task-based paradigm has become a popular parallel programming alternative to em-
brace parallelism because of its power and simplicity, making it easy to schedule com-
plex workloads to multiple cores. The programmer defines the tasks and marks their
parameters as input, output, or both (dependencies). At the same time, the runtime sys-
tem is responsible for scheduling the tasks to different cores, handling data dependencies
[Dongarra et al. 2017]. The general task graph is usually absent in a typical runtime sys-
tem. However, we can generate an external representation of the Direct Acyclic Graph
(DAG), as illustrated by Figure 1, to depict that each node represents a task (the color
represent its type) and the edges represent the dependencies between tasks. This exam-
ple graph is also known as a Task Dependency Graph (TDG). The runtime system can
schedule tasks simultaneously, respecting the dependencies between them.

https://github.com/rddtz/sscad2025-companion


dgeqrt - 0

dlarfb - 1 dlarfb - 2dlarfb - 3dlarfb - 4 dlarfb - 5dlarfb - 6 dlarfb - 7

dtpqrt - 8

dtpmqrt - 9 dtpmqrt - 10dtpmqrt - 11dtpmqrt - 12 dtpmqrt - 13

dtpmqrt - 14 dtpmqrt - 15dtpqrt - 16

dtpmqrt - 17

dgeqrt - 64

dtpmqrt - 18dlarfb - 65

dtpmqrt - 19

dlarfb - 66

dtpmqrt - 20

dlarfb - 67

dtpmqrt - 21

dlarfb - 68

dtpmqrt - 22

dlarfb - 69

dtpmqrt - 23

dlarfb - 70

dtpqrt - 24

dtpmqrt - 25

dtpqrt - 71

dtpmqrt - 26dtpmqrt - 72 dtpmqrt - 27dtpmqrt - 73 dtpmqrt - 28dtpmqrt - 74 dtpmqrt - 29dtpmqrt - 75 dtpmqrt - 30dtpmqrt - 76 dtpmqrt - 31dtpmqrt - 77 dtpqrt - 32

dtpmqrt - 33dtpqrt - 78 dtpmqrt - 34

dtpmqrt - 79

dtpmqrt - 35

dtpmqrt - 80

dtpmqrt - 36

dtpmqrt - 81

dtpmqrt - 37

dtpmqrt - 82

dtpmqrt - 38

dtpmqrt - 83

dtpmqrt - 39

dtpmqrt - 84

dtpqrt - 40

dtpmqrt - 41dtpqrt - 85 dtpmqrt - 42

dtpmqrt - 86

dtpmqrt - 43

dtpmqrt - 87

dtpmqrt - 44

dtpmqrt - 88

dtpmqrt - 45

dtpmqrt - 89

dtpmqrt - 46

dtpmqrt - 90

dtpmqrt - 47

dtpmqrt - 91

dtpqrt - 48

dtpmqrt - 49dtpqrt - 92 dtpmqrt - 50

dtpmqrt - 93

dtpmqrt - 51

dtpmqrt - 94

dtpmqrt - 52

dtpmqrt - 95

dtpmqrt - 53

dtpmqrt - 96

dtpmqrt - 54

dtpmqrt - 97

dtpmqrt - 55

dtpmqrt - 98

dtpqrt - 56

dtpmqrt - 57dtpqrt - 99 dtpmqrt - 58

dtpmqrt - 100

dtpmqrt - 59

dtpmqrt - 101

dtpmqrt - 60

dtpmqrt - 102

dtpmqrt - 61

dtpmqrt - 103

dtpmqrt - 62

dtpmqrt - 104

dtpmqrt - 63

dtpmqrt - 105dtpqrt - 106

dtpmqrt - 107dtpmqrt - 108dtpmqrt - 109 dtpmqrt - 110dtpmqrt - 111 dtpmqrt - 112

dgeqrt - 113

dlarfb - 114dlarfb - 115 dlarfb - 116dlarfb - 117 dlarfb - 118

dtpqrt - 119

dtpmqrt - 120dtpmqrt - 121 dtpmqrt - 122dtpmqrt - 123 dtpmqrt - 124dtpqrt - 125

dtpmqrt - 126dtpmqrt - 127 dtpmqrt - 128dtpmqrt - 129 dtpmqrt - 130dtpqrt - 131

dtpmqrt - 132dtpmqrt - 133 dtpmqrt - 134dtpmqrt - 135 dtpmqrt - 136dtpqrt - 137

dtpmqrt - 138dtpmqrt - 139 dtpmqrt - 140dtpmqrt - 141 dtpmqrt - 142dtpqrt - 143

dtpmqrt - 144dtpmqrt - 145 dtpmqrt - 146dtpmqrt - 147 dtpmqrt - 148

dgeqrt - 149

dlarfb - 150 dlarfb - 151dlarfb - 152 dlarfb - 153

dtpqrt - 154

dtpmqrt - 155 dtpmqrt - 156dtpmqrt - 157 dtpmqrt - 158dtpqrt - 159

dtpmqrt - 160 dtpmqrt - 161dtpmqrt - 162 dtpmqrt - 163 dtpqrt - 164

dtpmqrt - 165 dtpmqrt - 166dtpmqrt - 167 dtpmqrt - 168 dtpqrt - 169

dtpmqrt - 170 dtpmqrt - 171dtpmqrt - 172 dtpmqrt - 173

dgeqrt - 174

dlarfb - 175dlarfb - 176 dlarfb - 177

dtpqrt - 178

dtpmqrt - 179dtpmqrt - 180 dtpmqrt - 181 dtpqrt - 182

dtpmqrt - 183dtpmqrt - 184 dtpmqrt - 185 dtpqrt - 186

dtpmqrt - 187dtpmqrt - 188 dtpmqrt - 189

dgeqrt - 190

dlarfb - 191 dlarfb - 192

dtpqrt - 193

dtpmqrt - 194 dtpmqrt - 195 dtpqrt - 196

dtpmqrt - 197 dtpmqrt - 198dgeqrt - 199

dlarfb - 200

dtpqrt - 201

dtpmqrt - 202

dgeqrt - 203

Figure 1. Task-based QR Factorization application DAG with 204 tasks.

Initially, the OpenMP supported only tasks with the task and taskwait con-
structs. This later changed with newer versions of OpenMP, introducing new and more
complex features. For example, version 4.0 had as its main contribution the depend
clause, which lets the programmer add additional per-task constraints in the task schedul-
ing referring to its parameters. Using the depend clause, the task execution order de-
pends solely on the satisfaction of its task dependencies, expressed by the programmer
[Ayguadé et al. 2008]. This represents a fine-grain control of task dependencies, enforc-
ing that the task only starts when all the input data it depends on is ready. Version 4.5
introduced the priority clause, which allows the programmer to hint to the runtime
system about what tasks must be scheduled first by assigning a higher priority to them.
In version 5.0, we see the arrival of the OpenMP Tools (OMPT) API and the affinity
clause, which aims to let the programmer hint to the runtime system the desired location
(typically a given core). Notice that the affinity and priority clauses are only
hints, and currently not supported by all OpenMP runtime, even those widely available.
As hints, the runtime system might not always schedule the higher priority tasks first or
to their indicated locations.

2.2. Tracing task-based applications and the OpenMP Tools (OMPT) API

The understanding of parallel applications are paramount for its maintenance and im-
provement. Unfortunately, understanding a task-based application behavior is not some-
thing trivial. The runtime system can execute a task in any thread and can delay its execu-
tions instead of executing the task immediately, causing irregular parallelism. Fortunately,
we can use tracing techniques in order to get detailed information about the application
execution. Post-mortem, that is, after the end of the execution, this information is helpful
to understand the general application behavior and identify performance issues. One can
typically employ modern data science tools to derive decision-taking information.

With the need of tracing task-based programs, OpenMP 5 [OpenMP 2018]
officially introduced into its specification the OpenMP Tools Interface (OMPT)
[Eichenberger et al. 2013]. It takes form as a callback interface that enables plugins to



receive notification of OpenMP events from the runtime and then, for instance, trace
OpenMP programs. The callback is just a function attached to a reference OpenMP event.
Whenever the runtime reaches that specified event, it invokes the previously defined call-
back function. This function can then access internal task information, the start and end
timestamp of tasks, the thread responsible for the task, and other valuable information.
The OMPT interface not just facilitate to the programmer to write simple and straightfor-
ward tracing tools to better understand its applications, but also make possible to already
established performance analysis tools to better support OpenMP programs, reducing the
maintenance burden of previous methods [Feld et al. 2019]. Despite being a powerful tool
to trace OpenMP programs, the OMPT support from current versions of OpenMP runtime
systems GCC/libgomp and LLVM/libomp are relatively limited. The LLVM/libomp is the
runtime that support most OpenMP events, such as the thread and task behavior necessary
for our work. We therefore adopt LLVM/libomp for this work.

3. Related Work

With the popularization of the task-based model, different works studied task-based
applications and its performance by analyzing factors that impacted its performance.
[Miletto and Schnorr 2019] analyzes the influence of different runtime systems in the per-
formance of the a task-based application, suggesting problems related to the task granu-
larity in one of the OpenMP runtime systems. The topic of task granularity for task-
based OpenMP applications is as well discussed in [Gautier et al. 2018], concentrated
mainly in the LLVM/libomp implementation. Furthermore, various benchmarks were
created to measure the performance of different aspects of OpenMP task-based applica-
tions. Examples include the Barcelona OpenMP Tasks Suite (BOTS) [Duran et al. 2009],
created to evaluate tasking introduced in OpenMP 3.0, and KASTORS benchmark
[Virouleau et al. 2014] to evaluate the depend clause introduced in OpenMP 4.0.

Other works focus on the understanding of parallel applications written in the
task-based paradigm. For example, [Muddukrishna et al. 2015] focus on the characteri-
zation of OpenMP task-based programs using BOTS. They use as an example to demon-
strate that task-based performance analysis is useful to diagnose performance problems
and provides detailed behavioral explanations. [Pinto and Filho 2024] provides an work-
flow to integrate TiKKi [Daoudi et al. 2020], an OMPT-based tracing tool, into StarVZ
[Leandro Nesi et al. 2020], an R programming language package for task-based applica-
tions performance analysis, enabling a better understand of OpenMP tasking paradigm.

This importance of understating and visualizing the performance of this parallel
model arose the need for tracing and performance analysis tools that were capable of
support task-based OpenMP applications and give valuable information about its execu-
tion. Before OMPT, [Schmidl et al. 2014] analyzed three different tracing tools, search
for differences in the amount of data generated and suitability of these different tools.
However, the creation of OMPT was fundamental to the appearance of more convoluted
tracing tools that could support OpenMP tasks such as TiKKi [Daoudi et al. 2020] or
ScalOMP [Daumen et al. 2019]. Traditional tools like Score-P [Feld et al. 2019] and Ex-
trae [Llort et al. 2016] have also been ported to OMPT.

Previous work [Matos and Schnorr 2025] evaluated simple tracing tools using
OMPT, concluding that OMPT intrusion is minimal when there is no tool attached and



that the task granularity is one of the major factors for intrusion. In this work, we deepen
the investigation of intrusion of task-based OpenMP applications. We now evaluate in
addition different and more complex tracing tools that rely on the OMPT interface, pro-
viding insights also into the quality of information observed by these different tracers.

4. Methods and Materials
The goal is to understand the intrusiveness and the scalability of representative tracing
tools when varying factors. We briefly describe the representative applications, the six
tracers, including our baseline, the three cluster partitions, and the Design of Experiments.

4.1. Applications: Cholesky Factorization, Gauss-Seidel and the QR Factorization

We selected three different OpenMP applications that follow the task-based paradigm.
The first is a dense Cholesky factorization, with a variation to possibly consider the
priority clause. The second is an implementation of the Gauss-Seidel method from
[Nesi et al. 2021]. The third one is our implementation of the dense QR factorization fol-
lowing the Householder Transformation. All three applications are task-based tiled im-
plementations employing the depend clause. The use of these alternative applications
allow us to verify different behaviors of creating and tracing tasks. The choice for tiled
implementations enable the control of the amount of tasks very easily. Both Cholesky
and QR applications rely on LAPACK 3.11.0 for linear algebra operations, Cholesky also
uses OpenBLAS 0.3.29. Section 4.4 presents our choices for the application’s parameters
used in the experiments.

4.2. Tracing Tools: Score-P, Extrae, TiKKi, Void, Printf, and OOT

We select six tracing tools with varying capabilities: Score-P, Extrae, TiKKi, Void, Printf,
and OOT. We chose the first three tools (Score-P, Extrae, TiKKi) because we consider
that they are popular and well established tools for tracing and analyzing the performance
of OpenMP programs. We also implement three different tracing tools using the OMP
Tools API (Void, Printf, and OOT) to evaluate the API performance. A short descrip-
tion of these tracers follows. Score-P is an unified performance-measurement system that
serves as a common basis for other performance tools such as Periscope, Scalasca, Vam-
pir, and TAU. Initially, Score-P used the OPARI2 [Gmbh et al. 2001] source-to-source
instrumentation tool for OpenMP programs, but with the release of the OMPT, Score-P
now rely on it for tracing OpenMP applications. Extrae is an instrumentation package
from the Barcelona Supercomputing Center (BSC) who automatically instruments appli-
cations and creates Paraver trace files. OMPT can be enabled for the Extrae tool with the
configuration file extrae.xml. TiKKi is a lightweight OpenMP tracing tool from Inria
that captures all the necessary events to construct the application’s task graph along with
performance information related to these events. TiKKi trace files can be converted easily
to different forms using the ukilli tool. Void is an OMPT plugin with all the neces-
sary callbacks for tracing task-oriented events, but the content of these callback functions
remain empty. We used this plugin to measure only the impact of the OMPT interface
by itself. Printf is an OMPT plugin that traces tasks using one trace file per thread using
the classical printf function of the C programming language to record activity, with all
the buffering issues and expected associated intrusion. Finally, the OOT is our in-house
OMPT plugin standing as our-ompt-tracer we develop based on the high-performance



and low-intrusion LibRastro [da Silva and de Oliveira Stein 2002] library. We expect the
OOT to have the lowest overhead footprint in a functional tracer. Furthermore, we also
execute the cases without any tracing tool attached – identified as an Empty run – so we
can compare the previous mentioned tools to a normal execution of the application. As a
final word, while the Score-P tool uses a compiler wrapper to instrument the application,
our OMPT implementations needed manual instrumentation, and the Extrae and TiKKi
tools are dynamically linked to the application so tracing can happen.

4.3. Hardware & Software configuration
We employ three partitions of the PCAD cluster at INF/UFRGS in the experiments. Ta-
ble 1 specifies the hardware for each of them. We chose to test in these different hardware
to see how applications and tracers behave in alternative setups.

Table 1. Hardware specification of the machines used for the experiments

Nome CPU RAM

Cei 2 x Intel(R) Xeon(R) Silver 4116, 2.10 GHz, 48 ths, 24 cores 96 GB DDR4
Hype 2 x Intel(R) Xeon(R) E5-2650 v3, 2.30 GHz, 40 ths, 20 cores 128 GB DDR4
Draco 2 x Intel(R) Xeon(R) E5-2640 v2, 2.00 GHz, 32 ths, 16 cores 64 GB DDR3

Environment variables define different aspects for the tracers. For Extrae
and Score-P we attempt to only capture task-related OpenMP events aiming to a
fair comparison with the other tracers, as these two tracers have a much wider set
of capabilities. With Score-P 9.2, we appoint a total memory of 128MB through
SCOREP_TOTAL_MEMORY and adopt a filter file to trace only OpenMP task-based con-
structs through SCOREP_FILTERING_FILE. With Extrae 4.3.0, we limit the buffer size
of 10 million (1 · 107) events using EXTRAE_BUFFER_SIZE. Like for Score-P, a filter
file aims to trace only the wanted OpenMP constructs. This file is a modified version
of the example filter file found in extrae/share/example/OMP/extrae.xml
and informed through EXTRAE_CONFIG_FILE. As the TiKKi tracer has no official
releases, we used commit 9721397c from its main repository1. We also set a 10 mil-
lion events buffer size for LibRastro used in the OOT tracer using RST_BUFFER_SIZE.
These choices allow the entirety of an execution behavior be registered in-memory. At
the end of an execution, tracers save the buffer in files. We ensure this to measure only
the recording of the events, not the final IO cost. We use the LLVM/clang 14.0.6 compiler
and the libomp runtime that comes along with it.

4.4. Design of Experiments (DoE)
In our Design of Experiments (DoE), we aim to observe the tracers behavior when vary-
ing two major main factors: the number of threads and the applications’ task granu-
larity. Table 2 shows the parameters used in the applications for the experiments and
the amount of tasks created for each combination of problem and sub-problem sizes.
When considering the number of threads, we execute from one thread to the maximum
number of physical cores in each machine presented in Table 1. We avoid using In-
tel’s Hyper-Threading mechanism with the corresponding logical cores as we observe a

1https://gitlab.inria.fr/openmp/tikki

https://gitlab.inria.fr/openmp/tikki


higher experimental variability and small performance benefits, as our applications are
mainly compute-bound. To correctly control the usage of physical cores, we set the
OMP_NUM_THREADS, OMP_PLACES and OMP_PROC_BIN environment variables ac-
cordingly, bounding OpenMP threads to physical cores during the program execution.
When considering the varying task granularity, we set different block sizes for a fixed
problem size. We select the levels of this factor to established similar task and workload
amount among the applications.

Table 2. The three applications, the problem size (matrix size), the block size and
the corresponding number of tasks.

Application Problem Block Tasks Created

QR factorization 2048 64, 128, 192, 258 11440, 1496, 385, 204
Cholesky factorization 2000 50, 80, 100, 200 11480, 2925, 1540, 220
Gauss-Seidel method 10000 250, 500, 1000, 2000 16000, 4000, 1000, 250

As consequence, our DoE comprises nine experimental sessions, representing the
nine combinations of all three applications in the all three selected partitions of our plat-
form. Each session has the following factors: tracer (seven levels), the problem size (one
level, fixed, per-application), the block size (four levels, per-application), and the amount
of threads (per-partition, according to node specification). These nine DoE are registered
as Comma-Separated (CSV) files, where each line represent a configuration of factors.
The order of configurations are purely random defined by DoE.base R package we use
to create the sessions. The DoE also has 10 repetitions of each unique configuration, so
we can measure performance variability in our results by calculating the mean of the 10
measurements for each configuration and a Confidence Interval of 99% assuming those
measurements follow a Gaussian Distribution, something we have verified for the obser-
vations as we have kept a tight control of experimental parameters.

5. Results
Figure 2 depicts a Space-Time (ST) View for one execution of the Gauss-Seidel appli-
cation in the Draco machine (top) and the QR application in the Cei machine (bottom),
both using the maximum available threads for each machine and being traced with the
OOT tracer. The ST shows the behavior of each thread (Y-axis) as a sequence of task
execution (colored rectangles) along time (X-axis). The absence of colored rectangles
typically represents idle time, as observed in the first thread, at the bottom of each facet.
This idle time indicates that these threads submit tasks for execution, following the Se-
quential Task Flow (STF) paradigm, [Pei et al. 2022]. We can see that during the most
significant part of the execution, the application fully uses all the available resources (no
idle time, except for the first submitting thread), showing that the system is under stress
for the whole execution. We also observe this behavior for the other sub-problem sizes
for these applications, with some idle time appearing for the larger problem sizes.

For the amount of threads available, the performance of all adopted applications
typically follows the strong scaling pattern for speedup and efficiency metrics. Such be-
havior then enable us to move forward with the analysis as all executions represent normal
runs using OpenMP, where in the middle of the execution we are fully compute-bound.



We provide a results overview (Sec 5.1). We detail our results focusing on the Extrae lack
of scalability (Section 5.2). Finally, we explain the differences among Void and OOT and
Score-P (Section 5.3).

draco−gauss−250

0.
00

0.
25

0.
50

0.
75

1.
00

5

10

15

gauss−seidel−smoothing−formula

cei−qr−64

0.
0

0.
1

0.
2

0.
3

0

5

10

15

20

25

lapack_dgeqrt
lapack_dlarfb
lapack_dtpmqrt
lapack_dtpqrt

Figure 2. Space-Time View from OOT execution of Gauss-Seidel and QR applica-
tions, with sub-problems 250 and 64 respectively.

5.1. Overview of the tracing intrusion

We define a tracer intrusion as the difference between the time taken by executing an
application with the enabled tracer tool and the empty execution of this same application
and input. This metric ultimately is the mean intrusion time of using the tracing tool.
Figure 3 shows, for each different tracer (X-axis), the mean intrusion time (Y-axis) for
all executions (different block sizes) for the two applications (facets) and the respective
error bars depicting the variability of the measurements. The Extrae and TiKKi tools
have a higher intrusion when compared with the other tracing tools, while void and OOT
have the least intrusion. Another observation is the enormous variability for the Gauss-
Seidel application in some cases, especially in the Draco machine. In a few cases, the
mean results for some of the tracers were lower than the mean for the Empty version
execution. As one expects an actual tracing to cost more than no job done, we believe
the observation happens due to very cheap tracing operations for some configurations
suggestions an enormous experimental budget to clarify. A similar observation has also
appeared in other independent work [Pinto and Filho 2024].

Figure 4 shows the intrusion for the Gauss-Seidel application when running with
the maximum number of threads for each machine, separated per sub-problem sizes
(facets). We can see that the Draco machine (green) has a higher variability, increas-
ing when heading towards higher sub-problem sizes (lower parallelism scenarios). A
similar behavior can be seen in the QR application with the 192 sub-problem size (not
shown). We believe this is due to a combination of the single type of task of the Gauss
implementation (see Figure 2) and Draco being the oldest hardware our testbed. Finally,
the smallest sub-problem size demonstrates a higher intrusion for almost all the tracers,
as we detail next.



gauss qr

ex
tra

e
oo

t
pr

int
f

sc
or

ep tik
ki

vo
id

ex
tra

e
oo

t
pr

int
f

sc
or

ep tik
ki

vo
id

−0.1

0.0

0.1

Tracer

In
tr

us
io

n 
tim

e 
[s

ec
on

ds
] cei draco hype

Figure 3. Mean intrusion for all configurations, by tracer and application.

250 500 1000 2000

ex
tra

e
oo

t
pr

int
f

sc
or

ep tik
ki

vo
id

ex
tra

e
oo

t
pr

int
f

sc
or

ep tik
ki

vo
id

ex
tra

e
oo

t
pr

int
f

sc
or

ep tik
ki

vo
id

ex
tra

e
oo

t
pr

int
f

sc
or

ep tik
ki

vo
id

0.00

0.05

0.10

Tracer

In
tr

us
io

n 
tim

e 
[s

ec
on

ds
] cei draco hype

Figure 4. Mean intrusion for Gauss-Seidel application using the maximum avail-
able thread in each machine.

5.2. Detailed analysis and Extrae lack of scalability

As previously stated, the Extrae and TiKKi tools have a much higher intrusion when com-
pared to other tools (see, for example, the right facet of Figure 3). Instead of depicting
only the mean intrusion time across all block sizes for each tracer, we focus now on the
measurements of the QR application. A similar behavior also appears for the other ap-
plications, especially the Gauss-Seidel. Figure 5 depicts an alternative and more detailed
view. On each facet, we depict the intrusion time (Y-axis) as a function of the number of
threads (X-axis) and machine (colors) to analyze the scalability of the tracing mechanism
when a larger number of threads is present. We depict our results for all tracers (horizon-
tal facetting) as a function of the block size (vertical facetting). Interestingly, we can now
see that for Extrae and TiKKi, the intrusion is larger no matter the block size (more or less
parallelism). We also observe that for TiKKi, Score-P, OOT, Printf and Void, as the num-
ber of threads increases, the intrusion time remains relatively stable across all machines.
Even more interestingly, we can see that Extrae behaves very differently as the intrusion
time increases as a function of the number of threads, demonstrating a lack of scalabil-
ity probably related to the increasing amount of events and details. Extrae created the
largest trace files out of every tracer, despite our efforts to control the tracing mechanism
to gather similar data across all tracers.

5.3. Differences among Void and OOT and Score-P

As expected, the Void was the tracer with the least intrusion among the tested tools be-
cause it only quantifies the low cost of the OMPT interface and callbacks by itself. The
OOT comes in second as the tracer has the lowest cost, as this tool only traces minimal
information to create representative ST views and the task graph, such as task creation,
task dependencies, and task completeness. By uniting this straightforward tracing of only



extrae oot printf scorep tikki void

64
128

192
256

0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25

0.00
0.05
0.10
0.15

0.00
0.05
0.10
0.15

0.00
0.05
0.10
0.15

0.00
0.05
0.10
0.15

Number of threads [count]

In
tr

us
io

n 
tim

e 
[s

ec
on

ds
]

cei draco hype

Figure 5. Mean intrusion for the QR application on the three machines separated
by threads, sub-problem size and tracer.

desired events and the tracing using the LibRastro, we could achieve a simple, low-cost
tracing for OpenMP programs. The results for the Score-P and Printf tracers are similar.
While Printf works similarly to OOT by tracing minimal information, we abstain from us-
ing a dedicated library to trace events, relying on the Operating System’s capability of I/O
buffering for recording the data. This buffering difference explains the slight increase in
the intrusion for the Printf tracer. Unlike our tools, Score-P is a more generic event-based
tracing tool that supports different programming models, automatically instruments the
application code, and has numerous options. The results for Score-P depict a low intru-
sion for the application, with an intrusion comparable to that of the Printf, while gathering
much more performance data.

6. Conclusion
In this work, we propose a methodology to investigate and compare the intrusiveness and
scalability of OMPT-based tracers for task-based programming. With this methodology,
we compared established tools and also our own implemented OMPT tracers. For our
tracers, we verified the low intrusiveness from the OOT tracer, showing promising results
for all applications, and confirmed the low impact of the OMPT interface through the lack
of intrusion for the Void tracer. For the established tools tested, we observed scalability
problems for the Extrae tool for all applications, which rapidly increased the intrusion
as the parallelism grew. We verified an inverse result for the Score-P tracer, which also
showed promising results for intrusion and scalability in the tested applications. The
TiKKi tool remains a mid-term solution, showing a considerably high intrusion in some
cases, but a scalable solution as the number of threads increases. As future work, we
intend to investigate further the extreme scalability effects on larger processors such as
the NVIDIA Grace and Blackwell CPU Superchips.

Acknowledgments. We would like to thank the PCAD at INF/UFRGS for making in-
frastructure and hardware used in the experiments available. We also acknowledge the
Brazilian National Council for Scientific Technological Development (CNPq) for their



financial support through the PIBIC-UFRGS scholarship. This study was financed in part
by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES)
- Finance Code 001, the FAPERGS (16/354-8, 16/348-8), Petrobras (2020/00182-5).

References

Agullo, E., Aumage, O., Faverge, M., Furmento, N., Pruvost, F., Sergent, M., and
Thibault, S. P. (2017). Achieving high performance on supercomputers with a se-
quential task-based programming model. IEEE Trans. on Paral. and Distrib. Syst.

Augonnet, C., Thibault, S., and Namyst, R. (2010). StarPU: a runtime system for schedul-
ing tasks over accelerator-based multicore machines. PhD thesis, INRIA.

Ayguadé, E., Copty, N., Duran, A., Hoeflinger, J., Lin, Y., Massaioli, F., Teruel, X., Un-
nikrishnan, P., and Zhang, G. (2008). The design of openmp tasks. IEEE Transactions
on Parallel and Distributed systems, 20(3):404–418.

da Silva, G. J. and de Oliveira Stein, B. (2002). Uma biblioteca genérica de geração
de rastros de execução para visualização de programas. In Anais do I Simpósio de
Informática da Região Centro.

Daoudi, I., Virouleau, P., Gautier, T., Thibault, S., and Aumage, O. (2020). somp: Simu-
lating openmp task-based applications with numa effects. In The 16th Intl. Workshop
on OpenMP, page 197–211, Berlin, Heidelberg. Springer-Verlag.

Daumen, A., Carribault, P., Trahay, F., and Thomas, G. (2019). Scalomp: Analyzing
the scalability of openmp applications. In OpenMP: Conquering the Full Hardware
Spectrum, pages 36–49, Cham. Springer International Publishing.

Dongarra, J. and Keyes, D. (2024). The co-evolution of computational physics and high-
performance computing. Nature Reviews Physics, 6(10):621–627.

Dongarra, J., Tomov, S., Luszczek, P., Kurzak, J., Gates, M., Yamazaki, I., Anzt, H.,
Haidar, A., and Abdelfattah, A. (2017). With extreme computing, the rules have
changed. Computing in Science & Engineering, 19(3):52–62.

Duran, A., Teruel, X., Ferrer, R., Martorell, X., and Ayguade, E. (2009). Barcelona
openmp tasks suite: A set of benchmarks targeting the exploitation of task parallelism
in openmp. In 2009 International Conference on Parallel Processing, pages 124–131.

Eichenberger, A. E., Mellor-Crummey, J., Schulz, M., Wong, M., Copty, N., Dietrich,
R., Liu, X., Loh, E., and Lorenz, D. (2013). Ompt: An openmp tools application
programming interface for performance analysis. In OpenMP in the Era of Low Power
Devices and Accelerators, Berlin, Heidelberg. Springer Berlin Heidelberg.

Feld, C., Convent, S., Hermanns, M.-A., Protze, J., Geimer, M., and Mohr, B. (2019).
Score-p and ompt: navigating the perils of callback-driven parallel runtime introspec-
tion. In International Workshop on OpenMP, pages 21–35. Springer.

Gautier, T., Pérez, C., and Richard, J. (2018). On the Impact of OpenMP Task Granularity.
In The 14th Intl. Workshop on OpenMP for Evolving Arch., pages 205–221. Springer.

Gmbh, F., Bericht, I., Malony, A., Shende, S., and Mohr, B. (2001). Design and prototype
of a performance tool interface for openmp. Journal of Supercomputing, 23.



Hoque, R., Herault, T., Bosilca, G., and Dongarra, J. (2017). Dynamic task discovery in
parsec: A data-flow task-based runtime. In Proceedings of the 8th Workshop on Latest
Advances in Scalable Algorithms for Large-Scale Systems, pages 1–8.

Hunold, S., Ajanohoun, J. I., Vardas, I., and Träff, J. L. (2022). An overhead analysis of
mpi profiling and tracing tools. In Proceedings of the 2nd Workshop on Performance
EngineeRing, Modelling, Analysis, and VisualizatiOn Strategy, pages 5–13.

Leandro Nesi, L., Garcia Pinto, V., Cogo Miletto, M., and Schnorr, L. M. (2020). StarVZ:
Performance Analysis of Task-Based Parallel Applications. preprint at https://
inria.hal.science/hal-02960848.

Llort, G., Filgueras, A., Jiménez-González, D., Servat, H., Teruel, X., Mercadal, E., Ál-
varez, C., Giménez, J., Martorell, X., Ayguadé, E., et al. (2016). The secrets of the
accelerators unveiled: Tracing heterogeneous executions through ompt. In Interna-
tional Workshop on OpenMP, pages 217–236. Springer.

Matos, R. and Schnorr, L. (2025). Quantificando o impacto do rastreamento em aplicações
paralelas openmp baseadas em tarefas. In Anais da XXV Escola Regional de Alto
Desempenho da Região Sul, pages 109–112, Porto Alegre, RS, Brasil. SBC.

Mey, D. A., Biersdorf, S., Bischof, C., Diethelm, K., Eschweiler, D., Gerndt, M., Knüpfer,
A., Lorenz, D., Malony, A., Nagel, W. E., et al. (2011). Score-p: A unified performance
measurement system for petascale applications. In Proceedings of an Intl. Conf. on
Competence in High Performance Comp., pages 85–97. Springer.

Miletto, M. and Schnorr, L. (2019). Openmp and starpu abreast: the impact of runtime
in task-based block qr factorization performance. In Anais do Simpósio em Sistemas
Computacionais de Alto Desempenho (WSCAD), pages 25–36.

Muddukrishna, A., Jonsson, P. A., and Brorsson, M. (2015). Characterizing task-based
openmp programs. PLOS ONE, 10(4):1–29.

Nesi, L. L., Miletto, M., Pinto, V., and Schnorr, L. (2021). Minicursos da XXI Escola
Regional de Alto Desempenho da Região Sul, chapter Desenvolvimento de Aplicações
Baseadas em Tarefas com OpenMP Tasks, page 131–152. SBC.

OpenMP (2018). OpenMP application program interface version 5.0.

Pei, Y., Bosilca, G., and Dongarra, J. (2022). Sequential task flow runtime model im-
provements and limitations. In IEEE/ACM Intl. Workshop on Runtime and Operating
Systems for Supercomputers (ROSS), pages 1–8. IEEE.

Pinto, V. and Filho, C. S. (2024). Improving performance visualization of openmp task-
based applications. In Anais do XXV Simpósio em Sistemas Computacionais de Alto
Desempenho, pages 156–167, Porto Alegre, RS, Brasil. SBC.

Schmidl, D., Terboven, C., an Mey, D., and Müller, M. S. (2014). Suitability of perfor-
mance tools for openmp task-parallel programs. In Intl. Workshop on Par. Tools for
HPC, pages 25–37. Springer.

Virouleau, P., Brunet, P., Broquedis, F., Furmento, N., Thibault, S., Aumage, O., and
Gautier, T. (2014). Evaluation of openmp dependent tasks with the kastors benchmark
suite. In International Workshop on OpenMP, pages 16–29. Springer.

https://inria.hal.science/hal-02960848
https://inria.hal.science/hal-02960848

	Introduction
	Background
	Task-based paradigm and OpenMP
	Tracing task-based applications and the OpenMP Tools (OMPT) API

	Related Work
	Methods and Materials
	Applications: Cholesky Factorization, Gauss-Seidel and the QR Factorization
	Tracing Tools: Score-P, Extrae, TiKKi, Void, Printf, and OOT
	Hardware & Software configuration
	Design of Experiments (DoE)

	Results
	Overview of the tracing intrusion
	Detailed analysis and Extrae lack of scalability
	Differences among Void and OOT and Score-P

	Conclusion

