
On the Elasticity of Parallel Components in a Cloud of
High Performance Computing Services

João Marcelo Uchôa de Alencar1 and Francisco Heron de Carvalho Junior2

1 Campus de Quixadá
Universidade Federal do Ceará (UFC)

Av. José de Freitas Queiroz, 5003 – Quixadá – CE – Brazil

2Pós-Graduação em Ciência da Computação (MDCC)
Universidade Federal do Ceará (UFC)

Campus Universitário do Pici, Bloco 912 – Fortaleza – CE – Brazil

{joao.marcelo,heron}@lia.ufc.br

Abstract. Cloud computing offers virtually unlimited set of resources and flex-
ibility to allocate them through elasticity. But cloud limitations, such as the
complexity of configuration and environment dynamicity, may jeopardizes the
assurance of QoS requirements. HPC Shelf is a cloud of HPC services that
employs a component-oriented architecture to describe hardware and software
resources of parallel computing systems. We design a framework for HPC Shelf
that employ cloud elasticity concepts for keeping the values of QoS metrics of
parallel computing systems inside an acceptable range, enabling adaptations to
fulfill the QoS contract restrictions. In our evaluation, using a linear algebra
application, we show how HPC Shelf takes advantage of cloud elasticity to re-
inforce QoS requirements, rectifying assumptions from ill-defined QoS models.

1. Introduction
Complexity and heterogeneity are recurrent words in debates about today’s high-
performance computing (HPC) landscape. Clusters, grids, and clouds have increased
the possibilities of parallel computing infrastructures. Developers must write code that
exploit particularities of different types of systems, heterogeneous with respect to pro-
cessors, accelerators, memory hierarchies, and interconnections. In fact, they need fine
control over how the software uses hardware resources to achieve peak performance.

HPC Shelf [1] is an ongoing project that aims at reducing the complexity of
managing both hardware and software artifacts of heterogeneous HPC environments. It
employs component technology to represent these artifacts and encapsulates functional
and non-functional concerns by using the abstraction of a contextual contracts.

HPC Shelf has been extended with the specification of QoS (quality of service)
requirements of components through contextual contracts. A system component repre-
sents a pair of components: a computation and a virtual platform where the computation is
placed. The QoS requirements feed a ranking algorithm that classifies system components
according to their ability to fulfill the QoS requirements. HPC Shelf defines contracts us-
ing estimation functions provided by component developers and platform maintainers.

The main contribution reported in this paper is a framework that uses elasticity
to steer the execution towards contract fulfillment in the event of ill-defined requirements

and unpredictable behavior from cloud environments. It allows embedding the expression
of different scaling techniques to support a broad range of HPC applications.

The rest of the paper comprises other five sections. Section 2 discusses related
works. Section 3 details HPC Shelf and the use of contextual contracts augmented with
QoS requirements. Section 4 describes the framework for reconfiguration of HPC applica-
tions. Section 5 presents an experimental study to partially validate the artifact proposed
in this paper. Section 6 presents our conclusions and point to future works.

2. Related Works
McInnes et al introduce Computational Quality of Service (CQoS) with method adap-
tation [2] for CCA (Common Component Architecture) frameworks, where analysis in-
frastructure continuously monitors the executing computation. If the component does not
provide the required performance, it is replaced by another one with the same functional-
ity, but keeping unchanged the parallel computing infrastructure where it executes.

For GCM (Grid Component Model) [3], behavioral skeletons deserves attention.
They allow developers to define a hierarchy of components where each component has an
internal autonomic agent for reconfiguration of processes and threads. The user provides
requirements to the top-level element of the composition. Through filtering and delega-
tion, the distributed system changes its parallelism level for ensuring the QoS. As CQoS,
the focus is on adapting the software component, not the platform.

For elasticity in HPC, the basic alternative is dynamic resource management [4,
5, 6], where platform managers create virtual clusters in an IaaS cloud. The users submit
tasks or jobs in the same way they do for traditional supercomputers. However, instead of
a fixed set of processing nodes, the manager analyzes the submission queue and creates
only enough virtual nodes to satisfy the user requirements. A virtual cluster may expand
and shrink according to the current workload, not requiring to reconfigure tasks or jobs.

Other works allow developers to change the resources of the parallel computing
platform during execution [7, 8, 9]. For that, a runtime environment supports an API for
controlling the creation, removal, and reconfiguration of virtual nodes. Each program may
employ its own technique, and there is no native model for code reuse. Some works do
not require developer intervention, providing a single procedure for load balancing [10].

The existing solutions over a component-based architecture are restricted to soft-
ware adaptation. When the focus shifts to resource adaptation, there is no standard pro-
gramming model, and different applications may require different techniques. Since HPC
Shelf aims to support applications from several domains, it is necessary to provide ways
of reusing existing concepts and personalizing techniques for emerging scenarios.

3. HPC Shelf: Towards Cloud-Based HPC Services
HPC Shelf [1] is a component-oriented platform for deploying cloud computing applica-
tions that demand large-scale parallel computing infrastructures comprising a set of clus-
ters for executing solutions to computationally challenging problems specified by domain
specialists. HPC Shelf complies to the Hash component model [11]. For our purposes
in this paper, among the component kinds it supports, we are only interested in virtual
platforms, which represent distributed-memory parallel computers, and computations,
which implement parallel algorithms tuned for a class of virtual platforms.

Stakeholders In HPC Shelf, stakeholders with complementary interests act together
to provide HPC services to domain specialists, through applications. Applications are
supplied by providers, providing domain-specific high-level interfaces for problem spec-
ification, hiding parallel computing systems built of components to solve them. Computa-
tional components are developed by developers. They tend to be application-independent
in order to attend different providers. Finally, virtual platform components are supplied
by infrastructure maintainers, over computing infrastructures such as IaaS providers.

Architecture HPC Shelf comprises instances of three architecural elements: Front-
End, Core and Back-End. The Front-End is SAFe (Shelf Application Framework), from
which applications may be derived [1]. It is a SWfMS (Scientific Workflow Management
System) where worflows are described using SAFeSWL (SAFe Scientific Workflow Lan-
guage). The Core controls the life-cycle of components, as well as supporting the system
of contextual contracts described in the next section. Finally, a Back-End is a service
that manages a certain parallel computing infrastructure (e.g. IaaS clouds, on-premise
clusters, etc), over which it is responsible to instantiate and monitor virtual platforms.

3.1. Contractual QoS and Resolution Classification

The resolution of contextual contracts makes it possible the selection of components that
fullfill contractual requirements [12]. But which is the better choice in the list of selected
components ? This question has been responded by introducing quality criteria for clas-
sifying them, by adding QoS parameters to contextual contracts of HPC Shelf.

Norris et al [13] argue that CBHPC environments should deal with the perfor-
mance and accuracy of components for ensuring computational QoS (CQoS). Indeed,
performance is the execution time of a component for a given input, while accuracy as-
serts how close the solution obtained by a component is from the expected results. We
include efficiency, denoting the level of resource utilization, as another desired goal, such
as the load average of processing nodes in a cluster. Moreover, we include monetary cost
and power consumption, now relevant in the context of clouds. The former is the amount
of money that specialists must pay to maintainers for the resources they allocate during
execution, while the later measures, in kWh, the power consumption of these resources.

Developers are responsible to setup QoS parameters of computation components
in their contextual contracts since they know the programming language, algorithms and
data structures employed. For that, they may use estimation functions to calculate argu-
ments for each QoS parameter, from the arguments applied to the contextual parameters
that describe application requirements and platform features. However, the specification
of estimation functions is a difficult task. For performance requirements, analytical mod-
els are a way of studying the behavior of computations through equations that quantify the
amount of work done for each processing unit, memory access pattern, communication
load, and other metrics [14, 15]. Other approaches employ machine learning techniques
[16]. HPC Shelf only expects that estimation functions return arguments to QoS contex-
tual parameters of a given computational system contract (CSC), comprising contracts
for both the virtual platform (PC) and the computation components (CC). For instance,
the array QoS = [a, e, t, c, p] has values for accuracy, efficiency, execution time, cost and
power consumption, respectively, calculated through estimation functions.

Figure 1. Defining a list of candidate Computational Systems.

The developer is free to choose among analytical models, simulations, machine
learning techniques, etc. The estimate has to provide a guideline for adapting the execu-
tion of parallel computing systems to meet QoS requirements. If the application makes a
feasible choice of initial computational system, its adaptation to reach the QoS require-
ments is easier. That is the reason why a way of ranking components is necessary.

We define a particular approach for classifying candidate components that we will
use throughout this paper. Let CSCi[PCi, CCi]

i=1...n be the set of candidates returned
by the selection stage of resolution. Their estimation functions, specified by component
developers, are the arrays QoSi

i=1...n, respectively, further divided in two:

QoSmax
i = [ai, ei] and QoSmin

i = [ti, ci, pi]

QoSmax
i has a value for each QoS context parameter with additive subtyping (the

higher value, the better), whereas QoSmin
i has a value for that ones with subtractive

subtyping (the lower value, the better). Let max(x) and min(y), for x ∈ {a, e} and
y ∈ {t, c, p}, the maximum and minimum value for each QoS context parameter, either
direct or inverse. We can normalize the array valuations by:

QoSmax
i = [

ai −min(a)

max(a)−min(a)
,

ei −min(e)

max(e)−min(e)
]

QoSmin
i = [

ti −min(t)

max(t)−min(t)
,

ci −min(c)

max(c)−min(c)
,

pi −min(p)

max(p)−min(p)
]

Application providers may inform two arrays for each parallel computing system,
setting up the weight of each QoS parameter in classification, in such a way they may
customize the classification policy according to their requirements.

Wmax = [wa, we], wa + we = 1 and Wmin = [wt, wc, wp], wt + wc + wp = 1

So, the ranking value for each system CSCi[PCi, CCi] is:

Ri = (wa ∗ ai + we ∗ ei) + (1− (wt ∗ ti + wc ∗ ci + wp ∗ pi))

The candidates are sorted according toRi
i=1...n, so that the application choose the

first candidate in the ranking. As an example of the proposed ranking method, consider
three candidate components with the following QoS contracts:

QoSmin
0 = [0.7, 0.8], QoSmax

0 = [1600, 10, 3];QoSmin
1 = [0.9, 0.9], QoSmax

1 = [1800, 6, 4];

QoSmin
2 = [0.9, 0.7], QoSmax

2 = [1500, 15, 5]

By normalizing the array valuations, we have:

QoS0max = [0, 0.5], QoS0min = [0.34, 0.45, 0];QoS1max = [1, 1], QoS1min = [1, 0, 0.5];

QoS2max = [1, 0], QoS2min = [0, 1, 1]

If an application applies W = [0.7, 0.3, 0.8, 0.1, 0.1], prioritizing accuracy and
execution time, R0 = 0.84, R1 = 1.15, R2 = 1.50. The candidate with highest ranking
value (CSC2) has the best accuracy (0.9) and lowest estimated execution time (1500s).

4. A Framework for Elastic Reconfiguration in HPC Shelf
When the instantiation of a computation component is triggered in a parallel computing
system, its contextual contract must have been previously resolved, as well as its host vir-
tual platform, since virtual platforms must be instantiated before the computations they
host. SAFe instantiates components through the Core’s services. In the case of virtual
platforms, the Core invokes the Backend service of its maintainer. In turn, for instantiat-
ing computations, the Core invokes the services of their host virtual platforms.

For application providers, the execution of a component must comply with the
QoS requirements of its contextual contract. However, the dynamicity of modern infras-
tructures may impose restrictions for this. For instance, for a virtual platform over a IaaS
cloud, interference may arise due to multitenancy [17]. Despite the nodes of the virtual
platform may be started with exclusive use of a host machine, another virtual machine of
a different application may be allocated to the same machine further. The sharing of the
memory bus, network, and caches may constitute bottlenecks that may jeopardize QoS
parameters. Although commercial IaaS clouds now offer dedicated servers aimed at HPC
[18], many users do not have money to pay for them. Also, many institutional built private
clouds with open source solutions that are not optimized for HPC [19].

Imprecise estimation functions provided by developers and maintainers may also
jeopardize the fulfillment of QoS requirements, since desired QoS values may not be
achieved through the initial set of resources allocated. In this paper, we are interested

Figure 2. Elastic System Component Architecture

in designing an automated adjustment mechanism to fulfill QoS requirements, where the
original contracts of components guide reconfiguration. For that, we introduce a notion
of elasticity to component-oriented parallel computing, meaning the ability to reconfigure
virtual platforms and computations by adding or removing resources they employ.

For elasticity, we introduce elastic contextual contracts, in opposite to rigid ones,
supporting numerical range qualifiers. They make it possible to specify a range of accept-
able arguments for a numerically valued parameter of a contextual signature. For example,
consider an illustrative contract for a virtual platform supported by a maintainer:

CLUSTER

[
number of nodes = [24-48],
node = XEON[model type = XEON2650, cores per node = [2-8], memory size = [16-32]]

]
With a range qualifier typing the contextual parameter number of nodes, instead

of fixing the number of nodes of a virtual platform, the maintainer provides a range
[24, 48], specifying minimum and a maximum limits. The Core may instantiate the vir-
tual platform with any number of nodes in the range and vary it during the execution,
between 24 and 48, in order to fulfill QoS requirements. This is an example of horizontal
elasticity. For vertical elasticity, the maintainer also supply ranges for memory size and
cores per node, varying the amount of memory and number of cores in each node.

4.1. Elastic System Components

Feitelson and Rudolph have proposed a taxonomy for parallel tasks, where they can be
classified in ridig, moldable, malleable and evolutive [20]. HPC Shelf already supports
both ridig and moldable computation components, so that they may be statically adapted
to the resources of the target (non-elastic) virtual platform. This is the usual approach in
parallel programming for cluster computing. In this paper, we define a notion of elastic
system component through a pair of a malleable computation component and an evolutive
virtual platform. An elastic system component allows dynamic adjustments in the set
of resources employed by virtual platforms. For example, changing its number of nodes
and, consequently, the number of units of hosted computation components. The evolu-
tive virtual platform decides when to apply a reconfiguration from the state of hosted
computations and the underlying infrastructure, expecting that the malleable computation
component reacts by adjusting itself to the new resource set, when necessary.

Figure 2 depicts the architecture of an elastic system component. When the Core
instantiates a computation, it retrieves the initial set of resources from the allocation port
of the virtual platform, by looking at elastic contextual arguments. Such a resource set

may describe, for example, the number of available nodes along with their hostnames, the
number of cores per node, and the amount of memory per node, and so on. The resolu-
tion algorithm ensures that the computation component is compatible with the available
resource set. The virtual platform starts an inner reconfiguration component that runs the
four phases of the MAPE loop [21]: monitoring, analysis, planning, and execution.

The computation component provides two ports to the virtual platform: monitor-
ing and reconfiguration. From the monitoring port, the virtual platform may query sensor
variables continuously updated by the computation for assisting reconfiguration decisions.
From the reconfiguration port, the platform may trigger adaptations in the computation.

There is a sensor variable for returning a measure of the current solution accuracy.
It is heavily reliant on the algorithm implemented by the computation. It may have no
meaning, like in exact numerical algorithms. However, for approximation algorithms, the
developer may create mechanisms to update this variable. We define it has a value in
the interval [0.0, 1.0], whose update is decided by the developer. If the actual accuracy is
below the threshold specified in the QoS contract, the virtual platform may provide more
resources to the computation (scale-up elasticity). In turn, if the accuracy is above the
threshold, the virtual platform may reclaim resources from the computation (scale down
elasticity) in order to minimize costs, energy consumption, among other reasons.

Another sensor variable may measure progress, updated at each step the computa-
tion completes. For example, if the computation must process N data items, it is updated
to the number of items it has processes over N at each processed item. As the accuracy
sensor, the progress is in the range [0.0, ..., 1.0] whose update is decided by the developer.

4.2. Reconfiguration Phases
During the analysis phase, the MAPE loop estimates execution time from the value of the
progress variable and the known startup time of the computation. If the execution time is
above the contractual threshold, it may be necessary to scale up resources. However, in
certain circumstances, due to the scalability characteristics of the parallel algorithm being
executed, scaling down may be the best choice. The predicted termination time and the
current resource set allow measuring estimated cost and power consumption, which HPC
Shelf may also use for reconfiguration decisions according to cost contextual arguments.

Along with the computation state, the MAPE loop retrieves the resource state. For
that, the virtual platform queries each node for its average load in the last minute. The
efficiency of the resource set is the sum of the load average from each machine over the
total number of cores. If the efficiency is below the contractual threshold, nodes may be
released to increase utilization. If it is above, nodes may be added to decrease utilization.

The reconfiguration procedure taken to fulfill the requirements of a given QoS
parameter may affect the fulfillment of others. For example, for embarrassingly parallel
computations, the execution time may be reduced by employing more resources, thus
increasing costs. The first step to deal with conflicting goals in the planning phase is to
sort out values that are within an acceptable range. For that, QoS contracts have an α value
in [0, 1]. If an argument to a QoS parameter is inside [(1 − α) ∗ QoS[parameter], (1 +
α)∗QoS[parameter]], then it cannot guide the reconfiguration. If all the parameters have
arguments within the acceptable range, the loop proceeds. Otherwise, in the second step,
HPC Shelf decides which parameter to choose according to the weight arrays given in

Section 3.1. The virtual platform computes the difference between the predicted argument
for each parameter and its requirement of the QoS contract and divides it by the contract
value. Then, its absolute value is multiplied by the weight value of this parameter. The
parameter with the highest value will guide the reconfiguration. This approach does not
eliminate conflicts but ensures prioritization of QoS requirements of the provider.

In the planning phase, the reconfiguration exhausts the possibility of vertical elas-
ticity, before it proceeds to horizontal elasticity. Resources are added or removed in units.
For example, cores are added or transferred to the nodes in the resource set at the rate of
one core per reconfiguration. If the decision procedure reaches the limits of the contract,
then horizontal elasticity adds or removes nodes, also at the rate of one per reconfigura-
tion. If it reaches the boundaries of the agreement again, HPC Shelf emits a warning to
the provider, but the execution will proceed unless the application decides to cancel it.

For the execution phase, the virtual platform sends a new resource set to the com-
putation component through an actuator method when it decides to perform a reconfigu-
ration. This new resource set may differ from the previous one regarding the number of
cores per node (vertical elasticity) or node count (horizontal elasticity). Developers will-
ing to support malleable reconfiguration of their computations must create components
that support reconfiguration through the actuator method.

5. Experimental Evaluation
As a small-scale case study, we demonstrate how the elasticity framework propose in this
paper may horizontally reconfigure an elastic system component.

5.1. Environment Setup
The computation component we have developed has a user service port through which it
takes a list of square matrix pairs. Then, it multiplies the matrices of each pair, and returns
a list of files containing the resulting matrices through another operation of the same port.
The order of each matrix pair may vary. For example, the input list[

(A0, B0)1000×1000 , (A1, B1)2000×2000 , (A2, B2)1500×1500

]
causes three multiplications of matrices of orders 1000, 2000 e 1500, respectively. So, the
output is [File0, F ile1, F ile2], a list of files with matrices of the same orders.

The computation component may return the progress of the execution. Internally,
it is an MPI program. In each multiplication A × B, the root unit scatters the lines of A
and the corresponding columns ofB across the worker units. Then, each worker performs
a partial multiplication. Finally, the root gathers the results in the output file.

We have employed the Python language with OpenMPI 1.10.2 (mpi4py) and the
numpy package for matrix calculation. Also, we have used an OpenStack-based cluster
as a parallel computing platform, with six physical servers as compute nodes. Each node
has two Intel Xeon CPU E5-2650 v3 2.30GHz, with a total os 20 cores and 64GB of
memory. The network that interconnects nodes was Gigabit Ethernet. The OpenStack
version was Liberty, with KVM as virtualization technology.

Since KVM does not support vertical elasticity, only horizontal elasticity is con-
sidered. In order to retain granularity control, we have used a virtual machine with two
cores and 4GB of RAM, running the Ubuntu Server, version 16.04.02 LTS.

Table 1. Computational Component Behavior without Reconfiguration.

VMs Matrix Size Elapse Load Cost
2 5000 1131.11 1.75 2264.22
2 10000 7565.08 1.93 15130.17

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 2 4 6 8 10 12 14 16 18 20

C
u

m
u
la

ti
v
e

 T
im

e
 (

s
e

c
o
n
d

s
)

Number of the matrix in the input list

Execution Time (2 VMs, Matrix Size = 5000)

Interference
Normal Execution

Variable Load

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 2 4 6 8 10 12 14 16 18 20

A
v
e
ra

g
e
 l
o
a
d
 p

e
r

n
o
d
e

Number of the matrix in the input list

Efficiency (2 VMs, Matrix Size = 5000)

Interference
Normal Execution

Variable Load

Figure 3. System Behavior without Reconfiguration.

5.2. System Behavior without Reconfiguration

We have submitted lists of twenty dense floating point matrices for multiplication, varying
the number of nodes of the virtual platform and the order of the matrices. The system de-
ploys the virtual machines in a round-robin manner among the servers. Table 1 shows the
results for elapsed time, average load (efficiency) per node, and total cost. We do not take
accuracy into account, since the algorithm has fixed precision and power consumption.
However, as explained in Section 4.1, power consumption and cost are proportional to the
number of nodes, so that we may infer the energy requirements from the price value.

Figure 3 depicts an execution with two VMs and twenty dense matrix multiplica-
tions with an order of 5000. The typical execution scenario is the same we have used to
provide the data in Table 1, with one VM per server. We have made such a change for cre-
ating interference in one of the physical servers to simulate the effects of multi-tenancy.
During the execution of the same workload, we have created a platform with ten VMs
restricted to one of the servers, colocated to an existing VM from the original platform,
overloading the server, with an impact on the execution of the computational component.
The interference increases the execution time from 1132s to 1675s.

We have also simulated ill-defined QoS contracts by creating an input list with ma-
trices of different orders. Such a scenario employs a list where the first and last five matrix
pairs have the order 5000, but from the sixth to the tenth pair, the size grows from 6000

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 0 2 4 6 8 10 12 14 16 18 20C
u
m

u
la

ti
v
e

 T
im

e

Number of the matrix in the input list

Execution Time For Malleable System (2 VMs, Matrix Size = 5000)

Interference
Variable Load

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 0 2 4 6 8 10 12 14 16 18 20

A
v
e

ra
g

e
 l
o

a
d

 p
e

r
n

o
d

e

Number of the matrix in the input list

Efficiency for Malleable System (2 VMs, Matrix Size = 5000)

Interference
Variable Load

 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 2 4 6 8 10 12 14 16 18 20

N
u

m
b
e

r
o

f
V

M
s

Number of the matrix in the input list

Cluster Size for Malleable System (2 VMs, Matrix Size = 5000)

Interference
Variable Load

Figure 4. System Behavior with Reconfiguration and Execution Time Priority.

to 10000, decreasing after that by 1000 until reaching 6000 again. Figure 3 shows that
this Variable Load scenario is more costly than the Interference one, reaching 2670s,
because multiplying matrices of order 10000 with 2 VMs causes memory paging.

5.3. System Behavior with Reconfiguration

In order to demonstrate how HPC Shelf may reconfigure virtual platforms and compu-
tation components, we define a QoS contract that requires a execution time of 1132s, an
efficiency of 1.75 and a cost (in a hypothetical monetary unit) of $2264, with priority
weights of 0.8, 0.1 and 0.1, respectively. The reconfiguration system was configured with
a monitoring interval of 10s, a reconfiguration interval of 60s, and an α of 0.1.

The expected values come from initial results of the execution without reconfig-
uration for 2 VMs and twenty matrices of order 5000, giving much higher priority to
execution time. It is noteworthy that the system does not make assumptions about the
scenario (Interference or Variable Load). It is only concerned with contract fulfillment.

Figure 4 shows that while not reaching the exact values required by the contract,
the reconfiguration algorithm steers the system towards them. Without reconfiguration,
the execution time for the interference scenario is 1675s. With reconfiguration, the com-
putation finishes around 1288s, closer to the 1132s imposed by the contract. The same
happens for the variable load scenario since more virtual machines available implies in
more free memory. In such a case, the time decreases from 2670s to 1610s.

The downside of reconfiguration is at the bottom of Figure 4. For ensure a proper
execution time, the reconfiguration system allocates new virtual machines, increasing the
cost. The Interference scenario reaches an expense of $5762 while the Variable Load
one reaches a peak of $15346. Unfortunately, these values are much higher than the
contract value of $2264, due to the priority given to execution time.

6. Conclusion and Future Works
In this paper, we propose a reconfiguration system aimed at ensuring that QoS require-
ments of applications, specified in contracts, are satisfied during execution of parallel
computing systems they create, deploy and execute. It is implemented on top of HPC
Shelf, a platform of HPC services in cloud. Instead of just swapping software compo-
nents, like other related systems, our system delegates reconfiguration decisions to virtual
platforms where they are placed, also viewed as components, in order to form an elastic
notion of system component, comprising an evolutive virtual platform and a malleable
computation component.

Unlike other elasticity solutions for HPC, the architecture of our proposal is highly
concerned with separation of concerns, so that the stakeholders around an HPC Shelf-
based environment (specialists, providers, developers and maintainers) know precisely
their roles in reconfiguration support. It is also noteworthy that the proposed system may
be adapted to other component-based platforms, since it does not make strong assump-
tions about HPC Shelf abstractions on top of which it has been firstly conceived.

For future work, we want to expand the evaluation with broader and larger scale
scenarios, considering different sets of priorities. We also want to explore more realistic
case studies, such as components that implement approximation methods, where accuracy
varies by resource set. Finally, we intend to support evolutive computation components,
where the computation is also involved in reconfiguration decisions.

References
[1] F. H. de Carvalho Junior, J. C. Silva, and A. B. O. Dantas, “A Scientific Workflow Management System

for Orchestration of Parallel Components in a Cloud of Large-Scale Parallel Processing Services,”
Science of Computer Programming, vol. 173, pp. 95–127, Mar. 2019.

[2] L. C. McInnes, J. Ray, R. Armstrong, T. L. Dahlgren, A. Malony, B. Norris, S. Shende, J. P. Kenny, and
J. Steensland, “Computational quality of service for scientific cca applications: Composition, substitu-
tion,” and reconfiguration. Technical Report ANL/MCS-P1326-0206, Argonne National Laboratory,
Tech. Rep., 2006.

[3] F. Baude, D. Caromel, C. Dalmasso, M. Danelutto, V. Getov, L. Henrio, and C. Pérez, “Gcm: a grid
extension to fractal for autonomous distributed components,” Annals of Telecommunications-annales
des télécommunications, vol. 64, no. 1-2, pp. 5–24, 2009.

[4] A. Gupta, “Techniques for Efficient High Performance Computing in the Cloud,” 2014. [Online].
Available: http://hdl.handle.net/2142/50718

[5] G. Mateescu, W. Gentzsch, and C. J. Ribbens, “Hybrid Computing—Where HPC meets grid and Cloud
Computing,” Future Generation Computer Systems, vol. 27, no. 5, pp. 440–453, May 2011. [Online].
Available: http://dx.doi.org/10.1016/j.future.2010.11.003

[6] M. Caballer, C. de Alfonso, F. Alvarruiz, and G. Moltó, “EC3: Elastic Cloud Computing Cluster,” Journal
of Computer and System Sciences, vol. 79, no. 8, pp. 1341–1351, Dec. 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0022000013001141

[7] G. Mencagli, M. Vanneschi, and E. Vespa, “Control-theoretic adaptation strategies for autonomic reconfig-
urable parallel applications on cloud environments,” in High Performance Computing and Simulation
(HPCS), 2013 International Conference on, July 2013, pp. 11–18.

[8] A. Raveendran, T. Bicer, and G. Agrawal, “A Framework for Elastic Execution of Existing MPI Programs,”
in Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW), 2011 IEEE Interna-
tional Symposium on, May 2011, pp. 940–947.

[9] R. R. Righi, V. F. Rodrigues, C. A. da Costa, G. Galante, L. C. E. de Bona, and T. Ferreto, “AutoElastic:
Automatic Resource Elasticity for High Performance Applications in the Cloud,” IEEE Transactions
on Cloud Computing, vol. 4, no. 1, pp. 6–19, Jan 2016.

[10] R. da Rosa Righi, V. F. Rodrigues, G. Rostirolla, C. A. da Costa, E. Roloff, and P. O. A.
Navaux, “A lightweight plug-and-play elasticity service for self-organizing resource provisioning
on parallel applications,” Future Generation Computer Systems, pp. –, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167739X17302339

[11] F. H. de Carvalho Junior and R. D. Lins, “Separation of Concerns for Improving Practice of Parallel Pro-
gramming,” INFORMATION, An International Journal, vol. 8, no. 5, pp. 621–638, Sep. 2005.

[12] F. H. de Carvalho Junior, C. A. Rezende, J. C. Silva, W. G. Al Alam, and J. M. U. de Alencar, “Contex-
tual Abstraction in a Type System for Component-Based High Performance Computing Platforms,”
Science of Computer Programming, vol. 132, pp. 96–128, 2016.

[13] B. Norris, J. Ray, R. Armstrong, L. C. McInnes, D. E. Bernholdt, W. R. Elwasif, A. D.
Malony, and S. Shende, Computational Quality of Service for Scientific Components. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2004, pp. 264–271. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-540-24774-6 23

[14] G. Marin and J. Mellor Crummey, “Cross-architecture Performance Predictions for Scientific Applications
Using Parameterized Models,” in Proceedings of the Joint International Conference on Measurement
and Modeling of Computer Systems, ser. SIGMETRICS ’04/Performance ’04. New York, NY,
USA: ACM, 2004, pp. 2–13. [Online]. Available: http://doi.acm.org/10.1145/1005686.1005691

[15] S. Lee, J. S. Meredith, and J. S. Vetter, “COMPASS: A Framework for Automated Performance Modeling
and Prediction,” in Proceedings of the 29th ACM on International Conference on Supercomputing,
ser. ICS. New York, NY, USA: ACM, 2015, pp. 405–414.

[16] E. Ipek, B. R. de Supinski, M. Schulz, and S. A. McKee, “An Approach to Performance Prediction for
Parallel Applications,” in Proceedings of the 11th International Euro-Par Conference on Parallel
Processing, ser. Euro-Par’05. Berlin, Heidelberg: Springer-Verlag, 2005, pp. 196–205. [Online].
Available: http://dx.doi.org/10.1007/11549468 24

[17] S. Salaria, K. Brown, H. Jitsumoto, and S. Matsuoka, “Evaluation of HPC-Big Data Applications Using
Cloud Platforms,” in Proceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing, ser. CCGrid’17. Piscataway, NJ, USA: IEEE Press, 2017, pp. 1053–1061.
[Online]. Available: https://doi.org/10.1109/CCGRID.2017.143

[18] M. Gilani, C. Inibhunu, and Q. H. Mahmoud, “Application and Network Performance of Amazon Elastic
Compute Cloud Instances,” in 2015 IEEE 4th International Conference on Cloud Networking (Cloud-
Net), Oct. 2015, pp. 315–318.

[19] X. Wen, G. Gu, Q. Li, Y. Gao, and X. Zhang, “Comparison of open-source cloud management platforms:
Openstack and opennebula,” in Fuzzy Systems and Knowledge Discovery (FSKD), 2012 9th Interna-
tional Conference on. IEEE, 2012, pp. 2457–2461.

[20] D. G. Feitelson and L. Rudolph, “Toward Convergence in Job Schedulers for Parallel Supercomputers,”
in Lecture Notes In Computer Science, vol. 1162 (Proceedings of the Workshop on Job Scheduling
Strategies for Parallel Processing (JSSPP’96), D. G. Feitelson and L. Rudolph, Eds. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 1996, pp. 1–26.

[21] J. O. Kephart and D. M. Chess, “The Vision of Autonomic Computing,” Computer, vol. 36, no. 1, pp.
41–50, Jan. 2003.

