
Tucano: A Service Scheduler and Load Balancer in a
Distributed System

Luiz F. Gonçalves, Eduardo L. Paschoalini, Gustavo D. Aguiar, Yuri Rousseff,
Matheus A. Souza, Pedro H. Ramos, Ricardo C. Sperandio, Felipe D. Cunha

Depto. de Ciência da Computação – Pontifı́cia Universidade Católica de Minas Gerais
Belo Horizonte – MG – Brasil

{luiz.frazao, eduardo.paschoalini, gdaguiar, yrousseff}@sga.pucminas.br,
phramoscosta@gmail.com, {ricardosperandio, matheusalcantara, felipe}@pucminas.br

Abstract. As applications grow in complexity, their workloads grow heavier
and more resource demanding. To address this challenge, a system of
network-connected servers can be employed to distribute the processes from
such applications, reducing performance loss caused by unequal resource
sharing. This work introduces Tucano: a scheduler that leverages operating
systems’ techniques to manage workloads in a distributed, container-oriented
context. Additionally, Tucano implements a load balancer, that ensures the
correct mapping of requests to their corresponding host servers. Through
physical distribution and containerization, Tucano aims to explore an efficient
and scalable strategy for managing multiple workloads.

1. Introduction
Early on, organizations ran applications on physical servers without dedicated resource
boundaries, causing resource allocation issues [Anand et al. 2021]. When a server is
shared by multiple applications, one of them may consume the majority of resources,
leading to a performance loss for others [Mirhosseini et al. 2019]. A simple solution
is to run each application on a server, but this led to resource underutilization and
high maintenance costs for many physical servers [Speitkamp and Bichler 2010]. These
drawbacks highlight the need to subdivide applications into smaller processes and
schedule them as manageable units, optimizing resource distribution.

A possible solution is virtualization, which enables multiple applications to run on
a single physical server by using Virtual Machines (VMs) that emulate entire computer
systems. Using VMs improves cost-efficiency by consolidating multiple systems onto
a host server instead of using separate hardware for each. It also simplifies application
management as each VM operates in its isolated environment. However, virtualization
earns significant performance overhead by requiring the replication of the entire Operating
Systems (OSs) and simulate necessary hardware, leading to high memory and CPU
usage [Bermejo and Juiz 2020, Shirinbab et al. 2017].

Another approach to address this challenge is containerization. Unlike VMs,
containers virtualize only the OS rather than the entire computer system. Each container
typically carries a single application alongside all necessary binaries, libraries, and

Eduardo, Gustavo, Luiz, and Yuri are undergraduate students in the Computer Science program,
advised by the other authors.



configuration files [Watada et al. 2019]. Containers share the host OS kernel and often
its binaries and libraries in a read-only manner, eliminating the need to replicate OS code
multiple times. This streamlined abstraction results in lower costs and greater efficiency
due to reduced resource requirements. However, despite their flexibility and lightweight
nature, environments utilizing containers must ensure continuous uptime and scalability
of applications [Bernstein 2014, Morabito et al. 2017].

The third approach, and the one targeted in this paper, introduces Tucano, a
hybrid model that integrates multiple physical machines with a container-oriented design
for application deployment. Services are scheduled across a multi-computer system
using an interconnection network for communication. A controller node orchestrates
the scheduling routine, while worker nodes execute services as processes. Tucano goes
beyond container management by overseeing the nodes that run these containers. It
ensures each node operates within capacity, dynamically allocating services to capable
nodes, thus reducing resource overhead and enhancing scalability. By managing both
containers and their execution environment, Tucano streamlines operations and balances
resource availability with application demand.

The rest of this paper is organized as follows. Different techniques form
scheduling systems are discussed in Section 2. Section 3 introduces the system
architecture and Section 4 gives implementation details of its components. The gathered
results are shown in Section 5 before conclusion in Section 6.

2. Related Work
Previous studies have evaluated various aspects of scheduling techniques and container
management. For instance, [Kovvur et al. 2013] presented a general description of the
phases required by a scheduler. These phases consist of resource discovery, resource
selection, task selection, and task monitoring. The presented approach extends these
phases by separating resource management and task execution control into separate
components, with more methods for dealing with workload balance on worker nodes.

Containers provide lightweight virtualization by encapsulating applications and
their dependencies into isolated environments. In light of that, [Merkel et al. 2014]
discussed the benefits of Docker, a containerization platform. The authors highlighted
Docker’s ability to package applications with everything they need. Our approach
leverages Docker’s lightweight nature, allowing for rapid deployment and scalability.

Finally, there is Kubernetes, a platform for automating deployment, scaling, and
operations of container applications [Burns et al. 2016, Bernstein 2014]. The solution
presented also aims for container cluster orchestration, providing high availability and
scalability through a multicomputer ecosystem attached to a load balancer.

3. System Architecture
Some fundamental concepts are central to this work and need explicit definition. Tucano’s
architecture comprises two main components: a controller and a worker. Figure 1 presents
how each sub-component of the controller and worker nodes has distinct responsibilities,
also describing the communication establishment.

Within the controller, the deployer accepts a service’s static configuration and
starts its deployment. The balancer manages user service requests, distributing them



Figure 1. System Architecture

among system nodes. The worker manager receives and shares resource usage
information from each worker. The discovery routine maintains mapping information
for services and live worker nodes.

In a worker node, the monitor collects and sends metrics to the controller,
while the runner deploys and executes container instances based on the controller’s
instructions, supporting multiple processes.

Inter-node communication uses the HTTP protocol, chosen for its simplicity.
Previously, gRPC and custom TCP/UDP were considered, but a RESTful model reduced
complexity. Intra-node communication draws insights from Erlang’s actor model
[Armstrong 2003] for message passing between actors within the same process. The
following sections delve deeper into each component and their interactions within
Tucano’s architecture.

4. Implementation

4.1. Controller

An HTTP server establishes communication with the worker nodes and system
administrator requests. As shown in Figure 1, the component receives metrics and
processes’ status from worker nodes and redirects those to other components.

The Worker Manager processes various messages, such as registering and
deregistering workers, receiving metrics, and performing periodic liveness checks.
Metrics management involves updating worker details and verifying their activity status.
Periodic liveness checks ensure that workers are active by comparing the time elapsed
since the last metrics update against the liveness timeout. If a worker fails to send metrics
within the designated timeout, it is marked as dead and removed from the pool, thereby
maintaining optimal system performance and preventing resource bottlenecks.



The Discovery component sustains the system’s service discovery ability. It
works as a central database, maintaining information about worker nodes, running
services, deployment records, and overall system metrics. Additionally, it provides a
message-passing-based API that other local components rely on.

To enhance the system’s reliability and robustness in the face of failures, data
is persisted on disk in an eventually-consistent manner using a SQLite database. This
approach aims to minimize the latency of discovery operations by asynchronously
organizing most data changes to disk in the background, rather than immediately upon
receipt. This persisted data is crucial for recovering the system’s state if the controller
node needs to restart due to catastrophic failures. Even if not all data persisted before
a crash, the remaining worker nodes can quickly provide the necessary information to
rebuild the up-to-date system state.

Managing the lifecycle of services, the Deployer orchestrates the allocation of
instances across available workers and ensures that services are deployed and terminated.
Upon receiving a deployment request, it allocates suitable workers for the service
instances based on the service configuration. This involves querying the discovery
component for available workers and distributing the instances accordingly. The deployer
ensures that the instances are deployed with the necessary resources and configurations,
preparing the runtime environment and starting the containers.

Instance state transitions are managed through a state machine, depicted in
Figure 2, which tracks states such as deploying, running, terminating, and crashing. The
state machine handles retries for deployments and terminations as needed.

Figure 2. Deployer component state machine

Our Load Balancer distributes incoming HTTP requests using a round-robin
algorithm. It extracts the service identifier from the host header to identify the target
service. This ID is used to find available instances from a shared state. The round-robin
mechanism evenly distributes requests by incrementing a counter and cycling through
instances. After selecting an instance, the load balancer updates the request’s URI
(Uniform Resource Identifier) to the worker address and adds custom headers with the



instance ID and the client’s original IP address. This ensures the request is routed correctly
and distinguishes between multiple instances of the same service.

4.2. Worker

As workers communicate with the controller, fetch system information, and redirect
requests, asynchronous programming becomes crucial. Instead of waiting for I/O
tasks or network responses to be completed, it allows workers handling multiple tasks
concurrently.

When a request is received, the Proxy first extracts the instance ID from the
request header. It then searches the corresponding port for this instance ID in its internal
map. If the instance exists, the proxy rewrites the request URI to direct it to the local port
where the instance is running.

The Monitor is formed by the collector and scheduler components, it’s purpose is
to periodically fetch system information and send it to the controller by HTTP requests.
Controller components later use the data acquired to manage active workers’ states.
System information is also used to decide which worker will receive future services.

The collector gathers system information e.g. CPU usage, memory usage, and
total memory of a worker node. Since processing time continuously accumulates from
system boot, assessing usage at a single point in time provides poor insight into system
performance. To accurately gauge CPU usage, the difference in CPU time between two
points within the desired interval is computed. The CPU usage in the percentage formula
is described as U = UT/TT where UT is the used processing time and TT is the total
processing time measured in seconds.

The Runner manages the lifecycle of container instances. Upon receiving a
deployment request, the runner allocates an available port on the machine and initiates
the deployment via the Docker API. This involves preparing the runtime environment
and starting the container with the given configuration. The runtime allocates necessary
resources such as CPU shares and memory to each container, thus preventing resource
contention.

Termination involves graceful shutdown by sending a SIGTERM signal. If the
container does not terminate within a specified timeout, the runtime forcefully kills the
container using a SIGKILL signal.

5. Results

With the purpose of demonstrating Tucano’s capability of balancing workloads amongst
multiple computer clusters, the system deployed a CPU bound web service responsible
for factorizing large prime numbers and computing their SHA256 hashes, tasks known
for their computational intensity. In this context, the performance evaluation for Tucano
focuses on its behaviour against large amounts of processing requirements.

The experimental evaluation employed k61, a performance testing tool designed
to assess systems’ reliability and efficiency by simulating various levels of loads.
In this experiment, k6 was used to send requests—ranging from small, medium, to

1https://k6.io/

https://k6.io/


large ones—to the web service. This enabled the generation of a performance report
highlighting how well Tucano managed the distributed tasks under different conditions.
The report provided insights into key metrics such as response times, throughput, and
resource utilization, allowing for an in-depth analysis of the system’s capacity to handle
stress and scale effectively. All tests were performed using a MacBook Pro with M3 pro
chip, 12 cores, 18GB of RAM and 512GB SSD. Three scenarios were examined:

• Case 1 ran the service in a container with 1 vCPU and 512 MB of RAM, without
use of Tucano.

• Case 2 used the Tucano ecosystem with a container cluster of three workers and a
controller, each allocated 0.25 vCPU and 128 MB of RAM.

• Case 3 also used the Tucano environment with the same cluster configuration, but
all containers had the same resource allocation as in Case 1.

Figure 3.

Figure 3 shows a significant improvement in performance from Case 1 to Case 3,
not only the number of requests went from 214,484 in Case 1 to 635,084 in Case 3, and
the average request duration decreased from 3.17 ms to 769.9µs. Case 2 also reduced the
request duration, despite the lower individual resource allocation per container, resulting
on a smaller amount of requests during execution.

The reduction in request duration underlines the capabilities of the system’s
resource management and load balancing mechanisms. Tucano’s distributed architecture
minimizes latency, even when the system handles large volumes of requests. Tucano
is well-optimized to allocate resources across multiple nodes, leveraging parallelism to
ensure lower response times.

While the increase in the number of machines naturally contributes to better
performance, these results also demonstrate Tucano’s efficiency in managing and
distributing workloads. The system’s ability to optimize resource usage and load balance
across multiple nodes highlights its scalability and robustness. By leveraging parallelism
and distributed computing, Tucano enhances system performance, making it a valuable
solution for computationally intensive applications.



6. Conclusion

While virtualization gain resource isolation and management, it introduces overhead
by emulating complete OSs and hardware environments. Containers offer a more
lightweight solution by virtualizing only the OS, however, managing many containers
needs scheduling and load-balancing mechanisms to ensure system performance.

This paper proposes Tucano, a service scheduler and load balancer. Tucano
integrates the aforementioned principles by distributing workloads across a network of
interconnected physical servers, each running containerized applications. Its architecture,
with controller and worker nodes, simplifies service deployment, monitoring, and
dynamic load balancing. By leveraging physical distribution and containerization, Tucano
offers a scalable, efficient, and cost-effective solution for managing intensive workloads.
It reduces resource overhead and performance issues of traditional virtualization, pointing
to a promising future for distributed system management and application deployment.
Tucano is available under the GPL-3.0 license 2

Future work aimed at enhancing the performance and flexibility of Tucano can
be outlined. Key areas for improvement include creating a multi-controller cluster to
increase system availability; exploring advanced load balancing techniques to optimize
resource allocation; and researching the adoption of broader container standards versus
swapping containers for unikernels to minimize resource consumption and maximize
safety. These enhancements will build on the foundational principles established in this
work, advancing the capabilities of distributed service schedulers and load balancers in
contemporary computing environments.

References

[Anand et al. 2021] Anand, A., Chaudhary, A., and Arvindhan, M. (2021). The need for
virtualization: when and why virtualization took over physical servers. In Advances in
Communication and Computational Technology: Select Proceedings of ICACCT 2019,
pages 1351–1359. Springer.

[Armstrong 2003] Armstrong, J. (2003). Making Reliable Distributed Systems in the
Presence of Software Errors. PhD thesis, Royal Institute of Technology, Stockholm,
Sweden. Final version with corrections — last update 20 November 2003.

[Bermejo and Juiz 2020] Bermejo, B. and Juiz, C. (2020). Virtual machine consolidation: a
systematic review of its overhead influencing factors. The Journal of Supercomputing,
76(1):324–361.

[Bernstein 2014] Bernstein, D. (2014). Containers and cloud: From lxc to docker to
kubernetes. IEEE Cloud Computing, 1(3):81–84.

[Burns et al. 2016] Burns, B., Grant, B., Oppenheimer, D., Brewer, E., and Wilkes, J.
(2016). Borg, omega, and kubernetes. ACM Queue, 14:70–93.

[Kovvur et al. 2013] Kovvur, R. M. R., Ramachandram, S., Kadappa, V., and Govardhan,
A. (2013). A distributed dynamic grid scheduler for mixed tasks. In 2013 3rd IEEE
International Advance Computing Conference (IACC), pages 110–115.

2Tucano repository: https://github.com/esfericos/tucano.

https://github.com/esfericos/tucano.


[Merkel et al. 2014] Merkel, D. et al. (2014). Docker: lightweight linux containers for
consistent development and deployment. Linux j, 239(2):2.

[Mirhosseini et al. 2019] Mirhosseini, A., Sriraman, A., and Wenisch, T. F. (2019).
Enhancing server efficiency in the face of killer microseconds. In 2019 IEEE
International Symposium on High Performance Computer Architecture (HPCA), pages
185–198. IEEE.

[Morabito et al. 2017] Morabito, R. et al. (2017). Evaluating performance of containerized
microservices for iot applications. IEEE Transactions on Services Computing,
10(5):1–14.

[Shirinbab et al. 2017] Shirinbab, S., Lundberg, L., and Casalicchio, E. (2017).
Performance evaluation of container and virtual machine running cassandra workload.
In 2017 3rd International Conference of Cloud Computing Technologies and
Applications (CloudTech), pages 1–8. IEEE.

[Speitkamp and Bichler 2010] Speitkamp, B. and Bichler, M. (2010). A mathematical
programming approach for server consolidation problems in virtualized data centers.
IEEE Transactions on Services Computing, 3(4):266–278.

[Watada et al. 2019] Watada, J., Roy, A., Kadikar, R., Pham, H., and Xu, B. (2019).
Emerging trends, techniques and open issues of containerization: A review. IEEE
Access, 7:152443–152472.


	Introduction
	Related Work
	System Architecture
	Implementation
	Controller
	Worker

	Results
	Conclusion

