HybriD-GM: Um Modelo Paralelo para Computação Quântica direcionado às Arquiteturas Híbridas
Resumo
This paper has as its primary objective to introduce the the HybriD-GM model conception, as well as extend the D-GM environment, providing efficient parallel executions for quantum computing simulations, targeted to hybrid architectures considering both CPU and GPU. By managing projection operators over quantum structures, and exploring coalescing memory access patterns, the HybriD-GM model enables the granularity control, optimizing hardware resources in distributed computations organized as tree data-structures. In the HybriD-GM evaluation, simulations of Shor’s and Grover’s algorithms achieve significant performance improvements in comparison to the D-GM previous version and to the LIQUi|⟩ and ProjectQ simulators.
Referências
Avila, A., Reiser, R., Pilla, M., and Yamin, A. (2019). Improving in situ GPU simulation of quantum computing in the D-GM environment. Int. J. High Perform. Comput. Appl., 33(3).
Avila, A., Reiser, R., Pilla, M., and Yamin, A. (2020). State-of-the-art quantum computing simulators: Features, optimizations, and improvements for d-gm. Neurocomputing, 393:223 – 233.
Biswas, R., Jiang, Z., Kechezhi, K., Knysh, S., Mandr, S., OGorman, B., Perdomo-Ortiz, A., Petukhov, A., Realpe-Gmez, J., Rieffel, E., Venturelli, D., Vasko, F., and Wang, Z. (2017). A nasa perspective on quantum computing. Parallel Comput., 64(C):81–98.
de Avila, A. B., Santos, H. S., Cruz, A. P., de Souza, S. X., Lucca, G., Moura, B., Yamin, A. C., and Reiser, R. (2023). Hybrid-gm: A framework for quantum computing simulation targeted to hybrid parallel architectures. Entropy, 25(3):503.
Gutierrez, E., Romero, S., Trenas, M., and Zapata, E. (2010). Quantum computer simulation using the cuda programming model. Computer Physics Communications, pages 283–300.
Haner, T. and Steiger, D. S. (2017). 0.5 petabyte simulation of a 45-qubit quantum circuit. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC ’17, New York, NY, USA. Association for Computing Machinery.
Hirvensalo, M. (2001). Quantum Computing. Springer Verlag, Natural Computing Series.
Smelyanskiy, M., Sawaya, N. P. D., and Aspuru-Guzik, A. (2016). qHiPSTER: The Quantum High Performance Software Testing Environment.
Steiger, D. S., Häner, T., and Troyer, M. (2016). ProjectQ: An open source software framework for quantum computing.
Wecker, D. and Svore, K. M. (2014). Liqui|>: A software design architecture and domain-specific language for quantum computing. Computing Research Repository (CoRR), abs/1402.4467.
Zhang, P., Yuan, J., and Lu, X. (2015). Quantum Computer Simulation on Multi-GPU Incorporating Data Locality, pages 241–256. Springer International Publishing, Cham.