Investigating Parallel Programming Paradigms in HeMPS
MPSoC Platform

G. Lopes *, A. Mello ', E. Carvalho 2, C. Marcon *

' Ciéncia da Computagdo — Universidade Federal do Pampa (UNIPAMPA)
CEP: 97546-550 — Alegrete — RS — Brazil

% Centro de Ciéncias Computacionais — Universidade Federal do Rio Grande (FURG)
CEP: 96203-900 — Rio Grande — RS — Brazil

3 Escola Politécnica — Pontificia Universidade Cat6lica do Rio Grande do Sul (PUCRS)
CEP: 90619-900 — Porto Alegre — RS — Brazil

{geaninne.mnl, alinevieiramello, ewerson.carvalho}@gmail.com,
cesar.marcon@pucrs.br

Abstract. This work investigates the use of parallel programming paradigms in
the development of applications targeting a Multiprocessor System-on-Chip
(MPSoC). We implemented Matrix Multiplication, Image Manipulation and
Advanced Encryption Standard (AES) applications in the Master-Slave, Pipeline
and Divide-and-Conquer paradigms, and applied execution time and power
dissipation as criteria for evaluating the performance of the applications
executing according to the paradigms on an MPSoC architecture. The obtained
results allowed us to conclude that there are optimal application-paradigm
relations. Pipeline presents lower execution time and lower power dissipation for
the Image Manipulation application; whereas, Master-Slave performs better for
the Matrix Multiplication and AES applications. However, when the input size of
the applications increases, the Divide-and-Conquer paradigm tends to minimize
the execution time for Matrix Multiplication application. The main contributions
of this work are the development of applications, considering different paradigms,
and the impact evaluation of these paradigms on MPSoC architecture.

1 Introduction

A Multiprocessor System-on-Chip (MPSoC) consists of an architecture composed of
heterogeneous resources, including multiple embedded processors, dedicated hardware
modules, memories, and an interconnection structure [Wolf, 2004]. The use of MPSoCs
allows embedded systems to be cheaper and more efficient, since a single chip integrates
multiple processors, reducing embedded system area, increasing the operation speed, and
reducing power dissipation in the execution of applications. Therefore, the use of MPSoCs
has become a trend in the embedded systems design [Tanurhan, 2006].

Some factors interfere with application performance in MPSoCs and should be
considered to get an efficient application execution. Among these factors are the
programming paradigm, which affects the behavior of the processors and the amount of
information exchanged among application tasks. Despite the existence of several industrial
MPSoCs, most of them have not yet reached the consumer. Carvalho (2009) cites as a
possible cause for such effect the lack of suitable models of programming. Well-known

programming paradigms applied to parallel applications, in the high-performance
computing area, are Master-Slave, Pipeline, Phase-Parallel, and Divide-and-Conquer.

Since an MPSoC is a very complex architecture, at this first moment, the objective
of this paper is to analyze the impact, in terms of execution time and power dissipation, of
different programming paradigms in an MPSoC. With this purpose, three applications, with
different behaviors and complexities, were implemented in different paradigms
(Master-Slave, Pipeline, and Divide-and-Conquer), and simulated in an MPSoC built on the
Hermes Multiprocessor System-on-Chip (HeMPS) platform. Evidently, the type of
application also affects the choice of the best paradigm, and as it can be analyzed in the
results, are optimal application-paradigm relations. However, the main focus of this paper is
to analyze only the impact of the paradigm itself, and for that each application was
implemented in the three paradigms.

Table 1 presents the related works, architecture, and paradigms used, as well as the
purpose of each one. Some works, such as [Shee et al., 2006] and [Gorev and Ubar, 2014],
evaluate different paradigms in multicore processors. These architectures differ structurally
from an MPSoC, integrating from 2 to 8 cores, enabling the use of shared memory and bus
interconnection. Due to the structural similarity between MPSoCs and computer clusters,
used in [Raeder et al., 2011] and GPUs, it is believed that the same programming paradigms
can be employed in MPSoCs. However, MPSoCs has limited power processing and storage
capacity compared to the architectures cited previously. Table 1 shows that Souza et al.
(2017), and Aguilar and Leupers (2015) propose a testbench for a Multi-Purpose Processor
Array (MPPA), and a parallelism extraction tool, respectively. Although there are similar
works, none of the above compares the effects resulting from different paradigms in an
MPSoC. To our best knowledge, this is the first work that performs this evaluation targeting
an MPSoC architecture.

Table 1. Summary of the related work.

Architect
Work re rleec u Paradigm Goal
[Shee et al., Multicore PP and MS Explores the para.llellzatlon of a JPEG application, using
2006] two paradigms, with heterogeneous components
[Raeder et Cluster of Proposes an analytical method to evaluate the best
MS, DC and PP . . . e
al., 2011] PCs parallel programming paradigm for matrix multiplication
[Gorev and . Combines paradigms, where it is preferable to use
Mult DLP and PP
Ubar, 2014] utticore an pipeline when data must be transferred several times
[Aguilar and Proposes a tool that identifies multiple forms of
Leupers, MPSoC PP, DLP and TLP parallelism from sequential embedded applications in a
2015] unified manner
DC, Map,
[Souza et al., MPPA-256 MapReduce, Presents a benchmark suite to evaluate a low-power
2017] Stencil and many-core architecture
Workpool
Analyzes the execution time and power dissipation of
This MPSoC PP, DC and MS e xecution & ebuEr CLEHIECS

MPSoC applications based on programming paradigms

Legend - MS: Master-Slave; DC: Divide-and-Conquer; PP: Pipeline; DLP: Data Level Parallelism; TLP: Task Level Parallelism.

This paper is structured as follows. Section 2 presents the theoretical basis for this
study, including the descriptions of the target MPSoC and the programming paradigms.
Section 3 presents the selected applications, and Section 4 refers to the development of
these applications, considering their implementation according to each paradigm. Section 5
presents the adopted evaluation scenario and discuss the obtained results. Finally, Section 6
concludes the paper and suggests issues for future work.

2 Theoretical Background

This section presents concepts and definitions, regarding the investigated programming
paradigms, and Hermes Multiprocessing System (HeMPS), which is the target MPSoC.

2.1 HeMPS MPSoC Platform

The applications implemented in this work were executed on HeMPS, a homogeneous and
distributed memory MPSoC, composed by Plasma processors that are interconnected by
Network-on-Chip (NoC) Hermes [Moraes et al., 2004]. Figure 1 illustrates the main
elements of HeMPS, where the Plasma-IPs are Processing Elements (PEs). There are two
types of PEs: the Cluster Manager Processor (CM) and Slave Processors (SPs). CM
manages the MPSoC resources, while SPs are responsible for running user applications.
Each PE contains a memory (partitioned in pages), a router, and a Direct Memory Network
Interface (DMNI) for direct access between network and memory. The application task
repository is performed by a memory placed out of the MPSoC, which contains the object
codes of all tasks running on the system.

Processing Element - PE
page 3
Processor [¢=p|_"=*
page 2
g task
1 i
5z b= i
= e A N 4 N
3k paer [7| DMNI [o
z8 e p Tl 1|
g ;
+

CM = Cluster Manager PE / SP = Slave PE

Figure 1. HeMPS MPSoC structure [Moraes et al., 2019].

Applications of HeMPS are represented through a task graph, where the nodes are
tasks and edges are task communications; each task executes part of the application,
cooperating and communicating with the others.

SPs execute the user applications employing an Operating System, which provides
an Application Programming Interface (API) to implement application tasks. This API
defines the structure for task communications and the following functions for performing
system calls: (i) send and receive messages; (ii) capture the number of clock cycles
performed by the processor; (iii) stop application execution and (iv) print log at the console.
When the Send function is called, the DMNI copies the packet from memory and injects it
into NoC. Then the packet stays in the pipe until it receives a message request from an
application that called the Receive function. The HeMPS platform uses “.c” files for
describing the computation and communication of the application task. Additionally,
HeMPS requires two configuration files to simulate an application: (i) the Project file,
which specifies the initial task of the application and the task dependencies; and (ii) the

Testcase file, which specifies hardware, software and application settings.

2.2 Parallel Programming Paradigms

Raeder et al. (2011) describes that the difficulty in defining the best parallel programming
paradigm is one of the most significant problems in the high-performance computing area.
Among the main paradigms are Master-Slave, Pipeline and Divide-and-Conquer. These
paradigms imply the way that the application is implemented; thus, affecting the application
performance. Following, we contextualize the paradigms already mentioned.

* Master-Slave consists of a master entity and multiple slaves. The master
decomposes the problem into tasks, performs load balancing, sends the data to the
slave tasks and stores the results. The slaves receive a message with the task,
process this task, and return the result to the master;

* Pipeline requires dividing the application into sequential stages. Each stage runs
part of the application and sends its results to the next stage, where another task is
executed. Depending on the number of available PEs, the application can be
executed through several parallel execution streams;

* Divide-and-Conquer decomposes an instance of a problem into smaller
sub-instances that are resolved apart. The problem is decomposed until it is simple
enough to have an immediate solution. At last, the partial solutions are combined
until the entire solution is obtained.

3 Target Applications

This section presents the sequential versions of Matrix Multiplication, Image Manipulation
and Encryption AES, which are the applications implemented in the present work. We
choose these applications because they present different complexity degrees.

3.1 Matrix Multiplication

The most common method to perform matrix multiplication is to multiply the elements of
the lines of matrix A by the elements of the columns of matrix B, followed by the sum of
the resulting products [Press et al., 2007]. An algorithm for the multiplication of two square
matrices of order n must contain three nested loops, which run through matrices from
position 0 to n — 1 by performing the multiplications and applying the summation. This
algorithm has complexity O(r’).

3.2 Image Manipulation

This application is introduced in Meyer (2016), and performs three transformations on an
image represented in the RGB standard; each image transformation is explained next.

* Gray Scale: After averaging the primary values of each pixel, the values are
replaced, resulting in a grayscale image;

* Color Inversion: Subtracts the maximum value (255) from the value of the pixel in
question. Thus, the dark areas have become clear and vice versa;

* Thresholding: The image is converted to black and white, considering a threshold
value. Each value is checked. If it is below the threshold, it is changed to black.
Otherwise, it is replaced to white color.

Figure 2 shows an example of an output of the image manipulation algorithm,

whose stages are sequentially executed. This sequentiality means that the image passes
through the first processing stage, and its result serves as input to the second processing
stage, and so on. This application is O(log(n)) complex.

(d)

Figure 2. Example of Image Manipulation, starting from an (a) input image, and
performs three sequential transformations: (b) Gray Scale, (c) Color Inversion and
(d) Thresholding [Meyer, 2016].

3.3 Encryption AES

AES or Rijndael [Daemen and Rijmen, 2019] is a cryptographic algorithm that can be used
to protect electronic data. This algorithm was designed to encrypt n-bit messages (n is
multiple of 128), using ciphers of 128, 192, or 256-bit lengths. The encryption procedure is
composed of different methods, which are executed in rounds, and the number of rounds
depends on the key size.

Figure 3 shows the flow performed by the AES algorithm, which is O(n) complex.
The application starts generating different subkeys for each round; subsequently, the
application performs the four procedures explained below.

* AddRoundKey: For each round, a subkey is derived from the primary key. This
operation adds the subkey to the current state using XOR logic operations;

* SubBytes: Transforms all bytes of the State array using the S-box table;

* ShiftRows: The rows of the matrix, which represents the block, are rotated to the
left by 0, 1, 2 and 3 positions;

* MixColumns: Performs a linear transformation on each column of the array.

Encryption Round Last Round

14 SubBytes SubBytes
\J
Sl ﬁﬂ

AddRo
Y

LAST ROUND?
NO YES

Figure 3. Example of the AES algorithm processing.

v
CIPHERTEXT

The applications were classified in Job Type, Complexity, and Number of
Processing Phases (NPT). As it can be seen in Table 2, AES and MM applications have the

same Job Type and only one processing task, so similar results are expected in the paradigm
evaluation. The NPT is equal to the number of phases of the sequential algorithms that
demands processing power. Then, Matrix Multiplication and AES were classified with just
one phase, “Multiplication” and “Cipher”, respectively. Whereas, Image Manipulation has
three phases which demands the same processing. Job Types pertain to what resource is
critical to the application [Souza et al., 2017]. This work classifies the application in
CPU-Bound or Memory-Bound. A description of each job type is given below [Null and
Lobur, 2014].

* CPU-bound: A system performance condition where a process or set of processes
spend most of their execution time in the CPU or waiting for CPU resources;

* Memory-bound: A system performance condition where a process or set of
processes spend most of their execution time in the main system memory or waiting
for memory resources.

Table 2. Attributes for application characterization.

Application Job type Complexity NPT
MM CPU-bound o(n? 1
Ml Memory-bound O(log(n)) 3
AES CPU-bound O(n) 1

4 Application Development according to the Parallel Paradigms

This section describes how Matrix Multiplication, Image Manipulation, and AES
applications were implemented in each of the paradigms evaluated in this work. In all
developed applications, the input data is stored in a one-dimensional vector. The
communication between tasks is done by exchanging messages using the primitives Send
and Receive of HeMPS.

The slave tasks (Master-Slave), leaf tasks (Divide-and-Conquer), and execution
flows (Pipeline) represent the threads used. The data distribution is performed through a
function that determines the amount of data each thread will process circularly. If the
number of parallel elements is 10, and the amount of available threads is 3, threads 2 and 3
receive three elements and thread 1 receives four elements. The complete code of
implemented applications in the different paradigms is available at https://bit.ly/2kRmOBI.

In the master-slave paradigm, the master task did the load distribution and sent the
data to the slave tasks that performed the computation. In the Pipeline paradigm,
applications were divided into different stages, and each stage was executed by different
processors. And finally, in the division and conquest paradigm the root task performed the
load distribution, and this division process was performed until the data arrived at the sheets
tasks, which performed the computation. The subsections below discuss the particularities
of each application.

4.1 Matrix Multiplication

Matrix Multiplication is implemented with two input square matrices (A and B). The
load distribution is performed on the array lines A since all elements of a given line must be

https://bit.ly/2kRm0BI

sent to the same task. The Pipeline stages of this application are: (i) Fill the matrices; (ii)
Multiplication; and (iii) Integrate the results.

4.2 Image Manipulation

Image Manipulation is implemented using an input vector, where each element is a structure
of pixel information. This vector represents RGB values, which are generated randomly.
The workload distribution is performed on the pixels of the image since the RGB values of
each pixel must be sent to the same task. The Pipeline stages of this application are: (i)
Gray-Scale; (ii) Color Inversion; and (iii) Thresholding.

4.3 Encryption AES

Encryption AES was developed based on the work of [Rezende and Caimi, 2016], which
implemented the application in the Master-Slave paradigm. The application has as input a
message that is stored in a vector of size n. The input vector contains a sequence of letters,
which are repeated 16 times. The encryption key has 256 bits. The workload distribution is
performed in the same way as the other applications. In this case, the data are divided into
blocks of 16 bytes, and the workload distribution is performed according to the number of
blocks. The Pipeline stages of this application are: (i) Filling of the message to be
encrypted; (ii) Generation of the subkeys and AddRoundKey; (iii) Encryption rounds; (iv)
Last Round; and (v) Building the encrypted block.

Each paradigm presents a specific organization. Therefore, depending on the
paradigm used, the number of tasks required to parallelize the application may differ. For
example, the Master-Slave paradigm always employs the number of tasks equal to the
number of slaves plus one. Whereas in the Divide-and-Conquer paradigm, the task number
depends on the maximum number of children that each task can have. Additionally, in the
Pipeline paradigm, the number of tasks depends on the number of the application stages. As
the tasks can be allocated in different PEs, the time for communication, the power
dissipated and the area used are larger. Thus, the number of tasks used must be justified by
the performance obtained in parallel processing.

5 Obtained Results

This section presents (i) the setup and MPSoC configuration used in the experiments; (ii)
the results obtained through the simulation of Matrix Multiplication, Image Manipulation
and Encryption AES that were modeled in the Master-Slave, Pipeline and
Divide-and-Conquer paradigms, (iii) the criteria adopted in the evaluation of the results, as
well as (iv) the analysis and comparison of these results.

5.1 Experimental Setup and MPSoC Configuration

Figure 4 depicts the methodology employed for the experiments. For each
application, we explored three paradigms, four or five input size and the number of threads;
these variations result in 420 simulations. Through the log files generated in each
simulation, we calculated the power dissipation and the execution time of each experiment.
Finally, we generated graphs and analyzed the results.

All simulations were performed in the HeMPS MPSoC with the following
characteristics: (i) 6x6 PEs, being 1 master PE and 35 slave PE; (ii) 256 KB of page size for
each PE; (iii) One task running per PE; (iv) NoC buffers with 8-word depth; (v) Task
mapping performed statically; and (vi) XY routing algorithm.

3 * For AES application the input size varied 4 times, instead of 5.
~ Simulations Iculate runtime and |)
’“[Power Dissipation VAna.Iyze Reatiey ‘
Applications | 420 ' : - R
7 Generate
Number of threads 10 Log Files graphics

Figure 4. Methodology applied in the experimental results.

5.2 Evaluation Criteria

We used the execution time and power dissipated by the Plasma processors as evaluation
criteria. The execution time, expressed in milliseconds (ms), is the time required to
complete a test case. We inserted the function GetTick into the application to capture the
execution time; this function returns the value of the current clock at the beginning and the
end of the application. Thus, the execution time was obtained by subtracting the final time
from the initial time.

We calculated the power dissipated in each simulation taking into account that
instructions of a given class have similar power dissipation [Filho et al., 2012], and using
the table containing the power dissipated by each class of instructions presented in
[Guindani, 2014], which targets the HeMPS MPSoC implemented in 65 nm TSMC
technology operating in 100 MHz. During the simulation, we summed the power dissipation
of all the instructions that were executed, using a power dissipation table of each instruction
class. The power dissipation model of the processor does not include memory accesses, but
only the power dissipated due to the execution of instructions.

5.3 Result Analysis

This section presents and discusses the simulation results. We varied the number of threads
from 2 to 10 and the input size for each simulation. Table 3 presents the shortest execution
time, considering all paradigms, for each input size of each application, and its number of
threads and power dissipation.

Table 3. Shorter execution time according to input sizes.

Input Lower ET
AP . NT PD (mW)
size (ms)
10x10 0.27 (DC) 2 0.0032
10x10 0.27 (MS) 2 0.0032
20%x20 1.01 (MS) 4 0.0045
MM
30%30 2.49 (MS) 5 0.0071
40x40 4.84 (DC) 8 0.0165
50%50 8.31 (DC) 8 0.0270
IM 128 0.28 (PP) 3 0.0034

256 0.51 (PP) 3 0.0037
512 0.98 (PP) 3 0.0044
1024 1.85 (PP) 3 0.0056
2048 3.71 (PP) 3 0.0081
256 0.69 (MS) 8 0.0051
512 1.30 (MS)) 0.0063
AES
1024 2.44 (MS) 10 | 0.0090
2048 4.64 (MS) 10 | 0.0136

Legend: AP = Application; ET = Execution Time; NT = Number of Threads; PD = Power Dissipation; MS = Master-Slave; DC =
Divide-and-Conquer; PP = Pipeline; MM = Matrix Multiplication; IM = Image Manipulation.

As it can be seen, in Matrix Multiplication application, the Master-Slave paradigm
presents better results for smaller input sizes. However, for larger sizes, the
Divide-and-Conquer paradigm has lower execution time, using a higher number of threads
and dissipating more power. The Pipeline paradigm presents better results, using three
threads, for Image Manipulation application for all input sizes simulated. AES application
presents better results with Master-Slave paradigm. The lower execution time was obtained
using 8 threads for smaller input sizes, and 10 threads for larger input sizes.

We generated two types of graphics for the larger input size of each application, one
containing the execution time and another one comprising the power dissipation. The green,
blue, red, and yellow lines represent the sequential version, Master-Slave paradigm,
Divide-and-Conquer paradigm and Pipeline paradigm, respectively.

Case 1 of Figure 5 shows that the Pipeline paradigm presents the larger execution
time for the Matrix Multiplication executing input matrices of order 50. Master-Slave
results in shorter execution time for 2 to 7 threads, while using 8 to 10 threads,
Divide-and-Conquer presents the shortest execution time. For example, considering
matrices of order 50 and 10 threads, the Divide-and-Conquer implementation reduces 1.6%,
64% and 68% the execution time when compared to the Master-Slave, sequential version,
and Pipeline paradigm, respectively. The best results for the Divide-and-Conquer paradigm
by increasing the number of threads can be explained by a possible bottleneck in the
communication between slave tasks and the master task in the Master-Slave paradigm.
Then, the Divide-and-Conquer paradigm tends to reach shorter execution time than the
other paradigms for matrices of order higher than 50. Moreover, in this scenario, it can be
observed that the Divide-and Conquer paradigm, when configuring a maximum of 2
children per task, gets better results when the number of threads equals to a power of 2 (4 or
8 threads). This is an expected result, as this way the load distribution is balanced.

Case 2 of Figure 5 illustrates the power dissipated by the paradigms in Matrix
Multiplication application. As we can observe, the Pipeline paradigm dissipated more
power than the others, which is expected since it presents the larger execution time.
Whereas Master-Slave and Divide-and-Conquer paradigms had similar execution times, the
dissipated power was considerably higher in Divide-and-Conquer. It can be explained by
the fewer number of tasks, and the less intense flow of communication in Master-Slave
paradigm. Master-Slave paradigm has dissipated even less power than the sequential
version, allowing a good trade-off between execution time and power dissipation.
Considering matrices of order 50 and 10 threads, the Master-Slave implementation
dissipates 52%, 29% and 2.8% less power than the Pipeline and Divide-and-Conquer

paradigms, and sequential version, respectively.

3g:a.se 1: Execution Time - Matrix Multiplication . 05lt:ase 2: Power Dissipation - Matrix Multiplication
0,04
25
. o r i r e i r » %‘ 0,04
=
% 20 Z 003
£ S 0,03
=15 =
5 & 002
510]
- a 0,02
b1 § 0,01
o 0,01
0 0
2 3 4 5 6 7 8 9 10 2 3 4 5 & 7 8 9 10
Number of Threads Number of Threads
—— MS —a— DC P —tr S - S s DC] — S
i Case 3: Execution Time - Image Manipulation Case 4: Power Dissipation - Image Manipulation
0,07
14
0,06
~12
0,05
o =
E c 0,04
E 8 [
5 g g 0,03
3 =
% 4 & 0,02
[]
2 £ 0.01
& = - b - ol = - ol L e e
0 0
2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10
Number of Threads Number of Threads
= 3 e DC P —i—3 - S —t DC] —r—S
Case 5: Execution Time - AES Case 6: Power Dissipation - AES
20 0,05
18 0,04
=16 g om
E1a < 003
212 2 0,03
= 10 £ o0
S 8 ﬁ ' % * P —)
s 6 a 002 m
5 4 5 001
i 3
2 5 o001
0 0
2 3 4 5 6 7 8 9 1« 2 3 4 5 & 7 8 9 10
Number of Threads Number of Threads
—— 15 b DC P —tr 5 —— M3 s DC] —tr 5

Figure 5. Execution time and power dissipation of six test cases.

Cases 3 and 4 of Figure 5 demonstrate that implementing the Image Manipulation
application according to the Pipeline paradigm results is the lesser execution time and
power dissipation when compared to other approaches. However, its results were worse
than those obtained with the sequential version. For example, considering input images with
2048 pixels and 10 threads, the Pipeline implementation allows 24% and 70% shorter
execution time than the Master-Slave and Divide-and-Conquer paradigms, respectively;
however, the execution time of the Pipeline version is 26% longer than the sequential
version. Additionally, the Pipeline paradigm for this same scenario dissipates 56% and 84%
less power than the Master-Slave and Divide-and-Conquer implementations, but 36% more
power than the sequential version. Thus, a parallelization of this application is not justified
by the size of the input variables, which was limited by the platform.

Cases 5 and 6 of Figure 5 illustrate that the AES implementation obtained results of
execution time and power dissipation similar to those obtained for the Matrix Multiplication

application. The Master-Slave paradigm presents better results concerning both execution
time and power dissipation compared to other paradigms. The Pipeline version dissipates
higher power and executes for a longer time, even compared to the sequential version. The
Divide-and-Conquer implementation dissipates approximately the same power of
Master-Slave paradigm, but with longer execution time. For example, considering input
messages with 2048 bytes and 10 threads, the Master-Slave approach executes 48% faster
than the Divide-and-Conquer alternative, 63% faster than the sequential version and 74%
faster than the Pipeline paradigm. Finally, for the same scenario, the Master-Slave
implementation dissipates 26% less power than the Divide-and-Conquer and 64% less
power than the Pipeline paradigms, but 7% more power than the sequential version.
Consequently, we recommend using the Master-Slave paradigm for implementing an
application with features similar to AES to allow a sound tradeoff between execution time
and power dissipation.

The results of the 420 simulations, allow us to conclude: (i) Master-Slave may be
limited by a communication bottleneck when the number of threads is increased; (ii)
Pipeline is indicated only for applications that have sequential stages and with a balanced
processing load, as the Image Manipulation application; (iii) For low-size data input, the
Master-Slave paradigm implements Matrix Multiplication and AES applications more
efficiently; (iv) There are optimal application-paradigm relations; (v) For large-size data
input, the Divide-and-Conquer paradigm tends to obtain shorter execution times for the
Matrix Multiplication application; however, the power dissipation tends to continue to be
high due to the number of tasks used; (vi) The Divide-and-Conquer paradigm should have
2" leaf tasks to balance the tree to obtain the best results; and (vii) The number of tasks
affects the power dissipation, regardless of the programming paradigm used.

6 Conclusions

This work aims to analyze the execution of different programming paradigms in a HeMPS
MPSoC. The execution time and power dissipation of three applications in Master-Slave,
Divide-and-Conquer and Pipeline paradigms were analyzed. The analysis of this work
indicates that the parallel programming paradigms, used in the high performance area,
can also be used in an MPSoC architecture, considering some aspects as type of
application, amount of data to be processed, number of processors, etc. In future work,
paradigms can be reevaluated using mappings that consider the task communication graph,
other MPSoC configurations, and NoC power dissipation can be explored. In addition, the
application-paradigm relation should be further explored.

References

Aguilar, M. A., & Leupers, R. (2015, October). Unified identification of multiple forms
of parallelism in embedded applications. In 2015 International Conference on
Parallel Architecture and Compilation (PACT) (pp. 482-483). IEEE.

Carara, E. A., De Oliveira, R. P., Calazans, N. L., & Moraes, F. G. (2009, May).
HeMPS-a framework for NoC-based MPSoC generation. In 2009 IEEE International
Symposium on Circuits and Systems (pp. 1345-1348). IEEE.

Carvalho, E. (2009). Mapeamento dinamico de tarefas em mpsocs heterogéneos
baseados em noc. Pontificia Universidade Catélica do Rio Grande do Sul.

Daemen, J. and Rijmen, V. (1999). Aes proposal: Rinjdael. aes algorithm submission,
“http://www. nist. gov/CryptoToolKit”, January, 2019.

Gorev, M. and Ubar, R. (2014, October). Pipelined execution of data-parallel
algorithms. In 2014 14th Biennial Baltic Electronic Conference (BEC) (pp. 109-112).
IEEE.

Guindani, G. M. (2014). Mecanismo de controle de QoS através de DFS em MPSOCS.
Pontificia Universidade Catélica do Rio Grande do Sul.

Johann Filho, S. (2012). Suporte para aplicagdes dinamicas em sistemas
multiprocessados intra-chip homogéneos. PUCRS.

Meyer, V. (2016). PIPEL: Modelo de Geréncia da Elasticidade para Aplicagcoes
Organizadas em Pipeline. Universidade do Vale do Rio dos Sinos.

Moraes, F. et al., (2017) “Hemps Platform v7.3”.
http://www.inf.pucrs.br/hemps/docs/HeMPS presentation.pdf , January, 2019.

Moraes, F., Calazans, N., Mello, A., Modller, L., & Ost, L. (2004). HERMES: an
infrastructure for low area overhead packet-switching networks on chip.
INTEGRATION, the VLSI journal, 38(1), 69-93.

Null, L., & Lobur, J. (2014). The essentials of computer organization and architecture.
Jones & Bartlett Publishers.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). Numerical
recipes 3rd edition: The art of scientific computing. Cambridge university press.

Raeder, M., Griebler, D., Baldo, L., and Fernandes, L. G. (2011). Performance
prediction of parallel applications with parallel patterns using stochastic methods.
Sistemas Computacionais (WSCAD-SSC), XII Simpdsio em Sistemas Computacionais
de Alto Desempenho, 1-13.

Rezende, L. and Caimi, L. (2016) “Desenvolvimento da Aplicacio AES para HeMPS.
http://www.github.com/GaphGroup/hemps/blob/master/hemps8.5/applications/aes
January, 2019.

Shee, S. L., Erdos, A., and Parameswaran, S. (2006, October). Heterogeneous
multiprocessor implementations for jpeg:: a case study. In Proceedings of the 4th
international conference on Hardware/software codesign and system synthesis (pp.
217-222). ACM.

Souza, M. et al., (2017). CAP Bench: a benchmark suite for performance and energy
evaluation of low-power many-core processors. Concurrency and Computation:
Practice and Experience, 29(4), €3892.

Tanurhan, Y. (2006). Processors and FPGAs quo vadis?. Computer, 39(11), 108-110.

Wolf, W. (2004, July). The future of multiprocessor systems-on-chips. In Proceedings.
41st Design Automation Conference, 2004. (pp. 681-685). IEEE.

http://www.inf.pucrs.br/hemps/docs/HeMPS_presentation.pdf

