
OpenMP and StarPU Abreast: the Impact of Runtime
in Task-Based Block QR Factorization Performance

Marcelo Cogo Miletto, Lucas Mello Schnorr

Graduate Program in Computer Science (PPGC/UFRGS), Porto Alegre, Brazil

{marcelo.miletto, schnorr}@inf.ufrgs.br

Abstract. Directed Acyclic Graph (DAG) is a high-level abstraction to describe
the activities of parallel applications. A DAG contains tasks (nodes) and de-
pendencies (edges) in the task-based programming paradigm. Application per-
formance depends on the choices of the runtime system. Our work intends
to evaluate and compare the performance of three different runtime systems,
GCC/libgomp, LLVM/libomp, and StarPU for a task-based dense block QR fac-
torization. The obtained results show that while GCC/libgomp achieves up to
5.4% better performance in the best case, it has scalability problems for fine-
grain problems with large DAGs. LLVM/libomp and StarPU are more scalable,
and StarPU is much faster in task creation and submission than the other run-
times.

1. Introduction
The path followed by the microprocessor industry to enable high-performance computing
in nowadays machines had lead to the popularization of multicore architectures. To ex-
plore the performance provided by this type of architecture, one must consider the task-
based programming model among the different parallel programming paradigms. The
task-based paradigm permits to organize the application workload as a Directed Acyclic
Graph (DAG), being a powerful idea that helps to port performance over different sophis-
ticated computing platforms by using a runtime system to schedule complex workloads to
many cores [Dongarra et al. 2017]. The nodes of the DAG represent computational tasks,
and the edges express dependencies among them. The execution can be done in parallel,
respecting the dependencies present in the graph.

There are many libraries and language extensions to represent task-oriented appli-
cations. StarPU [Augonnet et al. 2011], OpenMP [Dagum and Menon 1998], and TBB
[Willhalm and Popovici 2008] are examples of these libraries. These tasking models are
in constant evolution, OpenMP, for example, now enables more flexibility in the repre-
sentation of tasks due to the implementation of more complex task-based directives. The
StarPU library, which is designed specifically for task-based parallelism, counts with a dy-
namic runtime system which helps applications to perform over heterogeneous. Runtime
systems help to reduce the complexity of programming by taking care of some operations
like task scheduling, possibly using some strategy to favor load balancing and data local-
ity. The runtime knows the DAG structure and decides which tasks can execute at a given
moment. Also, it needs to specify where the task will run, associating it to a processing
unit. The runtime takes these decisions in execution time, and they are different for two
executions of the same program since the runtime decisions are stochastic, depending on
several factors such the system resources availability at a given moment.

The ease offered by the runtime decisions represents extra computation cost for
the application, possibly adding overhead into its execution time. The objective of this
work is to compare and measure the impact that different runtimes have on the same
task-based application. We rely on tracing techniques to support our findings. The exper-
iments in this work will be conducted using the GCC/libgomp, the LLVM/libomp, and
the StarPU runtimes. We chose these three runtimes because they are non-commercial
and open source. OpenMP runtimes are widespread, and we include StarPU because our
research group has some involvement in its development. Our main contributions are
as follows. First, we evaluate the performance of the three runtimes for the same task-
based application using experiments involving different computational environments and
workloads. Second, we analyze application traces to highlight the runtime characteristics
in terms of task management, looking at task creation/submission overhead, and the load
balancing by terms of the idleness of each thread. Moreover, third, we identify a problem
in the task creation/submission for GCC/libgomp where the overhead for it was much
higher than for other runtimes. We detail these contributions in the context of a block QR
factorization we have implemented for the three runtimes. We use dense QR factoriza-
tion because this type of application is suitable for the task-based paradigm and capable
of outstanding performance in modern architectures. Comparing to related work, ours
include tracing techniques for performance analysis to all the three assessed runtimes.

Section 2 presents the application used and an overview of task-based programming and
on tracing parallel application behavior. Section 3 presents the experimental methodology.
Section 4 discusses the obtained results. Section 5 presents related work, and limitations
of our work. Section 6 concludes the paper and presents future work. The companion
material of this work is publicly available at https://zenodo.org/record/3436264.

2. Background on QR Factorization, Task-based Paralelism and Tracing

This section introduces an overview of what are the application characteristics and how to
represent it as a task-based application using different programming interfaces. Then, we
present three different strategies to trace the application behavior, one for each runtime.

2.1. Block QR Factorization

Given a matrix A of size m × n, the QR factorization transform it in the two factors
Q and R, where Q is an orthogonal matrix having the same size of A, and R is an up-
per triangular matrix of size m × m with nonzero diagonal elements. This factorization
method is used to solve a system of linear equations that arise from many applications
and plays a vital role in solving the linear least-squares problem. There are many al-
gorithms for the QR factorization [Golub and Van Loan 2012] like the Gram-Schmidt or-
thogonalization [Schmidt 1908], Givens rotations [Givens 1958], and the Householder re-
flections [Householder 1958]. The use of the latter is a common choice as there are high-
performance implementations [Lopez 2015] using blocks. The blocked version groups
Householder transformations and execute them using matrix-matrix operations (Level-3
BLAS), achieving high performance with good cache utilization [Buttari et al. 2008]. By
executing matrix-oriented operations (blocks) instead of rows and columns, the factoriza-
tion makes those block operations more suitable for exploring parallelism. Indeed, the
strategy treats the matrix factorization as a factorization of nb×nb submatrices, where nb

https://zenodo.org/record/3436264

is the number of blocks for a square matrix. Computing many blocks of the matrix at the
same time make parallelism possible.

The implementation of block QR relies on four LAPACK [Anderson et al. 1999]
routines that factorize and update the blocks. They are organized in iterations as repre-
sented by the pseudocode in Algorithm 1. This algorithm follows a set of steps where all
operations get repeated in smaller submatrices of the problem called the trailing subma-
trices, defined by the outermost loop. The LAPACK routines, along with the data they
use, are as follows. DGEQRT factorizes a diagonal matrix block from the input, produc-
ing three matrices: R, V and T . R is the upper triangular matrix, and V is the lower
triangular matrix that holds the Householder reflectors, both R and V overwrite the fac-
tored matrix block. Finally, T is stored separately, storing the accumulated Householder
reflectors using the compact WY technique. DLARFB applies the reflectors calculated
by DGEQRT to blocks to the right of the diagonal one, using V with the reflectors along
with the matrix T . DTPQRT computes the QR factorization of a submatrix by combining
the R factor calculated by DGEQRT or previous calls of DTPQRT on blocks below the
diagonal. The routine updated the R factor of the diagonal block, generating the matrix
V with the reflectors and T from the accumulation of the reflectors, storing it separately.
Finally, DTPMQRT uses the reflectors V and the matrix T calculated by DTPQRT and to
update blocks to the right of the blocks factorized by DTPQRT.

Algorithm 1: The Block Householder QR Factorization with LAPACK routines.
Data: Matrix A of size mb × nb
for (k = 1, 2, . . . ,min(mb, nb)) do

DGEQRT (Akk, Tkk);
for (j = k + 1, k + 2, . . . , nb) do

DLARFB(Akj, Vkk, Tkk);
for (i = k + 1, k + 2, . . . ,mb) do

DTPQRT (Rkk, Aik, Tik);
for (j = k + 1, k + 2, . . . , nb) do

DTPMQRT (Akj, Aij, Vik, Tik);

The steps of the first outer-loop iteration of the algorithm are depicted in Figure
1a for a matrix of 3x3 blocks. The first step (DGEQRT) is in the top-left. Remaining
steps are depicted from left to right starting at the top. Filled blocks represent data writes
on the block in that step, and the highlighted block areas mean that data is being read. By
looking at the figure, it is possible to perceive that some steps can be done in parallel as the
data access pattern does not generate conflicts. For example, after the DGEQRT routine
factorizes the first matrix block, the DLARFB reads the lower part V , and DTPQRT
reads and writes in the upper part R, so these steps can be done in parallel.

2.2. Task-Based Parallelism for Dense block QR Factorization

In the task-based programming paradigm, a Directed Acyclic Graph (DAG) describes
parallel applications, being composed of tasks (nodes) and dependencies among them
(edges). Tasks can be scheduled concurrently by a runtime system respecting the restric-
tions imposed by dependencies and priorities from the application developer. Even with

(a) Steps of the first iteration. (b) DAG for 3x3 blocks.

Figure 1. Visual representations of the block QR Householder Algorithm.

programmer hints, performance depends mostly on the actions of the runtime system, re-
sponsible by mapping tasks to workers efficiently. Distinct runtimes may have a better
or worse performance than others for the same application. The task-based block QR
factorization of Algorithm 1 defines a DAG where tasks (nodes) represent the LAPACK
operations over some block, and the edges are the data dependencies between them. Fig-
ure 1b shows the resultant DAG for a matrix that was divided into mb× nb blocks where
mb = nb = 3. The numbers inside the circles represent the matrix block that the task
modifies, and the dotted red lines separate the iterations of the algorithm, Figure 1a rep-
resents the first iteration with its nine tasks.

OpenMP enables the programmer to determine explicitely data dependencies and priori-
ties for the OpenMP tasks. Algorithm 2 shows an example with the modes that a specific
memory region should be accessed using the inout and out constructs. A new task is
created for every time that a task clause is reached in an OpenMP program. The cre-
ated task will be responsible for executing the block of code that is below this construct,
having some characteristics like the data dependencies and task priority. The task depen-
dency is only fulfilled with the termination of the predecessor task. The OpenMP depend
construct allows the programmer to define a range of the data as a dependency, as shown
in the algorithm with depend(out:T[0:len] construct parameter.

Algorithm 2: Creating a DGEQRT task with OpenMP.
#pragma omp task depend(inout:A[k:k2]) depend(out:T[0:len])

DGEQRT(&A[k], T, block_size);

StarPU is a task-based library equipped with different scheduling algorithms, some HEFT-
based fitted for heterogeneous architectures (i.e., CPU and GPUs). Tasks are implemented
with codelets that encapsulate specialized functions written for specific architectures (i.e,
CUDA, OpenCL, OpenMP). The StarPU runtime system takes care of scheduling and
executing those codelets. StarPU data handles and access modes set the dependencies

over the codelet-defined tasks. A data handle maps the address of any data structure and
the user can specify the modes that this piece of data will be used. Those modes are
read, write, and read-write which are analogous to the in, out and inout OpenMP
constructs. Algorithm 3 depicts, for a DGEQRT task, how the programmer submits a task
using the starpu_task_insert function. As parameters, the function receives a
codelet, the data handles, and the access modes that the task works on. For the DGEQRT
task, we pass three data items representing the upper and lower part of the diagonal block
kb and the matrix T . Other parameters such as block dimension can be passed using the
STARPU_VALUE. The NULL indicates that there are no more parameters to this task.

Algorithm 3: Creating a DGEQRT task using StarPU.
starpu_task_insert(dgeqrt_codelet,

STARPU_RW, blocks[kb_lower], STARPU_RW, blocks[kb_upper],
STARPU_W, handle_T, NULL);

2.3. Tracing Task-Aware Application Behavior
Tracing techniques can be used to register specific events of the task-based program while
the application executes. We need to identify the begin, end, and the worker of the exe-
cution of each task. The structural properties of the DAG must also be obtained, know-
ing a task location in the DAG and its dependencies. We detail below how such data
is extracted from the runtimes with different tracing strategies. The OpenMP Tools
Interface (OMPT) [Eichenberger et al. 2013] allows runtime task tracking with mini-
mal overhead, using user-defined callbacks. The runtime triggers notifications whenever
something has occurred. Captured events give details about what a specific thread is
doing, such as task execution, barrier entry and exit, and other relevant events. Unfortu-
nately, a complete OMPT support is lacking from current versions of GCC/libgomp and
LLVM/libomp. Nevertheless, the LLVM/libomp implementation provides the necessary
OpenMP thread and task behavior. Because the GCC/libgomp compiler lacks OMPT
for tasks, we employ different methods to trace the two OpenMP runtimes. So, while
we adopt an OMPT tracer we have implemented for LLVM/libomp, we employ Score-
P tool [Knüpfer et al. 2012] for GCC/libgomp. Score-P contains a tool called Opari2,
which is a source to source compiler that modifies the application source code prior to
the compilation, automatically instrumenting the code to record specific events such as
task creation and execution. StarPU generates application traces in a very straightfor-
ward way with FxT traces, a binary format that contains data about all events that oc-
curred during the program execution. This trace file is converted to a Paje trace file for-
mat [de Oliveira Stein et al. 2010] using the starpu_fxt_tool, and exploited with
the StarVZ framework [Garcia Pinto et al. 2018] to obtain data in a CSV format.

3. Comparison Methodology and Experimental Details
This section describes the hardware and software environment used in the experiments,
and also the strategies for generating application trace. We use four hosts with varying
hardware characteristics, as depicted in Table 1. For each platform, we detail the name as
the platform identification, the amount/type of CPU, Cache, and RAMs.

Environment Configuration: We have compared the GCC/libgomp, LLVM/libomp, and
StarPU runtimes. All of them use the same four basic linear algebra operations (see

Table 1. Description of the machines utilized for the experiments.

Name CPU L1/L2/L3 RAM
tupi 1× 8 Xeon E5 2620V4 2,1 GHz 32KB/256KB/20MB 64 GB DDR4
orion 2× 6 Xeon E5 2640V2 2,3 GHz 32KB/256KB/15MB 48 GB DDR3
draco 2× 8 Xeon E5 2630V2 2,5 GHz 32KB/256KB/20MB 64 GB DDR3
hype 2× 10 Xeon E5 2650V3 2,3 GHz 32KB/256KB/25MB 128 GB DDR4

Algorithm 1) as implemented by the same 3.8.0 LAPACK library, built on top of the
BLAS library. The GCC/libgomp option represents the GCC 7.4.0 version, which imple-
ments the OpenMP 4.5 version with the libgomp runtime. The LLVM/libomp represents
the libomp runtime [LLVM 2015] (also adhering to the OpenMP 4.5 specification) im-
plemented in the LLVM/CLANG compiler, concentrating efforts of the Intel runtime.
Finally, the StarPU option represents the 1.3 release of this runtime using the default Lo-
cality Work Stealing (LWS) scheduler. Subsection 2.3 discusses the tools we employ to
collect data from each runtime. GCC/libgomp traced with Score-P 5.0; LLVM/libomp
traced with OMPT 4.5 callback specifications with a driver we have implemented; and
StarPU, with FxT 0.3.5. In this scenario, an essential factor to consider when tracing
applications is the intrusion generated by the event recording. Through experiments, we
stated that the tracing did not change the makespan tendency that the results without trac-
ing presented, thus guaranteeing that the application behavior remains close to its natural
behavior.

Design of Experiments: To assess the impact of each runtime in each of the platforms
detailed in Figure 1 separately, we consider two factors for the QR factorization: matrix
size (problem size), block size. The levels of these factors increase by powers of two.
Matrix size range from 1024 to 32768 (six levels), while block size range from 32 to
1024 (six levels). Since some combinations of matrix and block size lead to substantial
execution time and reduced resource utilization, we define a partial design. For example,
not all block sizes combine with all matrices, for matrix 16384 we saw that with 128 as
block size there was already a high number of tasks, and considerable execution time, so
no further combinations with smaller sizes were made. In smaller matrix cases, we also
not considered combinations that did not provide enough parallelism. In each machine,
the working threads of the different versions were bound to the same cores. For each
experimental combination, we replicated the experiment 30 times for matrices up to size
8192, and ten replications for the rest. We consider the execution times to respect a
gaussian distribution, and standard errors are computed by assuming a CI of 99.7%.

4. Performance Evaluation Results and Comparison
We verify the similarity between the two implemented block QR versions (OpenMP and
StarPU) looking at the execution trace and numerical results for a small case. We present
an overview of the makespans as an initial comparison between the runtimes. Then,
we employ application traces to investigate idleness of each thread/core and to look into
runtime task management behavior, identifying meaningful performance issues.

Small-scale comparison of scheduling and numerical results: We compare the OpenMP
and StarPU versions of the QR factorization we have implemented. The comparison in-

cludes a minimal example with a square matrix of size 1024 and a block size of 256.
The purpose of this small-scale experiment is to assess the task scheduling and numerical
results produced by each version. Figure 2 shows task execution location as a function of
time. Colors indicate the type of the task, and numbers within each rectangle represent
the unique identification following the order of the loop that creates them. Both runtimes
lead to similar execution times, with slight variations on task scheduling. We automat-
ically compared the numerical results of each version against the sequential execution,
with no difference considering a precision of four decimal places.

1 2
3

4
5

6

7
8

9 10
11

12
13

14
15

16

17
18

19

20
21

22

23
24

2526

27
28

29

30

1
2

3
4
5

6
7

8

9
10
11

12
13

14

15

16
17

18

19

20
21

22

23

24

2526

27 28
29

30

StarPU

OpenMP

0 100 200 300

0
1
2
3

0
1
2
3

Time [seconds]

T
hr

ea
d

[id
]

dgeqrt dlarfb dtpmqrt dtpqrt

Figure 2. Task-scheduling comparison of the two implemented codes.

Makespan comparison for different platforms/runtimes and block sizes: Figure 3
depicts an overview of the makespan for combinations of machines and runtimes for the
matrix size 16384, by varying the block sizes and by consequence the number of tasks.
This workload is a representative case to summarize differences on the execution time of
other factors (platforms, runtimes). The vertical bars represent the average execution time
(makespan) as a function of the number of tasks. As shown in the left facets of Figure
3, the choice of the matrix size 16384 enable us to confirm that fewer tasks (1496) lead
to a lack of parallelism opportunities. As we increase the number of tasks (to 11440),
performance improves but ultimately lead to more unsatisfactory performance because of
the overhead of too many tasks (89440). The right facet of Figure 3 illustrates the peculiar
case of GCC/libgomp that stands out. There is an enormous overhead when compared to
other runtimes.

From this overview, we select two scenarios worth of further investigation. The
first is that the configuration with 11440 tasks (block size of 512 for matrix size 16384)
leads to better performance for all machines, with GCC/libgomp the best overall. The
second is the case with 707264 tasks (block size 128), where all runtimes present a con-
siderable overhead. GCC/libgomp presents a more massive overhead than others. In what
follows, we investigate these cases using detailed application traces.

Quantify Idle Time: We define idle time as the sum of time not computing tasks from
the total execution time. We compute per-worker idle time to explain the two interesting
scenarios. Figure 4 shows the distribution (using boxplots) of workers idle time as a func-
tion of the runtime type, in two scenarios: the left facet shows the case with block size
512 (total of 11440 tasks), while the right depicts the case with block size 128 (707264
tasks). The case with fewer tasks (left facet) indicates that GCC/libgomp presents a

GCC/libgomp LLVM/libomp StarPU

draco5 hype4 orion1 tupi1

14
96

11
44

0

89
44

0
14

96

11
44

0

89
44

0
14

96

11
44

0

89
44

0
14

96

11
44

0

89
44

0

0

500

1000

1500

of
Tasks

A
ve

ra
ge

 ti
m

e
(s

)

hype4

70
72

64

0

10000

20000

of
Tasks

Figure 3. The average makespan for each machine using the 16384 matrix size,
while varying the block size from 1024 to 256 (left facets). The same matrix with
128 block size for the hype4 machine (right facet).

slightly reduced idle time per worker and a lower median, while the other runtimes have a
higher idle percentage. The LLVM/libomp runtime has a clearly defined group of threads
like GCC/libgomp, but with higher idle time. Differently, StarPU workers demonstrate a
larger span, presenting values below and above the other two runtimes. With more tasks
(right), GCC/libgomp presents a strange behavior: worker zero (the outlier in the bottom)
barely stopped working in contrast with all the others that have been idle almost 90% of
the time. The other two runtimes equally distribute the work among the workers. Because
in both cases, the DAG has many parallelism opportunities, idle time is a result of the run-
time choices, leading to unbalanced workload per worker or additional overhead for tasks
management. Application makespan is most impacted, explaining why the GCC/libgomp
has better performance (647s) for the block 512 cases when compared to LLVM/libomp
(671s) and StarPU (672s), but much worse execution time with more tasks.

●

●

●

11440 707264

GCC/libgomp

LLVM/libomp
StarPU

GCC/libgomp

LLVM/libomp
StarPU

0

25

50

75

100

Runtime

Id
le

 T
im

e
%

Figure 4. Idleness for the 128 and 512 block size cases in hype4 machine.

Task Creation Overhead: To better understand the GCC/libgomp runtime behavior with

too many tasks (the 128 block size with a matrix size of 16384), we measure the time
spent on every single task creation in each runtime. We then compare the two OpenMP
runtimes task creation duration along the execution time, as depicted in Figure 5. Task
creation duration for DGEQRT and DLARFB tasks are shown in the left (Figure 5a). The
GCC/libgomp runtime presents increasing task creation duration as the execution evolves.
The LLVM/libomp also presents this behavior, but attenuated, and, for the DGEQRT task,
task duration decreases at the end of task submission. StarPU is the best in task creation
time and submission for both types of tasks. Figure 5b depicts the task creation and sub-
mission time for DTPMQRT and DTPQRT tasks. Again, the GCC/libgomp presents a sus-
tained increase in task creation time as the execution evolves, while both LLVM/libomp
and StarPU keep relatively stable task creation times. As a conclusion, StarPU exhibits
better performance overall: the whole task submission process took only 10 seconds while
the OpenMP solution (LLVM/libomp) took 120 seconds to complete.

(a) DGEQRT and DLARFB. (b) DTPMQRT and DTPQRT.

Figure 5. Task creation duration along execution time.

We also identify another source of poor performance in the computations carried
out by other workers during the task creation. The GCC/libgomp fails to keep other
workers busy while creating the tasks because after some time in the execution, the other
workers remain idle, waiting for tasks to compute as we can see by the high idleness
presented in Figure 4 for the block size 128 case, except for one worker, the worker 0.

5. Related Work and Discussion
Scheduling on task-based runtime systems is subject of constant studies. Complexity scal-
ing of modern architectures makes scheduling even harder. Runtime systems play criti-
cal roles in this scenario. Some studies promote improvements on NUMA machines by
leveraging memory-aware scheduling [Broquedis et al. 2010]. Other assess the behavior
of task implementations of OpenMP in these environments [Terboven et al. 2012], dis-
cussing some essential aspects related to task creation overhead, such as different strate-
gies to do it like the single-producer and the parallel-producer pattern. Other investi-
gations concentrate on the balance between computational performance and energy effi-
ciency [Broquedis et al. 2012, Agullo et al. 2017, Lima et al. 2017]. LibKomp is a run-
time based on the X-Kaapi library [Gautier et al. 2013] that takes the tasking model of

OpenMP 3.0 and expand to support task dependencies [Broquedis et al. 2012]. Their
comparison against other runtimes (GCC/libgomp, Intel TBB, Cilk+) uses the BOTS
benchmark, concluding that achievable performances are comparable and even better for
some cases. One of these cases is on applications that create a significant number of tasks.
A comparison between GCC/libgomp, the Klang compiler with the StarPU runtime, and a
native StarPU application has already been presented [Agullo et al. 2017], employing the
Fast Multipole Method (FMM) as workload. This parallel application has tasks with very
different workloads. The authors compared the performance in fork-join schemes and
task-based schemes using parallel efficiency as a performance metric. For the task scheme
using different numbers of threads, GCC/libgomp, Klang/StarPU, and StarPU alone per-
formed very similarly. The GCC/libgomp was faster with only one thread, which means
that its tasks are lighter than in other runtimes. They also detail differences between the
StarPU and OpenMP execution models concerning the main thread behavior. In OpenMP,
the main thread does both task creation and execution and is bound to a specific core. In
StarPU, this thread only creates the tasks and is unbound by default. The conclusion was
that it is possible to achieve a competitive performance using OpenMP tasks when com-
pared with an optimized code natively written using the StarPU runtime system. There is
also a performance/energy comparison among GCC/libgomp, LLVM/libomp, OmpSs, X-
KAAPI and libkomp with different CPU governors using dense linear algebra algorithms
(Cholesky, LU, and QR) as task-based applications [Lima et al. 2017]. Their findings
show that there are differences in the GFlop/s rate for the tested runtimes with identical
configurations. They also show that different task scheduling algorithms could impact
application energy efficiency.

Discussion: Different runtimes impact the computational performance and the energy
efficiency for the same application. Our work goes further intending to analyze the be-
havior of the chosen runtime systems for the dense block QR factorization, and deeply
investigate behaviors that can degrade performance such as task management and load
balancing. By executing experiments varying the problem size and the number of tasks,
it is possible to capture the runtime behaviors in different scenarios. We employ trac-
ing techniques like FxT, OMPT, and Score-P. Our work includes a comparison between
OpenMP and StarPU runtimes using a dense linear algebra application, a combination
that remains unexplored so far. Besides, we employ alternative yet equivalent tracing
techniques to capture execution characteristics, unlike the majority of related works that
used some global performance metric derived from application timestamps, or captured
no measurements at all.

6. Conclusion

In this paper, we have proposed a detailed trace-based comparison of three task-based
runtime systems (GCC/libgomp, LLVM/libomp, and StarPU) using our implementations
of the dense block QR factorization. The runtime systems were subject to experiments
from which we have identified the runtime impact on the application performance. Our
results suggest that for the block QR application, GCC/libgomp runtime is incapable of
sustaining a stable performance when the number of tasks is considerably high, but per-
forms up to 5,4% better for the tupi machine when the block size is appropriate to support
enough parallelism and reduced overhead. StarPU presents a very competitive perfor-
mance comparing to the LLVM/libomp runtime, which is nice to add the fact that StarPU

offers portability in terms of the specialized code support (MPI, CUDA, OpenMP) and
dynamic scheduling based on performance models. As future directions, we can perform
a more in-depth investigation on how task scheduling activities occur for each runtime
system. For instance, we could investigate further the reason behind so much idle time
in some scenarios, and correlate poor performance in task creation with the type of task
data structures in the runtime. The main reason these areas remain unexplored is the lack
of a single way to track scheduling decisions. Even if StarPU has many data regarding
such actions, OpenMP runtimes are still incomplete regarding the OMPT API. Moreover,
future work can explore other aspects of the task-based runtimes such as investigating
how the scheduling affected the data reuse in cache hierarchy using a methodology like
TaskInsight [Ceballos et al. 2017] which can explain why they achieved different idle-
ness values. Also, we consider adding other existing runtimes to our studies like the
StarPU OpenMP runtime support (SORS) which enables to generate StarPU code from
the OpenMP task-based directives and the X-Kaapi/libkomp runtime.

Acknowledgements
We thank these projects and institutions for supporting this investigation: FAPERGS
MultiGPU (16/354-8) and GreenCloud (16/488-9), the CNPq project 447311/2014-0, the
CAPES/Brafitec EcoSud 182/15, the CAPES/Cofecub 899/18, the National Council for
Scientific and Technological Development (CNPq), and the “Coordenação de Aperfeiçoa-
mento de Pessoal de Nível Superior” (CAPES) - Finance Code 001.

References
[Agullo et al. 2017] Agullo, E., Aumage, O., Bramas, B., Coulaud, O., and Pitoiset, S.

(2017). Bridging the gap between openmp and task-based runtime systems for the
fast multipole method. IEEE Trans. on Paral. and Distrib. Syst., 28(10):2794–2807.

[Anderson et al. 1999] Anderson, E., Bai, Z., Bischof, C., Blackford, S., Dongarra, J.,
Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., and Sorensen, D. (1999).
LAPACK Users’ guide, volume 9. Siam.

[Augonnet et al. 2011] Augonnet, C., Thibault, S., Namyst, R., and Wacrenier, P.-A. (2011).
Starpu: a unified platform for task scheduling on heterogeneous multicore architec-
tures. Concurrency and Computation: Practice and Experience, 23(2):187–198.

[Broquedis et al. 2010] Broquedis, F., Furmento, N., Goglin, B., Wacrenier, P.-A., and
Namyst, R. (2010). Forestgomp: an efficient openmp environment for numa archi-
tectures. International Journal of Parallel Programming, 38(5-6):418–439.

[Broquedis et al. 2012] Broquedis, F., Gautier, T., and Danjean, V. (2012). Libkomp, an
efficient openmp runtime system for both fork-join and data flow paradigms. In Inter-
national Workshop on OpenMP, pages 102–115. Springer.

[Buttari et al. 2008] Buttari, A., Langou, J., Kurzak, J., and Dongarra, J. (2008). Paral-
lel tiled qr factorization for multicore architectures. Concurrency and Computation:
Practice and Experience, 20(13):1573–1590.

[Ceballos et al. 2017] Ceballos, G., Grass, T., Hugo, A., and Black-Schaffer, D. (2017).
Taskinsight: Understanding task schedules effects on memory and performance. In
Intl. Work. on Prog. Models and Applic. for Multi. and Manycores, pages 11–20. ACM.

[Dagum and Menon 1998] Dagum, L. and Menon, R. (1998). Openmp: An industry-
standard api for shared-memory programming. Comp. in Sci. & Eng., 5(1):46–55.

[de Oliveira Stein et al. 2010] de Oliveira Stein, B., de Kergommeaux, J. C., and Mounié,
G. (2010). Pajé trace file format. Technical report, ID-IMAG, Grenoble, France, 2002.

[Dongarra et al. 2017] Dongarra, J., Tomov, S., Luszczek, P., Kurzak, J., Gates, M., Ya-
mazaki, I., Anzt, H., Haidar, A., and Abdelfattah, A. (2017). With extreme computing,
the rules have changed. Computing in Science & Engineering, 19(3):52.

[Eichenberger et al. 2013] Eichenberger, A. E., Mellor-Crummey, J., Schulz, M., Wong, M.,
Copty, N., Dietrich, R., Liu, X., Loh, E., and Lorenz, D. (2013). Ompt: An openmp
tools application programming interface for performance analysis. In International
Workshop on OpenMP, pages 171–185. Springer.

[Garcia Pinto et al. 2018] Garcia Pinto, V., Mello Schnorr, L., Stanisic, L., Legrand, A.,
Thibault, S., and Danjean, V. (2018). A visual performance analysis framework for
task-based parallel applications running on hybrid clusters. CCPE, 30(18):e4472.

[Gautier et al. 2013] Gautier, T., Lementec, F., Faucher, V., and Raffin, B. (2013). X-kaapi:
a multi paradigm runtime for multicore architectures. In 2013 42nd International Con-
ference on Parallel Processing, pages 728–735. IEEE.

[Givens 1958] Givens, W. (1958). Computation of plain unitary rotations transforming a
general matrix to triangular form. J. of the Soc. for Ind. and Appl. Math., 6(1):26–50.

[Golub and Van Loan 2012] Golub, G. H. and Van Loan, C. F. (2012). Matrix computations,
volume 3. JHU press.

[Householder 1958] Householder, A. S. (1958). Unitary triangularization of a nonsymmet-
ric matrix. Journal of the ACM (JACM), 5(4):339–342.

[Knüpfer et al. 2012] Knüpfer, A., Rössel, C., an Mey, D., Biersdorff, S., Diethelm, K.,
Eschweiler, D., Geimer, M., Gerndt, M., Lorenz, D., Malony, A., et al. (2012). Score-p:
A joint performance measurement run-time infrastructure for periscope, scalasca, tau,
and vampir. In Tools for High Performance Computing 2011, pages 79–91. Springer.

[Lima et al. 2017] Lima, J. V., Raïs, I., Lefèvre, L., and Gautier, T. (2017). Performance
and energy analysis of openmp runtime systems with dense linear algebra algorithms.
In Intl. Symp. on Comp. Arch. and High Perf. Comp. Workshops, pages 7–12. IEEE.

[LLVM 2015] LLVM, P. (2015). Openmp*: Support for the openmp language.

[Lopez 2015] Lopez, F. (2015). Task-based multifrontal QR solver for heterogeneous archi-
tectures. PhD thesis, Université de Toulouse, Université Toulouse III-Paul Sabatier.

[Schmidt 1908] Schmidt, E. (1908). Über die auflösung linearer gleichungen mit unendlich
vielen unbekannten. R. del Circolo Matematico di Palermo (1884-1940), 25(1):53–77.

[Terboven et al. 2012] Terboven, C., Schmidl, D., Cramer, T., and an Mey, D. (2012). As-
sessing openmp tasking implementations on numa architectures. In Intl. Work. on
OpenMP, pages 182–195. Springer.

[Willhalm and Popovici 2008] Willhalm, T. and Popovici, N. (2008). Putting intel R© thread-
ing building blocks to work. In Proceedings of the 1st international workshop on Mul-
ticore software engineering, pages 3–4. ACM.

	Introduction
	Background on QR Factorization, Task-based Paralelism and Tracing
	Block QR Factorization
	Task-Based Parallelism for Dense block QR Factorization
	Tracing Task-Aware Application Behavior

	Comparison Methodology and Experimental Details
	Performance Evaluation Results and Comparison
	Related Work and Discussion
	Conclusion

