
To Pin or not to Pin: That is the question

Guilherme Galante1, Marcio Seiji Oyamada2

1Programa de Pós-Graduação em Computação
Universidade Estadual do Oeste do Paraná - Unioeste

Cascavel – PR – Brazil

{guilherme.galante, marcio.oyamada}@unioeste.br

Abstract. Hybrid CPU architectures, that combine high-performance and ef-
ficiency cores, pose new challenges for serial and parallel applications. With
homogeneous processors, problems such as load imbalance, performance pre-
dictability, thread migration overhead and energy consumption are mitigated by
CPU pinning. However, given the characteristics of hybrid processors, is CPU
pinning a solution to the problems posed? Thus, our main goal is to answer
the central question: to pin or not to pin? The results indicate that there is no
universal answer, as it depends on the application and the execution context.

Resumo. Arquiteturas de CPU hı́bridas, que combinam núcleos de alto de-
sempenho e eficiência energética, apresentam novos desafios para aplicações
seriais e paralelas. Em processadores homogêneos, problemas como bal-
anceamento de carga, previsibilidade de desempenho, sobrecarga gerada pela
migração de threads e consumo de energia podem ser mitigados pela pinagem
de CPU. No entanto, dadas as caracterı́sticas dos processadores hı́bridos, a
pinagem de CPU é uma solução eficiente para os problemas apresentados?
Nesse contexto, o principal objetivo deste trabalho é responder à pergunta: fixar
ou não fixar as threads? Os resultados indicam que não há uma resposta única,
dependendo da aplicação e do contexto de execução.

1. Introduction

Asymmetric multicore processors (Gonçalves et al. 2024), Heterogeneous Proces-
sors (Cunningham and Weaver 2024) or Hybrid processors (Yue and Mehta 2023) are
processors that combine two or more different types of processing cores within a sin-
gle chip to improve performance and energy efficiency. Typically, they include high-
performance and energy-efficient cores.

A common example of this type of processor is the ARM big.LITTLE architec-
ture, which is widely used in smartphones (Smejkal et al. 2024). The high-performance
(big) cores feature high single-thread performance and high energy consumption, while
the energy-efficient (LITTLE) cores present much lower single-thread performance at
a lower power. More recently, Intel has adopted a similar approach in its Alder
Lake Architecture that combines performance cores (P-cores) and efficiency cores (E-
cores) (Rotem et al. 2022), addressing power and energy scaling with two core types that
are very different in power and performance characteristics. In this paper, we use an Alder
Lake CPU in the execution environment.



Ideally, these architectures can offer significant benefits in terms of energy effi-
ciency and overall performance, however, they can also introduce some challenges for
parallel applications, especially those designed with homogeneous cores in mind.

The first issue is load imbalance (Moori et al. 2023). In hybrid systems, perfor-
mance cores (P-cores) are much more powerful than efficiency cores (E-cores). When a
parallel application distributes work equally across all available cores, the P-cores may
finish their tasks much earlier than the E-cores. This leads to idle time and inefficient
resource usage, as the overall execution time can be determined by the slowest threads.
Besides, this processing power difference also reduces performance predictability. Since
the same code may run at very different speeds depending on whether it executes (P-core
or an E-core), developers may face difficulties in debugging, profiling, collecting metrics,
and optimizing parallel applications.

Another issue is related to task scheduling (Cunningham and Weaver 2024). If
the operating system’s scheduler is not adapted for hybrid architectures, it may assign
performance-critical threads to E-cores, resulting in significant slowdowns. In contrast,
less demanding background tasks might unnecessarily occupy P-cores, wasting valuable
processing power. Some modern operating system schedulers, for example, Windows
11, address this issue (Smejkal et al. 2024; Saez and Prieto-Matias 2022). At the time of
writing this work, it was not clear if/how the Linux operating system addresses this issue
(diffuse and conflicting information). This problem can also be related to the thread mi-
gration overhead caused when threads are dynamically moved between cores of different
types, increasing the execution time since a slower CPU may be chosen.

Finally, hybrid architectures can sometimes lead to higher energy consumption
when using energy-efficient cores. Although these cores consume less power individ-
ually, their lower performance can result in longer execution times. As the execution
time increases, the total energy consumed (which is a product of power and time) may
end up being higher than if the same task were executed more quickly on a performance
core (Smejkal et al. 2024). In other words, low power does not always mean low energy
usage.

Analyzing this context, one alternative that immediately comes to mind to mit-
igate these issues is CPU pinning (CPU affinity or binding). This ensures that the
operating system scheduler will run a thread on the designated CPU core (or set of
cores) (Zhao et al. 2023). Traditionally, on multicore and NUMA systems, CPU pin-
ning may improve performance by reducing context switching overhead, as processes
remain on the same cores instead of being moved by the operating system scheduler.
This also enhances cache efficiency by avoiding cache misses and maintaining warm
data (Mazouz et al. 2013).

But given the characteristics of hybrid processors, is CPU pinning a solution to the
questions posed? Is binding threads to P-cores sufficient to improve performance, or can
restricting execution to E-cores serve as a strategy to reduce energy consumption? Thus,
in this paper, we conduct an extensive set of experiments to analyze the impact of CPU
pinning on performance interference and energy efficiency in both sequential and parallel
OpenMP applications running on an Intel Alder Lake processor. Our goal is to address
the central question: to pin or not to pin?



The rest of the paper is organized as follows: Section 2 presents related work.
Section 3 presents the experimental setup, while Section 4 describes the test cases used.
The results are presented in Section 5. Finally, Section 6 concludes the paper.

2. Related Work
Recent advances in processor design have resulted in the extensive use of hybrid archi-
tectures. Although these architectures offer significant potential to optimize performance
per watt, they also introduce new challenges. This section reviews the existing literature
that investigates the issues associated with hybrid processors, providing context for the
analysis presented in this work.

Regarding scheduling, Saez and Prieto-Matias (2022) evaluate how effectively the
OS can drive scheduling decisions with Thread Director (TD) performance hints incorpo-
rating support in Linux to access TD facilities from the operating system kernel. They also
build hardware-counter based prediction models for improving scheduling. The experi-
ments used an Intel Core i9-12900K processor. The results show that the model provided
better results than the use of TD.

In the same sense, Bilbao et al. (2023) propose PMCSched, an open source frame-
work for the Linux kernel that enables rapid development of the OS-level support required
to create custom scheduling and resource management schemes on symmetric and asym-
metric multicore systems. In the tests, an Intel Core i9-12900K Alder Lake processor was
used. The potential of the framework was proven by a set of experimental case studies.

Smejkal et al. (2024) present E-Mapper, a resource management approach inte-
grated into Linux to improve execution on heterogeneous processors. The resource allo-
cation decisions are based on high-level application descriptions that the user can attach to
programs or that the system can learn automatically at runtime. The solution was tested
in a Samsung Exynos 5422 and in an Intel Raptor Lake Core i9-13900K. The authors
reported improvements in terms of execution time and energy consumption of 25% and
40% for the Intel Raptor Lake Core i9-13900K and 12% and 25% for the Odroid XU3-E.

Another issue explored in the literature is the performance in hybrid processors.
Moori et al. (2023) propose HyTuning, a heuristic algorithm for optimizing the applica-
tion performance requirements (execution time, energy, or EDP) by adjusting the number
of threads on P-cores and E-cores of Alder Lake processors. Gonçalves et al. (2024)
investigated the effects of process variability on core performance, power, and temper-
ature on an Intel i9-12900KF processor when it is subjected to different workloads and
core/uncore frequency levels.

Sundfeld et al. (2025) developed an asymmetry-aware workload distribution strat-
egy for the PA-Star MSA bioinformatics application. They designed a two-level hash-
function strategy to assign threads to cores in order to improve the execution time. The
results present a reduction in the average execution time 2.97x faster for the x86 64 ar-
chitecture and 2.46x faster for the ARM architecture.

As emphasized in related work, mapping applications to hybrid CPUs remains
a relevant and current challenge. Our study contributes by providing additional empiri-
cal evidence and investigating how thread affinity affects both performance and energy
consumption in parallel applications.



3. Experimental Setup
The experimental evaluation setup comprises an Intel Alder Lake i9-14900K, which has
8 P-cores and 16 E-cores, along with 128 GB of DDR5 RAM. The cache configuration
is presented in Figure 1, generated via lstopo Linux command. P-cores operate at a 3.2
GHz base frequency, reaching up to 6 GHz. In contrast, the E-cores operate at a 2.4 GHz
base frequency, reaching up to 4.4 GHz. In our experiments, hyperthreading was disabled
on P-cores to ensure a fair comparison, given that E-cores lack support for this feature,
and also to prevent system threads from running on these cores.

Figure 1. Intel i9-14900K configuration.

Regarding the software environment, we used Ubuntu Linux (various versions) as
the operating system. We used three applications implemented in C/C++ with OpenMP
as benchmarks: Lulesh 2.0 (Livermore Unstructured Lagrange Explicit Shock Hydrody-
namics)(Karlin et al. 2013), a highly simplified application hard coded to solve the Sedov
blast problem with analytical answers; Mandelbrot set area, an almost linearly scalable ap-
plication from the OpenMP Source Code Repository (OmpSCR), and an implementation
of the LU reduction algorithm for a dense matrix, also from OmpSCR (Dorta et al. 2005).
Lulesh incorporates both CPU- and memory-bound kernels, while Mandelbrot is primar-
ily CPU-bound, and this LU decomposition is memory-bound. The parameters used in
each application are presented in Table 1.

Application Parameters Meaning
Lulesh -q -s 45 quiet execution, input size 45
Mandelbrot 500000 input size: 500000 points
LU 5000 input size: 5000 x 5000 matrix

Table 1. Applications parameters.

To collect the metrics, we used perf 1 an analysis tool available on Linux systems,
designed to collect and analyze a wide range of hardware and software performance data.
It provides access to performance counters in modern processors, allowing users to mon-
itor metrics such as execution time, CPU cycles, instructions executed, cache hits and
misses, context switches, energy consumption, and more.

We design our methodology to characterize performance variability while ensur-
ing reproducible and unbiased measurements. Each experiment was run 10 times under
identical conditions (no concurrent processes) to account for variability and to apply sta-
tistical analysis to ensure the robustness of our results. In the next section, we describe
the different test scenarios.

1https://man7.org/linux/man-pages/man1/perf.1.html



4. Experimental Scenarios
In this section, we present the three experimental scenarios used in our evaluation. Each
scenario is designed to assess a different aspect of the impact of hybrid processors. In
Section 4.1, we evaluate the performance and energy consumption of applications ex-
ecuted serially. Section 4.2 focuses on the evaluation of parallel executions, analyzing
their behavior under different configurations. Finally, in Section 4.3, we investigate the
influence of hybrid CPUs on the performance of KVM virtual machines.

4.1. Scenario 1: Serial Applications

In Scenario 1, the execution of the serial versions of Lulesh, Mandelbrot and LU is eval-
uated. We compare ten execution configurations, described in Table 2. In this scenario,
Ubuntu Linux 24.04 LTS kernel 6.11.0-29 is used.

Test Case # Mapping Governor
1 Linux scheduler Performance
2 P-cores Performance
3 P-cores pinning Performance
4 E-cores Performance
5 E-cores pinning Performance
6 Linux scheduler Powersave
7 P-cores Powersave
8 P-cores pinning Powersave
9 E-cores Powersave
10 E-cores pinning Powersave

Table 2. Experimental scenarios configurations.

These configurations were defined by varying both the thread-to-core mapping
strategy and the CPU frequency scaling policy (Linux Power Governor). We evaluated
five mapping schemes: (1) the default Linux scheduler; (2) mapping threads to a set of
P-cores; (3) pinning each thread to a specific P-core; (4) mapping threads to a set of E-
cores; and (5) pinning each thread to a specific E-core. For each assignment scheme,
experiments were conducted with two governor policies: Performance (favoring maxi-
mum performance) and Powersave (favoring energy efficiency).

4.2. Scenario 2: Parallel Applications

In Scenario 2, we evaluate the execution of parallel versions of Lulesh and Mandelbrot.
We compare the same ten configurations described in Table 1 using 2 and 8 threads.

4.3. Scenario 3: KVM Virtual Machines

In Scenario 3, the focus is on assessing the impact of hybrid processors in KVM virtual
machines. To this end, experiments were conducted using a virtual instance with Ubuntu
Linux 24.04 LTS kernel 6.11.0-29.

Even when a VM is instantiated with a kernel version that supports hybrid pro-
cessors, KVM virtualization abstracts the underlying processor details, even when CPU
passthrough is enabled. As a result, all virtual CPUs are exposed to the guest with iden-
tical characteristics, masking the distinction between P-cores and E-cores. Consequently,



the guest operating system’s scheduler loses the ability to properly distribute computa-
tional loads, leaving the responsibility for thread scheduling entirely to the host operating
system’s scheduler. In this context, we analyze how different strategies for allocating
VM cores affect the performance of the Lulesh application when running in a virtualized
environment.

5. Results and Discussion
In this section, we present the experimental results obtained from evaluating the impact
of thread-to-core mappings and frequency scaling strategies on the performance and en-
ergy efficiency of applications running on Intel’s Alder Lake processor. The analysis is
organized to highlight performance trends, quantify energy tradeoffs, and provide insights
into the impact of different scheduling strategies on sequential and parallel workloads.

5.1. Scenario 1

Table 3 shows the results of the serial execution of the Lulesh application. It shows the
execution wall-clock time (seconds), the average processor frequency (GHz), the number
of migrations, the cache misses, and the energy consumption (joules)2. All data were
collected directly in perf tool output, which, when executed with r repetitions (using −r
parameter), directly provides averages and standard deviations.

Lulesh Exec. Time (s) avg. Freq. (GHz) Migrations Cache misses Energy (J)Test Case avg std.dev
#1 45.073 0.026 5.976 1 1376989875 2215.08
#2 45.189 0.043 5.957 1 1394953159 2220.25
#3 56.165 0.015 4.690 1 1356548507 2021.04
#4 81.899 0.074 4.390 0 2097211501 1788.89
#5 82.366 0.155 4.390 1 2119812554 1746.04
#6 65.419 0.026 3.991 1 1311504638 760.07
#7 65.492 0.027 3.991 1 1339252718 758.49
#8 65.610 0.009 3.991 1 1342128338 805.77
#9 90.584 0.211 3.978 0 2086250040 1152.18

#10 90.045 0.198 3.978 1 2085943032 1125.09

Table 3. Serial Lulesh algorithm results.

In terms of performance, the best execution times were achieved in test cases #1
and #2, where the threads were executed exclusively on a P-core running at an average
frequency close to the processor’s maximum limit. An interesting behavior was already
observed in test case #3: When the thread was concentrated on a single P-core, the core
temperature increased, triggering CPU throttling and leading to performance degradation.
As expected, cases #4 and #5 present inferior results compared to tests #1 - #3, as they
only use E-cores, which have lower frequencies and smaller caches, leading to more cache
misses. Test cases #6 – #10 employ the powersave governor. In these scenarios, the
operating frequencies are reduced and become nearly identical for both P-cores and E-
cores. Nevertheless, execution times remain superior when P-cores are utilized, a result
primarily explained by the lower number of cache misses observed in these cases.

2It is important to emphasize that perf measures energy consumption ”system-wide” and not just the
energy used to run the application.



Regarding power consumption, no significant differences were observed when the
performance governor was applied. However, in test cases #6 – #10 (powersave governor),
the results reveal a counterintuitive behavior: executions restricted to P-cores (#6, #7, and
#8) exhibited lower power consumption compared to those running exclusively on E-cores
(#9 and #10). This outcome contrasts with expectations, as E-cores are generally assumed
to offer better energy efficiency.

Tables 4 and 5 show the results of the executions of the Mandelbrot and LU appli-
cations, respectively. The results shown in these tables are consistent with those obtained
in the Lulesh experiments, with no significant differences observed.

Mandelbrot Exec. Time (s) avg. Freq. (GHz) Migrations Cache misses Energy (J)Test Case avg std.dev
#1 46.882 0.021 5.979 1 270276 1908.70
#2 46.910 0.018 5.975 1 345848 1913.81
#3 46.841 0.014 5.984 1 284001 1690.44
#4 80.860 0.004 4.390 0 333210 1588.80
#5 80.867 0.002 4.390 1 373315 1650.79
#6 73.240 2.980 3.829 1 277895 731.34
#7 70.250 0.001 3.991 1 319899 681.30
#8 70.249 0.001 3.991 1 324191 709.70
#9 88.956 0.003 3.991 0 330368 968.74

#10 88.959 0.011 3.991 1 383916 964.18

Table 4. Serial Mandelbrot algorithm results.

LU Exec. Time (s) avg. Freq. (GHz) Migrations Cache misses Energy (J)Test Case avg std.dev
#1 65.957 0.109 5.915 1 2851228366 3407.19
#2 65.771 0.065 5.915 1 2853126206 3510.62
#3 65.880 0.026 5.915 1 2869917036 3143.43
#4 112.953 0.081 4.390 0 5455336425 2764.96
#5 112.963 0.026 4.390 1 5448414184 3018.88
#6 95.834 0.071 3.991 1 2581244763 1231.49
#7 95.939 0.065 3.991 0 2587569429 1212.91
#8 95.871 0.078 3.991 1 2195002366 1210.11
#9 124.454 0.196 3.962 0 5379033992 1657.64

#10 124.475 0.031 3.962 1 5376811059 1660.35

Table 5. Serial LU algorithm results.

In summary, the results presented in this section indicate that the operating system
scheduler is effective in mapping application threads, achieving performance compara-
ble to that obtained with explicit pinning. However, from an energy perspective, pinning
threads in E-cores under the powersave governor is not advisable, since their lower perfor-
mance results in longer execution times and demands more energy. This is in accordance
with what is stated by Smejkal et al. (2024).

5.2. Scenario 2

In this section, we present the results of Lulesh and Mandelbrot applications and investi-
gate whether the patterns observed in their serial counterparts also apply to multithreaded



executions. Experiments with LU application were conducted, however, since the results
were very similar to those obtained with Lulesh, they were omitted.

Table 6 reports the results of executing Lulesh with 2 threads, using the same
experimental configurations as described in Table 2.

Lulesh (2th) Exec. Time (s) avg. Freq. (GHz) Migrations Cache misses Energy (J)Test Case avg std.dev
#1 33,380 0,032 5,800 141 2817575000 2333,98
#2 34,125 0,052 5,708 2 2822575887 2315,91
#3 34,496 0,039 5,593 2 2791312808 2088,08
#4 57,744 0,005 4,333 2 3265669001 1499,06
#5 59,112 0,027 4,334 2 3471180328 1566,75
#6 48,139 0,091 3,777 3499 2960993483 1382,13
#7 47,836 0,013 3,827 2 2762125393 1243,20
#8 48,280 0,052 3,822 2 2953521883 1412,64
#9 64,266 0,047 3,847 2 3265025871 1450,74

#10 66,471 0,115 3,816 2 3771994269 1517,57

Table 6. Parallel Lulesh results - 2 threads.

In general, the performance trends observed in the execution using 2 threads
closely match those of serial execution. When using the performance governor, test
cases #1 – #3 consistently deliver similar execution times and significantly outperform
the E-core restricted configurations (#4 and #5). These results reinforce the findings that
P-cores provide a significant advantage in sustaining high performance compared to E-
cores, even in parallel executions. Conversely, the exclusive use of E-cores introduces a
significant performance penalty that can only be justified in scenarios where energy ef-
ficiency is prioritized over execution time (using the performance governor). Under the
powersave governor, however, configurations that use only P-cores still deliver superior
performance. In this case, they also achieve better energy efficiency, as all cores operate
at lower frequencies.

Table 7 shows the results of executing Lulesh with 8 threads. Here, under the
performance governor, the behavior of the application is similar to the serial version run-
ning with two threads. However, under powersave mode, some of the previously observed
trends were not confirmed. Although the average frequencies of P-cores and E-cores were
relatively close, execution times exhibited greater variability, with a slight advantage for
configurations using only P-cores. Case #8 produced a particularly adverse result, which
remained consistent even after re-running the experiment. The previously observed trend
towards energy efficiency did not persist here. In this scenario, better energy performance
was achieved with E-cores.

In both Tables 6 and 7 we can observe in the tests without explicit affinity (#1
and #6), the number of thread migrations increases significantly. This behavior reflects
the scheduler’s attempt to mitigate the increase in core temperature and prevent CPU
throttling. However, such migrations come at the cost of reduced cache locality, which
can increase the number of cache misses. Also in terms of cache performance, executions
restricted to E-cores show a higher number of misses, which can be attributed to the
reduced cache capacity available on these cores. It can also be observed that increasing
the number of threads generally leads to a reduction in the average operating frequency.



This effect results from the fact that the processor cannot maintain higher frequencies
when a larger number of cores are active simultaneously.

Lulesh (8th) Exec. Time (s)
Test Case avg std.dev avg. Freq. (GHz) Migrations Cache misses Energy (J)

#1 18,288 0,160 4,877 2886 2612315255 2086,35
#2 18,155 0,002 4,968 8 2544510910 2147,49
#3 18,364 0,156 4,796 8 2580966436 1988,61
#4 25,555 0,024 4,132 8 3005432398 1369,13
#5 27,310 0,065 4,123 8 3373994502 1401,25
#6 26,043 0,090 3,444 20904 2889387860 1672,79
#7 22,975 0,028 3,500 8 2575187489 1359,34
#8 45,130 2,360 3,413 8 2892967800 1870,97
#9 28,719 0,049 3,614 8 3000912461 1251,00

#10 31,217 0,090 3,551 8 3455313422 1119,82

Table 7. Parallel Lulesh results - 8 threads.

Tables 8 and 9 show the results of executing Mandelbrot with 2 and 8 threads,
respectively, using the same experimental configurations described in Table 2. In general
terms, the performance and energy patterns observed with the Mandelbrot application
match those reported in Lulesh experiments.

Mbrot (2th) Exec. Time (s) avg. Freq. (GHz) Migrations Cache misses Energy (J)Test Case avg std.dev
#1 25,580 1,180 5,706 3 245065 1484,82
#2 24,559 0,001 5,786 2 274717 1460,01
#3 24,741 0,001 5,688 2 225835 1358,89
#4 39,837 0,015 4,390 2 340490 1051,50
#5 39,816 0,001 4,390 2 328961 1029,45
#6 36,710 1,440 3,908 2 223782 558,95
#7 37,770 2,500 3,854 2 260967 554,94
#8 35,266 0,001 3,991 2 235869 559,39
#9 43,897 0,078 3,991 2 326825 690,35

#10 43,835 0,025 3,991 2 314724 682,40

Table 8. Parallel Mandelbrot results - 2 threads.

Mbrot (8th) Exec. Time (s) avg. Freq. (GHz) Migrations Cache misses Energy (J)Test Case avg std.dev
#1 6,525 0,012 5,451 14 211089 891,52
#2 7,762 0,001 5,347 8 298423 1100,39
#3 6,861 0,010 5,178 8 240861 848,03
#4 10,054 0,000 4,390 8 315402 645,84
#5 10,053 0,000 4,390 8 285143 626,15
#6 8,9204 0,004 3,991 13 255370 501,53
#7 8,9106 0,001 3,991 8 265576 429,64
#8 8,9117 0,001 3,991 8 331449 665,98
#9 11,0847 0,019 3,991 8 301638 436,82

#10 11,0666 0,001 3,991 8 298500 523,84

Table 9. Parallel Mandelbrot results - 8 threads.



Although the overall patterns of Lulesh and Mandelbrot are similar, some
application-specific behaviors can be observed. For example, we can observe that the
number of migrations and cache misses is much lower in the Mandelbrot application. An-
other important observation is that the average frequency in Mandelbrot is higher than
that recorded for Lulesh.

Thus, understanding the application’s profile becomes essential to explore the per-
formance of this type of processor. For instance, CPU throttling is directly influenced by
the characteristics of the running application, especially in terms of CPU intensity, mem-
ory access patterns, and parallelism. CPU-bound applications, which require high pro-
cessing power per core, tend to trigger throttling mechanisms faster when temperature or
power limits are reached, especially on high-performance cores (P-cores). The degree of
parallelism also plays a crucial role since increasing the number of simultaneous threads
can overload multiple cores, which increases power consumption and temperature, and
leads to frequency reduction to ensure safe operation. In addition, workloads with fre-
quent cache misses or irregular memory accesses can trigger frequency fluctuations to
balance performance and thermal efficiency.

5.3. Scenario 3

This experiment was performed on a KVM3 virtual machine configured with 16 GB of
memory and 8 vCPUs. The vCPUs were mapped using different approaches, and for each
configuration, the execution time of the Lulesh application with 4 threads was measured.
Table 10 shows the results. This number of threads was chosen to allow partial utilization
of the available cores, allowing different mapping possibilities.

Mapping Lulesh execution time std. dev.
8 P-Cores 18,505 0,085
8 P-Cores (pinned) 18,395 0,101
8 E-Cores 33,963 0,108
P-Cores and E-Cores (scheduler) 18,511 0,088
4 P-Core and 4 E-Cores (pinned) 34,145 0,438

Table 10. Lulesh results in different vCPU mapping approaches.

Assigning the 8 vCPUs to 8 P-cores, whether pinned individually or not, results
in the best performance, with an execution time of approximately 18 seconds. When
the decision is left exclusively to the scheduler, without explicit affinity, the vCPUs are
also allocated to P-cores, producing results very similar to those obtained through explicit
P-core assignment.

In contrast, mapping the 8 vCPUs to E-cores results in an execution time of ap-
proximately 34 seconds, roughly 1.8x slower than the best case. A comparable slow-
down is observed when pinning the vCPUs across both core types (4 on P-cores and 4 on
E-cores)4, where the inclusion of E-cores negatively impacts overall application perfor-
mance.

3https://linux-kvm.org/page/Main_Page
4Cores 4 to 11 were allocated, where cores 4–7 correspond to P-cores and cores 8–11 to E-cores.



6. Conclusion
This study highlights the impact of hybrid CPU architectures on the execution of serial
and parallel applications and shows that application characteristics and mapping strategies
play a decisive role in overall performance and energy efficiency. But in the end, how do
we answer the initial question? To pin or not to pin?. The results indicate that no single
answer applies universally, as it depends on the application and execution context.

In general, the Linux scheduler proved to be effective in mapping application
threads to the hybrid CPU cores, usually favoring P-cores and thereby ensuring good
execution performance. Thus, in this scenario, relying on the scheduler’s decisions may
represent a reasonable choice. Obviously, if the goal is to grant the best application perfor-
mance, you can choose to pin it to the P-cores, even at the risk of incurring CPU throttling.
From an energy perspective, the results confirm that pinning applications to E-cores does
not always yield the best results, as their lower performance leads to longer execution
times, which may result in higher energy consumption. In virtualized environments, CPU
affinity is equally important. Since the virtualization layer abstracts the underlying hard-
ware from the guest operating system, the correct assignment of vCPU to cores can have
a significant impact on the performance of virtualized applications. In such cases, explicit
pinning of virtual CPUs becomes necessary.

The use of hybrid architectures can impact other aspects of parallel programming
not addressed in this paper. Considering that P-cores and E-cores exhibit different per-
formance and energy profiles, a full CPU cores usage can generate a natural load im-
balance. To address such imbalances, developers can implement custom load balancing
algorithms within the application or rely on scheduling mechanisms provided by parallel
programming models. In OpenMP, for example, approaches such as dynamic and guided
scheduling enable a more adaptive allocation of tasks, mitigating workload imbalances
and improving overall processor utilization.

While the results provide relevant insights, their generalization is limited by fac-
tors such as the use of a single CPU model, one Linux distribution, and a relatively small
benchmark set. Future work should expand these dimensions to strengthen the validity
of the findings. Thus, future research could explore more advanced scheduling strategies,
such as adaptive runtime or AI-based heuristics, to improve performance and energy effi-
ciency on hybrid CPUs. Extending the analysis to larger, real-world workloads, including
HPC applications, data science, and machine learning, would help to verify whether the
trends observed in benchmarks persist in more complex scenarios. Investigating dynamic
load balancing techniques to distribute work more evenly across heterogeneous cores is
also a relevant research opportunity.

Acknowledge
The authors would like to thank the Laboratório de Processamento e Prototipação (LAPP-
Unioeste) for providing access to the machine used in the experiments.



References
[Bilbao et al. 2023] Bilbao, C., Saez, J. C., and Prieto-Matias, M. (2023). Flexible system

software scheduling for asymmetric multicore systems with pmcsched: A case for intel
alder lake. Concurrency and Computation: Practice and Experience, 35(25).

[Cunningham and Weaver 2024] Cunningham, W. E. and Weaver, V. M. (2024). Perfor-
mance measurement on heterogeneous processors with papi. In SC24-W: Workshops of
the International Conference for High Performance Computing, Networking, Storage
and Analysis, page 1551–1561. IEEE.

[Dorta et al. 2005] Dorta, A., Rodriguez, C., de Sande, F., and González-Escribano, A.
(2005). The openmp source code repository. In 13th Euromicro Conference on Paral-
lel, Distributed and Network-Based Processing, pages 244–250.

[Gonçalves et al. 2024] Gonçalves, T. D. S., Beck, A. C. S., and Lorenzon, A. F. (2024).
Investigating the influence of process variability on asymmetric multicore processors.
In 2024 37th SBC/SBMicro/IEEE Symposium on Integrated Circuits and Systems De-
sign (SBCCI), page 1–5. IEEE.

[Karlin et al. 2013] Karlin, I., Keasler, J., and Neely, R. (2013). Lulesh 2.0 updates and
changes. Technical Report LLNL-TR-641973, LLNL.

[Mazouz et al. 2013] Mazouz, A., Touati, S.-A.-A., and Barthou, D. (2013). Dynamic
thread pinning for phase-based openmp programs. In Wolf, F., Mohr, B., and an Mey,
D., editors, Euro-Par 2013 Parallel Processing, pages 53–64, Berlin, Heidelberg.
Springer Berlin Heidelberg.

[Moori et al. 2023] Moori, M. K., Rocha, H. M. G. d. A., Lorenzon, A. F., and Beck, A.
C. S. (2023). Searching for the ideal number of threads on asymmetric multiprocessors.
In 2023 XIII Brazilian Symposium on Computing Systems Engineering (SBESC), page
1–6. IEEE.

[Rotem et al. 2022] Rotem, E., Yoaz, A., Rappoport, L., Robinson, S. J., Mandelblat,
J. Y., Gihon, A., Weissmann, E., Chabukswar, R., Basin, V., Fenger, R., Gupta, M.,
and Yasin, A. (2022). Intel alder lake cpu architectures. IEEE Micro, 42(3):13–19.

[Saez and Prieto-Matias 2022] Saez, J. C. and Prieto-Matias, M. (2022). Evaluation of
the intel thread director technology on an alder lake processor. In Proceedings of the
13th ACM SIGOPS Asia-Pacific Workshop on Systems, APSys ’22, page 61–67. ACM.

[Smejkal et al. 2024] Smejkal, T., Khasanov, R., Castrillon, J., and Härtig, H. (2024).
E-Mapper: Energy-efficient resource allocation for traditional operating systems on
heterogeneous processors.

[Sundfeld et al. 2025] Sundfeld, D., Teodoro, G., and Melo, A. C. M. A. (2025). Pa-star2:
Fast optimal multiple sequence alignment for asymmetric multicore processors. In
2025 33rd Euromicro International Conference on Parallel, Distributed, and Network-
Based Processing (PDP), pages 146–153.

[Yue and Mehta 2023] Yue, A. and Mehta, S. (2023). An application-oriented approach
to designing hybrid cpu architectures. In 2023 IEEE International Symposium on Per-
formance Analysis of Systems and Software (ISPASS), page 92–102. IEEE.

[Zhao et al. 2023] Zhao, J., Lim, K., Anderson, T., and Enright Jerger, N. (2023). The
case of unsustainable cpu affinity. In Proceedings of the 2nd Workshop on Sustainable
Computer Systems, HotCarbon ’23, New York, NY, USA. Association for Computing
Machinery.


