Extending the Planning Poker Method to Estimate the Development Effort of Parallel Applications

  • Gabriella Andrade IFRS
  • Dalvan Griebler PUCRS
  • Rodrigo Santos UNIRIO
  • Luiz Gustavo Fernandes PUCRS


Since different Parallel Programming Interfaces (PPIs) are available to programmers, evaluating them to identify the most suitable PPI also became necessary. Recently, in addition to the performance of PPIs, developers’ productivity has also been evaluated by researchers in parallel processing. Some researchers conduct empirical studies involving people for productivity evaluation, which is time-consuming. Aiming to propose a less costly method for evaluating the development effort of parallel applications, we proposed modifying the Planning Poker method in this paper. We consider a representative set of parallel stream processing applications to evaluate the proposed modification. Our results showed that the proposed method required less effort for practical use than the controlled experiments with students.


Aldinucci, M., Danelutto, M., Kilpatrick, P., e Torquati, M. (2017). Fastflow: High-level and efficient streaming on multi-core. In Programming Multi-core and Many-core Computing Systems, pages 261–280.

Andrade, G., Griebler, D., Santos, R., e Fernandes, L. G. (2022a). Opinião de brasileiros sobre a produtividade no desenvolvimento de aplicações paralelas. In WSCAD 2022, pages 276–287.

Andrade, G., Griebler, D., Santos, R., e Fernandes, L. G. (2023). A parallel programming assessment for stream processing applications on multi-core systems. Computer Standards & Interfaces, 84:1–25.

Andrade, G., Griebler, D., Santos, R., Kessler, C., Ernstsson, A., e Fernandes, L. G. (2022b). Analyzing programming effort model accuracy of high-level parallel programs for stream processing. In SEAA 2022, pages 229–232.

Andrade, H. C., Gedik, B., e Turaga, D. S. (2014). Fundamentals of stream processing: application design, systems, and analytics. Cambridge University Press.

Cohn, M. (2005). Agile estimating and planning. Pearson Education.

Durán, M., Juárez-Ramírez, R., Jiménez, S., e Tona, C. (2019). Taxonomy for complexity estimation in agile methodologies: A systematic literature review. In CONISOFT 2019, pages 87–96.

Fernández-Diego, M., Méndez, E. R., González-Ladrón-De-Guevara, F., Abrahão, S., e Insfran, E. (2020). An update on effort estimation in agile software development: A systematic literature review. IEEE Access, 8:166768–166800.

Finco, D. A. (2021). Combinando planning poker e aprendizado de máquina para estimar esforço de software. In ERES 2011, pages 129–138.

Galorath, D. D. e Evans, M. W. (2006). Software Sizing, Estimation, and Risk Management: When Performance is Measured Performance Improves. Auerbach Publications.

Gandomani, T. J., Faraji, H., e Radnejad, M. (2019). Planning poker in cost estimation in agile methods: Averaging vs. consensus. In KBEI 2019, pages 66–71.

Griebler, D., Danelutto, M., Torquati, M., e Fernandes, L. G. (2017). Spar: A dsl for high-level and productive stream parallelism. Parallel Processing Letters, 27(1):1–14.

Haugen, N. C. (2006). An empirical study of using planning poker for user story estimation. In AGILE 2006, pages 1–9.

ISO (2018). ISO 9241-11:2018 – Ergonomics of human-system interaction – Part 11: Usability: Definitions and concepts.

Kirk, D. B. e Hwu, W.-m. W. (2016). Programming massively parallel processors: A hands-on approach. Morgan Kaufmann.

Larose, D. T. e Larose, C. D. (2014). Discovering knowledge in data: An introduction to data mining. John Wiley & Sons, 2nd edition.

Mahnič, V. e Hovelja, T. (2012). On using planning poker for estimating user stories. Journal of Systems and Software, 85(9):2086–2095.

Mallidi, R. K. e Sharma, M. (2021). Study on agile story point estimation techniques and challenges. International Journal of Computer Applications, 174(13):9––14.

McCool, M., Reinders, J., e Robison, A. (2012). Structured parallel programming: Patterns for efficient computation. Morgan Kaufmann Publishers.

Miller, J. e Arenaz, M. (2019). Measuring the impact of hpc training. In EduHPC 2019, pages 58–67.

Moløkken-Østvold, K., Haugen, N. C., e Benestad, H. C. (2008). Using planning poker for combining expert estimates in software projects. Journal of Systems and Software, 81(12):2106–2117.

Nanz, S., West, S., Da Silveira, K. S., e Meyer, B. (2013). Benchmarking usability and performance of multicore languages. In ESEM 2013, pages 183–192.

Putnam, L. H. e Myers, W. (1991). Measures for Excellence: Reliable Software on Time, within Budget. Prentice Hall PTR.

Raith, F., Richter, I., Lindermeier, R., e Klinker, G. (2013). Identification of inaccurate effort estimates in agile software development. In APSEC 2013, pages 67–72.

Razali, N. M., Wah, Y. B., et al. (2011). Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. Journal of Statistical Modeling and Analytics, 2(1):21–33.

Sudarmaningtyas, P. e Mohamed, R. B. (2020). Extended planning poker: A proposed model. In ICITACEE 2020, pages 179–184.

Tamrakar, R. e Jørgensen, M. (2012). Does the use of fibonacci numbers in planning poker affect effort estimates? In EASE 2012, pages 228–232.

Voss, M., Asenjo, R., e Reinders, J. (2019). Pro TBB: C++ parallel programming with threading building blocks. Apress.

Wazlawick, R. (2013). Engenharia de Software: Conceitos e Práticas. Elsevier.

Wohlin, C., Runeson, P., Høst, M., Ohlsson, M. C., Regnell, B., e Wesslén, A. (2012). Experimentation in software engineering. Springer.

Zahraoui, H. e Idrissi, M. A. J. (2015). Adjusting story points calculation in scrum effort & time estimation. In SITA 2015, pages 1–8.
ANDRADE, Gabriella; GRIEBLER, Dalvan; SANTOS, Rodrigo; FERNANDES, Luiz Gustavo. Extending the Planning Poker Method to Estimate the Development Effort of Parallel Applications. In: SIMPÓSIO EM SISTEMAS COMPUTACIONAIS DE ALTO DESEMPENHO (SSCAD), 24. , 2023, Porto Alegre/RS. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2023 . p. 181-192. DOI: https://doi.org/10.5753/wscad.2023.235925.